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Abstract

Linear operators appear in several forms in various settings all across mathematics. They
can be ring elements (as in C∗-algebras), matrices, but also vector space and module
homomorphisms, or more generally, morphisms in abelian categories.

In this thesis, we develop an algebraic framework for automatically proving statements about
linear operators by computations with noncommutative polynomials. More specifically,
arbitrary first-order statements about identities of linear operators can be treated. We
present a practical semi-decision procedure for validity of such formulas based on the
verification of ideal membership in a free algebra. In contrast to classical approaches
for automated theorem proving, these algebraic computations automatically incorporate
linearity and they benefit from efficient ideal membership procedures.

In particular, we exploit the theory of noncommutative Gröbner bases to verify ideal
membership in the free algebra. In order to enhance these computations, we generalise the
concept of signature Gröbner bases, originally developed for commutative polynomials, to
the free setting, and more generally, to mixed algebras, allowing a mixture of commutative
and noncommutative variables.

Based on Gröbner basis techniques, we also generalise existing and develop new algorithms
for computing elements of specific forms in noncommutative polynomial ideals. These
methods serve as one of the key steps in the aforementioned semi-decision procedure.
Furthermore, we present novel methods for finding short proofs of operator statements,
based on the ability to compute short certificates of ideal membership. All algorithms are
implemented in various software packages for SageMath and Mathematica.

We illustrate the capabilities of our framework and software through a case study on
statements about the Moore-Penrose inverse, including classical facts and recent results.
Furthermore, we showcase that our approach allows to discover new theorems, and we
discuss how diagram chases in abelian categories can be automated using our framework.
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Kurzfassung

Lineare Operatoren treten in verschiedenen Formen in diversen mathematischen Kontexten
auf. Sie können Ringelemente sein (wie in C∗-Algebren), Matrizen, aber auch Vektorraum-
und Modulhomomorphismen, oder allgemeiner, Morphismen in abelschen Kategorien.

Wir entwickeln eine algebraische Theorie, um Aussagen über lineare Operatoren automati-
siert durch Berechnungen mit nichtkommutativen Polynomen zu beweisen. Es können belie-
bige Aussagen erster Ordnung über Operatoridentitäten behandelt werden. Wir präsentieren
ein Semientscheidungsverfahren zur Überprüfung der Gültigkeit solcher Formeln, basierend
auf der Verifikation von Idealzugehörigkeit in freien Algebren. Im Gegensatz zu klassischen
Ansätzen für automatisiertes Beweisen berücksichtigen diese algebraischen Berechnungen
automatisch Linearität und profitieren von effizienten Idealzugehörigkeitsverfahren.

Insbesondere nutzen wir die Theorie der nichtkommutativen Gröbnerbasen, um Idealzu-
gehörigkeit in der freien Algebra nachzuweisen. Um diese Berechnungen zu verbessern,
verallgemeinern wir das Konzept der Signatur-Gröbnerbasen, ursprünglich für kommutative
Polynome entwickelt, auf die freie Algebra und noch allgemeiner auf gemischte Algebren,
welche eine Mischung aus kommutativen und nichtkommutativen Variablen erlauben.

Wir verallgemeinern auch bestehende und entwickeln neue Algorithmen zur Berechnung
von Elementen bestimmter Form in nichtkommutativen Polynomidealen. Diese Methoden
sind einer der Schlüsselschritte im oben genannten Semientscheidungsverfahren. Darüber
hinaus präsentieren wir neue Methoden um kurze Beweise von Operatoraussagen zu finden,
beruhend auf der Fähigkeit kurze Zertifikate für Idealzugehörigkeit zu berechnen. Alle
Algorithmen sind in Softwarepaketen für SageMath und Mathematica implementiert.

Wir veranschaulichen das Potenzial unserer Theorie und der Software anhand einer Fall-
studie zu Aussagen über die Moore-Penrose-Inverse, einschließlich klassischer Fakten und
aktueller Resultate. Darüber hinaus zeigen wir, dass es unser Ansatz ermöglicht, neue
Theoreme zu entdecken und Diagrammjagden in abelschen Kategorien zu automatisieren.
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1 Introduction

In its section on the Moore-Penrose inverse, the Handbook of Linear Algebra [Hog13,
Sec. I.5.7] lists, besides the defining identities of the Moore-Penrose inverse (see (1.1) later
on page 6), a number of classical facts:

1. Every A ∈ Cm×n has a unique Moore-Penrose inverse A†.

2. If A ∈ Rm×n, then A† is real.

3. If A ∈ Cm×n [. . . ] has a full rank decomposition A = BC [. . . ], then A† can be
evaluated using A† = C∗(B∗AC∗)−1B∗.

4. If A ∈ Cm×n [. . . ] has an SVD A = UΣV ∗, then its Moore-Penrose inverse is
A† = V Σ†U∗ [. . . ].

...

In this context, consider the task of proving as many of these facts as possible, using only
the defining identities and no additional references. This is clearly a nontrivial task for any
non-expert.

In this thesis, we develop an algebraic framework for proving statements like the ones listed
above based on computations with noncommutative polynomials. Our main result is a
practical semi-decision procedure that allows to automatically prove any true first-order
statement about identities of linear operators by verification of ideal membership in a free
algebra. To enhance the polynomial computations underlying this semi-decision procedure,
we also generalise existing and develop new algorithms in the realm of noncommutative
Gröbner bases. Using these algorithms, which are implemented in several software packages,
in combination with our framework, we are able to automatically prove the majority of
the facts on the Moore-Penrose inverse in the Handbook of Linear Algebra. Moreover, we
generalise recent results in operator theory and discover new theorems.
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1 Introduction

1.1 Outline and contributions

In the following, we provide an overview of this thesis and outline the main contributions
of this work and the related publications. Parts of this thesis have already appeared in our
published papers [Cve+21; HRR22a; HV22; BHR23; HV23b] and in our preprints [HRR22b;
HV23a]. A more detailed description of our contributions as well as references to related
work are given at the beginning of each chapter.

In the following Sections 1.2 and 1.3, the reader will be able to gain a practical under-
standing of the algebraic framework developed in this work, by learning how to translate
operator statements into polynomial computations and how to use our SageMath pack-
age operator_gb to compute algebraic proofs. These sections also appear in our joint
work [BHR23]. In Section 1.2, we also discuss previous work on using noncommutative
polynomials for proving operator identities.

Chapter 2 serves as a preparation for the subsequent parts, covering basic concepts needed
for our work. We start by recalling basic concepts from category theory in Section 2.1,
including preadditive semicategories, which provide a very general setting for studying
linear operators, and abelian categories. We also give several examples of these structures.
It is noteworthy that Section 2.1.1, which is devoted to abelian categories, is only relevant
for the results in Section 7.3 on automated diagram chases. Then, in Section 2.2, we discuss
the construction and fundamental properties of key algebraic structures relevant for the
theory and algorithms developed in this work, including free monoids, free algebras, and
free (bi)modules. In Section 2.3, we review basics of term rewriting, before presenting the
theory of Gröbner bases in the free algebra from the perspective of polynomial rewriting
in Section 2.4. This section notably contains a novel characterisation of a large family
of noncommutative monomial orders by combining totally ordered semigroups with the
lexicographic order. Finally, in Section 2.5, we give an overview on many-sorted logic,
which provides us with a formal language for encoding and studying statements about
linear operators.

In Chapter 3, we generalise the concept of signature Gröbner bases, originally developed
for commutative polynomials, to the noncommutative setting. This special kind of Gröbner
bases are obtained through so-called signature-based algorithms, which compute, next to
a Gröbner basis, also additional information on how the polynomials in that basis were
computed. Using this information, these algorithms are not only able to predict and avoid

2



1 Introduction

redundant computations, but they can also efficiently perform a number of operations on
the syzygy module of a family of polynomials. The results presented in this chapter also
appear in our joint work [HV22], where we develop the theory of signature Gröbner bases
in the free algebra over a coefficient field, and in the joint paper [HV23b], where we extend
the theory to the mixed algebra over commutative coefficient rings. The latter setting allows
to have a mixture of commutative and noncommutative variables and arises naturally
when performing different ideal theoretic operations in the free algebra. In Section 3.1, we
formally introduce the mixed algebra and the central concept of signatures, based upon
which we then define signature Gröbner bases in this context in Section 3.2. The following
Sections 3.3 and 3.4 are devoted to the computation of signature Gröbner bases, with the
former focusing on the simpler case of the free algebra over a coefficient field, and the latter
presenting the theory in the mixed algebra in full generality as done in [HV23b]. Notably,
Section 3.3 summarises the results from [HV22] but uses the language and techniques
from [HV23b], leading not only to a simpler presentation but also to a generalisation of the
results compared to [HV22]. To end this chapter, we present experimental data showing
the efficiency of the developed signature-based algorithms compared to classical approaches
in Section 3.5.

Chapter 4 is devoted to the development of our algebraic framework for proving statements
about linear operators by polynomial computations. The results of this part also appear in
our preprint [HRR22b]. In Section 4.1, we first describe how many-sorted logic allows to
encode statements about identities of linear operators. Then, we recall in Section 4.2 two
classical concepts from first-order logic and automated theorem proving, namely Herbrand’s
theorem and Ackermann’s reduction, which are essential tools for translating arbitrary
first-order formulas into noncommutative polynomials and their membership in appropriate
ideals. Following upon that, in Section 4.3, we define one of the central new notions
introduced in this work, namely the concept of idealisation. Idealisation is a process
that allows to characterise validity of certain first-order formulas via ideal membership
in the free algebra, and thus, reduces proving operator statements to computations with
noncommutative polynomials. We formally prove this important connection between
semantics of formulas and polynomial computations in Section 4.4. In Section 4.5, we
then explain how idealisation, in combination with Herbrand’s theorem and Ackermann’s
reduction, can be used to obtain a semi-decision procedure (Procedure 8) that allows to
prove every true first-order operator statement, showing that our approach is complete in
this sense. To end this chapter, in Section 4.6, we illustrate how to apply the framework to

3



1 Introduction

prove a classical result about the existence of Moore-Penrose inverses in categories with
involution.

While Chapter 4 lays the theoretical foundation of our framework, we take a more
application-oriented point of view in Chapter 5 and present relevant aspects for effec-
tively applying the theory in practice. We begin by giving a practical summary of the
framework in Section 5.1, where we focus on the simple, yet in practice most common,
case of so-called existential quasi-identities. This drastically reduces the complexity of
the presentation compared to the general case of arbitrary first-order formulas handled
in Chapter 4. We note that this section is self-contained and can be read independently
of Chapter 4. In fact, it can even be used as an informal introduction for that chapter.
Then, in Section 5.2, we discuss how frequently arising properties of matrices and linear
operators can be expressed in terms of identities, and thus, treated within the framework.
This section also appears in our joint work [BHR23]. Following upon that, in Section 5.3,
we present several methods that allow to search for polynomials of a particular form in
a given noncommutative ideal. The ability to do this is one of the key steps required
in the semi-decision procedure Procedure 8. We discuss well-known and present novel
algorithmic techniques based on noncommutative Gröbner basis computations to do this
and illustrate them by examples. This part is mostly summarised in our paper [HRR22a],
with some minor aspects like Section 5.3.2 being presented here for the first time. To end
this chapter, we discuss how our algebraic perspective to proving operator statements can
be leveraged to obtain short proofs. As our framework reduces proving operator statements
to the verification of ideal membership in the free algebra, certificates for the latter can be
considered as proofs of the former. In Section 5.4, we discuss the problem of finding minimal
certificates for ideal membership by exploiting properties of signature-based Gröbner basis
algorithms. This part is also presented in our joint preprint [HV23a].

Chapter 6 is dedicated to the software packages we have developed. In Section 6.1, we
present our SageMath package operator_gb, which provides functionality for verifying
ideal membership in the free algebra based on noncommutative Gröbner basis computations,
with a particular focus on methods that facilitate proving statements about linear operators.
While the description of the functionality of the package has also appeared as the appendix
of our joint work [BHR23], the discussion of implementation details is presented here for
the first time. In Section 6.2, we present the latest version of our Mathematica package
OperatorGB, initiated in [Hof20], providing similar functionality as the SageMath package.

4



1 Introduction

Finally, in Section 6.3, we give an overview on our SageMath package signature_gb

for signature Gröbner basis computations in the free algebra. Notably, in this section, we
present for the first time how to combine signature-based techniques with linear algebra
style reductions in the noncommutative setting, following ideas from the commutative case
and leading to a signature-based F4 algorithm for computing signature Gröbner bases in
the free algebra.

Finally, in Chapter 7, we illustrate the capabilities of the framework developed in this
work in combination with our software on different applications. Section 7.1 presents a
case study on statements regarding the Moore-Penrose inverse published as part of our
joint work [BHR23], including classical facts from the Handbook of Linear Algebra and
recent results in operator theory. Moreover, in Section 7.2, we describe how our framework
and software have helped to discover several improvements of Hartwig’s triple reverse
order law [Har86], an important result on the Moore-Penrose inverse of a product of three
matrices. This part is based on the results in our joint work [Cve+21]. To end this chapter,
we discuss how our framework allows to automate the process of diagram chasing in abelian
categories in Section 7.3.

Notation & Conventions

Throughout this work, we follow the following conventions:

• N = {0, 1, 2, . . . } denotes the set of nonnegative integers and N>0 = N \ {0} the set
of positive integers.

• By a ring, we always mean a (not necessarily commutative) ring with unit element 1,
except if explicitly stated otherwise.

• By an R-module, we always mean a left R-module.

• By an algebra, we always mean an associative (but not necessarily commutative)
algebra with unit element 1 over a commutative ring.

5



1 Introduction

1.2 From operator identities to noncommutative polynomials

In this section, we give an informal and accessible introduction to our framework, de-
scribing how to translate identities of operators into noncommutative polynomials and
how computations with these polynomials allow to derive new operator identities. We
also showcase how our SageMath package operator_gb can be used to automate these
polynomial computations. We focus on basic statements about the Moore-Penrose inverse
and note that various examples of automated proofs of matrix and operator identities based
on computations with noncommutative polynomials are also given in [SL20; Sch21].

In 1920, E. H. Moore [Moo20] generalised the notion of the inverse of a matrix from
nonsingular square matrices to all, including rectangular, matrices. This generalised inverse,
by Moore also called “general reciprocal”, was later rediscovered by Roger Penrose [Pen55],
leading to the now commonly used name Moore-Penrose inverse.

Moore established, among other main properties, existence and uniqueness of his generalised
inverse and justified its application to linear equations. However, Moore’s work was mostly
overlooked during his lifetime due to his peculiar and complicated notations, which made
his results inaccessible for all but very dedicated readers. In contrast, Penrose characterised
this generalised inverse by four simple identities, yielding the following definition: The
Moore-Penrose inverse of a complex matrix A is the unique matrix B satisfying the four
Penrose identities

ABA = A, BAB = B, B∗A∗ = AB, A∗B∗ = BA. (1.1)

Here, T ∗ denotes the Hermitian adjoint of a complex matrix T , satisfying

(S + T )∗ = S∗ + T ∗, (ST )∗ = T ∗S∗, (T ∗)∗ = T. (1.2)

Typically, the Moore-Penrose inverse of A is denoted by A†.

Using the Penrose identities, and their adjoint versions that follow, makes basic computa-
tions involving the Moore-Penrose inverse very simple. For example, uniqueness can be

6



1 Introduction

shown as follows. If B and C both satisfy (1.1), then

B = BAB = BACAB = BACB∗A∗ = BC∗A∗B∗A∗

= BC∗A∗ = BAC = A∗B∗C = A∗C∗A∗B∗C

= A∗C∗BAC = CABAC = CAC = C.

(1.3)

At the end of the last century, people realised that matrix identities, or more generally,
identities of linear operators, can be modelled by noncommutative polynomials, and that
computations like (1.3) can be automated using algebraic computations involving such
polynomials [HW94; HSW98; HS99].

Noncommutative polynomials are elements in a free (associative) algebra R⟨X⟩ with
coefficients in a commutative ring R with unity and noncommutative indeterminates in a
(typically finite) set X. Monomials are given by words over X, that is, elements in the
free monoid ⟨X⟩, and multiplication is given by concatenation of words. In particular,
indeterminates still commute with coefficients, but not with each other. We refer to
Section 2.2.3 for a formal introduction of the free algebra.

Intuitively, a matrix or operator identity B = C, or equivalently B−C = 0, can be identified
with the polynomial f(b, c) = b − c. More generally, identities of composite operators
can be translated into noncommutative polynomials by introducing a noncommutative
indeterminate for each basic nonzero operator, and by uniformly replacing each operator
by the respective indeterminate in the difference of the left- and right-hand side of each
identity. Potentially present zero operators are simply replaced by the zero in R⟨X⟩.

For example, to express the Penrose identities (1.1), we introduce indeterminates a, b, a∗, b∗

to represent the matrices A,B, and their adjoints, and form the polynomials

aba− a, bab− b, b∗a∗ − ab, a∗b∗ − ba. (1.4)

With this, the computation (1.3) corresponds to the polynomial statement

b− c = − (bab− b) − b(aca− a)b − bac(b∗a∗ − ab) − b(c∗a∗ − ac)b∗a∗

+ bc∗(a∗b∗a∗ − a∗) + b(c∗a∗ − ac) − (a∗b∗ − ba)c − (a∗c∗a∗ − a∗)b∗c

+ a∗c∗(a∗b∗ − ba)c + (a∗c∗ − ca)bac + c(aba− a)c + (cac− c).

(1.5)

7



1 Introduction

This shows that b−c can be represented as a two-sided linear combination of the polynomials
encoding that B and C satisfy the Penrose identities for A.

Remark 1.2.1. To model the involution ∗ on the polynomial level, we introduce an
additional indeterminate for the adjoint of each basic operator and simplify all operator
expressions using the identities (1.2) before translating them into polynomials. Furthermore,
whenever an identity S = T holds, then so does the adjoint identity S∗ = T ∗, and
these additional identities have to be translated into polynomials as well. Note that the
identities (1.2) themselves are not translated into polynomials, but they are only used to
simplify the other identities.

Thus, to express that B is the Moore-Penrose inverse of A on the polynomial level, we have
to add to (1.4) the polynomials corresponding to the adjoint identities. Since the last two
Penrose identities are self-adjoint, this yields the two additional elements a∗b∗a∗ − a∗ and
b∗a∗b∗ − b∗. We note that these additional polynomials can be essential for proofs and also
appear in (1.5).

Algebraically, the relation (1.5) means that the polynomial b − c lies in the (two-sided)
ideal generated by the polynomials encoding that B and C are Moore-Penrose inverses
of A. We call such a representation of an ideal element in terms of the ideal’s generators a
cofactor representation (see also Definition 2.2.29).

It is always the case, that, if an operator identity follows from given identities by arithmetic
operations with operators (that is, addition, composition, and scaling), then the polynomial
corresponding to this identity is contained in the ideal. However, not all polynomials that
lie in the ideal correspond to valid operator identities, because, in contrast to computations
with actual operators, arithmetic computations with polynomials are not restricted and all
sums and products can be formed. Obviously, elements of the ideal that do not comply
with the formats of the matrices (or more generally, the domains and codomains of the
operators) cannot correspond to identities of operators. Thus, a priori, when proving
an operator identity by verifying ideal membership like in (1.5), one has to ensure that
every term appearing in a cofactor representation respects the restrictions imposed by the
operators.

In the case of commutative polynomials, ideal membership can be decided algorithmically
by Buchberger’s algorithm [Buc65], computing a Gröbner basis of the ideal. In contrast,
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ideal membership of noncommutative polynomials is only semi-decidable in general. This
is a consequence of the undecidability of the word problem. More precisely, verifying ideal
membership of noncommutative polynomials is always possible, using a noncommutative
analogue of Buchberger’s algorithm [Mor85; MZ98] to enumerate a (possibly infinite)
Gröbner basis. However, disproving ideal membership is not always possible. Nevertheless, if
a polynomial can be verified to lie in an ideal, then, as a byproduct, a cofactor representation
of the polynomial in terms of the generators can be obtained. This representation serves
as a certificate for the ideal membership and can be checked independently.

Our SageMath software package operator_gb allows to certify ideal membership of
noncommutative polynomials by computing cofactor representations. We illustrate its
usage to compute the representation given in (1.5). For a more detailed description of the
functionality of the package, see Section 6.1.

To generate the polynomials encoding the Penrose identities, the package provides the
command pinv. Furthermore, it allows to automatically add to a set of polynomials the
corresponding adjoint elements, using the command add_adj.

# load the package

sage: from operator_gb import *

# create free algebra

sage: F.<a, b, c, a_adj, b_adj, c_adj> = FreeAlgebra(QQ)

# generate Penrose identities for b and c

sage: Pinv_b = pinv(a, b, a_adj, b_adj)

sage: Pinv_c = pinv(a, c, a_adj, c_adj)

# add the corresponding adjoint statements

sage: assumptions = add_adj(Pinv_b + Pinv_c)

# form a noncommutative ideal

sage: I = NCIdeal(assumptions)

# verify ideal membership of the claim

sage: proof = I.ideal_membership(b-c)

9
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# print the found cofactor representation

sage: pretty_print_proof(proof, assumptions)

b - c = (-c + c*a*c) + b*c_adj*(-a_adj + a_adj*b_adj*a_adj)

- b*a*c*(-a*b + b_adj*a_adj) - b*(-a + a*c*a)*b

+ b*(-a*c + c_adj*a_adj) - b*(-a*c + c_adj*a_adj)*b_adj*a_adj

- (-b + b*a*b) + (-c*a + a_adj*c_adj)*b*a*c

- (-a_adj + a_adj*c_adj*a_adj)*b_adj*c + c*(-a + a*b*a)*c

- (-b*a + a_adj*b_adj)*c + a_adj*c_adj*(-b*a + a_adj*b_adj)*c

Remark 1.2.2. The computed representation is equal to (1.5) up to a reordering of
summands.

The correctness of a computed cofactor representation can be verified easily by expanding
it, which only requires basic polynomial arithmetic. Our package allows to do this using
the command expand_cofactors.

# reusing the assumptions and proof from above

sage: expand_cofactors(proof, assumptions)

b - c

The pioneering work mentioned above exploited the fact that the operations used in the
noncommutative version of Buchberger’s algorithm respect the restrictions imposed by
domains and codomains of operators, see [HSW98, Thm. 25] or [SL20, Thm. 1]. Thus,
using Buchberger’s algorithm, proving an operator identity can be reduced to verifying
ideal membership of the corresponding polynomial.

Only recently it was observed that, in fact, any verification of ideal membership, even
one that does not comply with the domains and codomains of the operators, allows to
deduce a correct statement about linear operators, provided that all initial polynomials
correspond to actual operator identities [RRH21]. This implies that the verification of the
ideal membership can be done completely independently of the operator context.

10
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In particular, this also means that the cofactor representation given in (1.5) immediately
yields the uniqueness statement of the Moore-Penrose inverse of a complex matrix. Moreover,
since the polynomial computation is independent of the concrete operator context, this
representation also proves a corresponding statement in every setting where it can be
formulated. For example, we immediately obtain the uniqueness of the Moore-Penrose
inverse for elements in arbitrary rings with involution, for bounded linear operators on
Hilbert spaces, or for elements in C∗-algebras.

We can summarise the discussion of this section as follows. In the following, we identify
each identity of linear operators S = T with the noncommutative polynomial s− t using
the translation described above. An identity P = Q of linear operators follows from other
identities S1 = T1, . . . , Sm = Tm if and only if the noncommutative polynomial p− q lies
in the ideal generated by s1 − t1, . . . , sm − tm in the free algebra Z⟨X⟩. In Section 5.1,
we provide with Theorem 5.1.7 a theoretical justification for this conclusion, see also
Procedure 8 and Theorem 4.5.2.

Thus far, our software package only supports computations in the free algebra Q⟨X⟩. To
ensure that the computations are also valid over Z⟨X⟩ as required, one has to check whether
all coefficients that appear in the computed cofactor representation are in fact integers.
The following routine certify builds a user-friendly wrapper around the ideal membership
verification that also includes these checks. It raises a warning if non-integer coefficients
appear in the computed cofactor representation.

sage: F.<a, b, c, a_adj, b_adj, c_adj> = FreeAlgebra(QQ)

sage: Pinv_b = pinv(a, b, a_adj, b_adj)

sage: Pinv_c = pinv(a, c, a_adj, c_adj)

sage: assumptions = add_adj(Pinv_b + Pinv_c)

sage: proof = certify(assumptions, b-c)

Computing a (partial) Gröbner basis and reducing the claims...

Done! Ideal membership of all claims could be verified!

Remark 1.2.3. We note that the computed proof is the same as that computed by the
ideal_membership routine before.
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In many situations, all involved identities are of the form S = T , where S and T are
compositions of basic operators or zero, as, for example, in case of the Penrose identities (1.1).
In such cases, all involved polynomials are binomials of the form s− t, where s and t are
monomials in ⟨X⟩ or zero. For these scenarios, certify is guaranteed to compute a cofactor
representation with integer coefficients, provided that one exists. However, for arbitrary
polynomials, it could happen that certify only discovers a cofactor representation with
rational coefficients, even if an alternative representation with integer coefficients exists.
We note, however, that in all the examples we have considered thus far, this situation has
never occurred.

1.3 Treating existential statements

The method described in the previous section allows to verify whether an operator identity
follows from other identities by checking ideal membership of noncommutative polynomials.
Although this technique is useful for proving various nontrivial statements, it still has its
limitations. Specifically, it does not cover existential statements that arise, for example,
when solving operator equations. This type of statement requires an extended approach
and cannot be proven solely by checking ideal membership. In the following, we discuss
how to treat existential statements. As an illustrative example, we consider the existence
of the Moore-Penrose inverse for complex matrices. More precisely, we show that every
complex matrix has a Moore-Penrose inverse, using polynomial computations.

In more general settings (for example, bounded linear operators on Hilbert spaces, elements
in C∗-algebras), not every element has a Moore-Penrose inverse. Therefore, a crucial step in
proving the desired statement is to characterise the fact that we are considering (complex)
matrices. In particular, since the polynomial framework can only deal with identities of
operators, we have to express this fact in terms of identities. One possibility to do this
is via the singular value decomposition, which implies that, for every complex matrix A,
there exist matrices P,Q with

PA∗A = A and AA∗Q = A. (1.6)

For example, if A = UΣV ∗ is a singular value decomposition of A, then P = Q = UΣ+V ∗

is a possible choice, where Σ+ is obtained from Σ by replacing the nonzero diagonal entries
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by their reciprocals, and thus satisfies ΣΣ+Σ∗ = Σ∗Σ+Σ = Σ. Using this property of
matrices, we can formalise the statement we consider in this section as the first-order
formula

∀A,P,Q ∃B : (PA∗A = A ∧ AA∗Q = A) =⇒ (1.1).

In the polynomial framework, the only possibility to prove such an existential statement
is to derive an explicit expression for the existentially quantified objects. Once such an
explicit expression is obtained, the statement can be reformulated as a basic statement
concerning identities and treated like in the previous section.

For our example, this means finding an expression for B in terms of A,P,Q and their
adjoints such that (1.1) holds modulo the assumptions (1.6). Algebraically, this corresponds
to finding a polynomial b = b(a, p, q, a∗, p∗, q∗) such that the elements (1.4), representing
the Penrose identities (1.1), lie in the ideal generated by

pa∗a− a, aa∗q − a, a∗ap∗ − a∗, q∗aa∗ − a∗, (1.7)

encoding the assumptions (1.6).

Through the use of Gröbner basis techniques, it is possible to employ a number of heuristics
for finding elements of certain form in noncommutative polynomial ideals, see Section 5.3.
One such approach involves introducing a dummy variable x for the desired expression b.
With this dummy variable, we consider the ideal I generated by the assumptions (in our
example given by (1.7)) and by the identities that b shall satisfy, but with b replaced
by x (in our example these are the Penrose identities (1.4) for x). Every polynomial of
the form x− b′ in I corresponds to a candidate expression b′ for b, and by applying the
elimination property of Gröbner bases (Theorem 2.4.43), we can systematically search
for such candidate expressions. Our software package offers a user-friendly interface that
simplifies the process of searching for expressions of this nature.

sage: F.<a, p, q, a_adj, p_adj, q_adj, x, x_adj> = FreeAlgebra(QQ)

sage: assumptions = add_adj([a - p*a_adj*a, a - a*a_adj*q])

sage: Pinv_x = add_adj(pinv(a, x, a_adj, x_adj))

sage: I = NCIdeal(Pinv_x + assumptions)
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sage: I.find_equivalent_expression(x)

[- x + a_adj*p*x, - x + a_adj*q*x,

- x + a_adj*x_adj*x, - x + a_adj*q*p_adj]

Three out of the four candidate expressions for b found by the heuristic still contain the
dummy variable x or its adjoint, and are thus useless. However, the last polynomial x−a∗qp∗

shows that b = a∗qp∗ is a desired representation. We use our software to show that b
satisfies the Penrose identities under the assumptions (1.7).

sage: MP_candidate = a_adj * q * p_adj

sage: MP_candidate_adj = p * q_adj * a

sage: claims = pinv(a, MP_candidate, a_adj, MP_candidate_adj)

sage: proof = certify(assumptions, claims)

Computing a (partial) Gröbner basis and reducing the claims...

Done! Ideal membership of all claims could be verified!

We note that, here, claims is a list consisting of four polynomials, one for each of the four
Penrose identities. In such cases, certify verifies the ideal membership of each element in
the list and returns a list, here assigned to proof, providing a cofactor representation for
each polynomial in claims.

Thus, we can conclude that every complex matrix A has a Moore-Penrose inverse A†, given
by A† = A∗QP ∗ with P,Q as in (1.6). More generally, we have proven that, for every
linear operator A, if there exist linear operators P and Q satisfying (1.6), then A has a
Moore-Penrose inverse A†, given by A† = A∗QP ∗.

Remark 1.3.1. Typically, under the assumptions (1.6) the Moore-Penrose inverse is
expressed by the formula A† = Q∗AP ∗, see, for example, [PR81, Lem. 3]. We note that
this expression is equivalent to ours, and can be found using our software by changing the
monomial order underlying the polynomial computation.
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sage: I.find_equivalent_expression(x,

....: order=[[q,q_adj,a,a_adj,p,p_adj],[x,x_adj]])[0]

- q_adj*a*p_adj + x

Using yet another monomial order, we can also find the element -q_adj*p*a_adj + x

corresponding to another equivalent solution A† = Q∗PA∗. This gets to show that the output
of the polynomial heuristics depends strongly on several parameters, and in particular, on
the used monomial order.

We could prove the existence of the Moore-Penrose inverse by explicitly constructing
an expression for the existentially quantified operator. This now raises the question
whether this is always possible or whether we just got lucky in this example. Herbrand’s
theorem [Her30; Bus94], a fundamental result in mathematical logic, provides an answer
to this question. It states that such an explicit representation always exists and can be
constructed as a polynomial expression in terms of the basic operators appearing in the
statement, provided that the operator statement is indeed true. We refer to Theorem 4.2.2
for the precise statement. Thus, by enumerating all such polynomial expressions, we are
guaranteed to find a correct instantiation if the considered statement is correct.

Of course, naively enumerating all possible polynomial expressions quickly becomes in-
feasible. Therefore, it is important to have good heuristics that allow to systematically
search for suitable candidate expressions. Our software package implements, apart from
the heuristic described above, several such techniques for finding polynomials of special
form in noncommutative ideals. We refer to Section 5.3 for further information on these
methods and to Section 6.1.1 for the corresponding commands.
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2 Preliminaries

For the convenience of the reader, in this chapter, we recall and discuss relevant algebraic
and logical concepts required in this work. We assume a basic familiarity with fundamental
algebraic notions, including abelian groups, rings, and modules over commutative rings.

We begin by revisiting some key terminology from category theory in Section 2.1. Specifi-
cally, we recall the notions of preadditive semicategories and abelian categories, and also
give several classical examples of these structures. For a thorough introduction to category
theory, we refer, for example, to [Mac13]. Section 2.2 is devoted to defining the algebraic
structures relevant for the theory and algorithms developed in the subsequent chapters. We
discuss the construction and fundamental properties of free monoids, free algebras, and free
(bi)modules. For further information on these topics, see also [Row91; Coh03]. Following
upon that, we review essential notions and results from the field of abstract rewriting,
required for developing a theory of (signature) Gröbner bases. We give a minimal and
complete survey of these results in Section 2.3. Our presentation follows [BN98, Sec. 2.1], to
which we refer for further details. Building upon the concepts discussed in the previous sec-
tions, we summarise the main results of the theory of Gröbner bases for one- and two-sided
ideals in the free algebra over a coefficient field in Section 2.4. Here, we provide a complete
and self-contained presentation based on the concept of polynomial reduction. In particular,
we combine terminology from abstract rewriting with Bergman’s original presentation of
noncommutative Gröbner bases [Ber78], viewing polynomial reduction as a family of linear
maps. Notably, we also give a novel characterisation of a large class of noncommutative
monomial orders by combining totally ordered semigroups with the lexicographic order and
a result by Higman [Hig52]. This characterisation encompasses all classical orders, includ-
ing, for example, (weighted) (multi-)degree orders and elimination orders. For additional
resources on noncommutative Gröbner bases, we point interested readers to [Mor94; Xiu12;
BGV13; Mor16], and also to [LSA20] for an overview on available software and further
references. In particular, see [BGV13, Sec. 2.1, 3.2] and [Mor16, Sec. 48.7] for further
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information on noncommutative monomial orders. Finally, in Section 2.5, we provide a
comprehensive and self-contained introduction to many-sorted first-order logic, which serves
as a framework for the developments in Chapter 4. Our presentation is based on [Man93],
while also incorporating concepts and notation from [EFT21]. For further references and a
historic overview of the development of many-sorted logic, we refer to [Wal87, Ch. 13].

2.1 Category theory

Category theory is a branch of mathematics that provides a powerful and abstract framework
for studying mathematical structures and relationships between them. For a textbook
exposition of category theory, we refer, for example, to [Mac13]. At its core, category
theory explores the notion of a category, or more generally, that of a semicategory. We will
consider the particular case of preadditive semicategories.

Definition 2.1.1. A (locally small) semicategory C (also called semigroupoid) consists of

• a class Ob(C) of objects;

• for every two objects U, V ∈ Ob(C), a set Mor(U, V ) of morphisms from U to V ; for
f ∈ Mor(U, V ), we also write f : U → V ; the objects U and V are referred to as the
source and target of f ;

• for every three objects U, V,W ∈ Ob(C), a binary operation ◦ : Mor(V,W ) ×
Mor(U, V ) → Mor(U,W ) called composition of morphisms, which is associative,
that is, if f : V →W , g : U → V , h : T → U , then f ◦ (g ◦ h) = (f ◦ g) ◦ h;

A semicategory C is called preadditive if every set Mor(U, V ) is equipped with a binary
operation +, turning it into an abelian group, such that composition of morphisms is
bilinear, that is,

f ◦ (g + h) = (f ◦ g) + (f ◦ h) and (f + g) ◦ h = (f ◦ h) + (g ◦ h).

A semicategory can be thought of as a collection of objects, linked by arrows (the morphisms)
that can be composed associatively. The property of being locally small refers to the fact
that the objects Ob(C) can form a proper class, while, for all objects U, V ∈ Ob(C), the
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morphisms Mor(U, V ) constitute a set. Preadditive semicategories have the additional
property that arrows with the same start and end can be added, yielding an abelian group
structure that is compatible with the composition of morphisms. For further information,
see, for example, [Gar05, Sec. 2] or [Til87, App. B]. We also note that the words object
and morphism do not imply anything about the nature of these things. Objects can be
anything from numbers and sets to more complex mathematical structures like groups,
vector spaces, or topological spaces. Morphisms capture the relationships between objects
and can be thought of as mappings or transformations.

Preadditive semicategories provide a natural and very general environment for studying
linear operators, prescribing only linearity as a structural constraint. In particular, they
encompass all the following settings.

Example 2.1.2. In the following, R denotes a ring (not necessarily with 1).

1. The ring R can be considered as a preadditive semicategory with only one object, and
thus, only a single set of morphisms consisting of the underlying abelian group of R.
Composition of morphisms is given by the ring multiplication.

2. The set Mat(R) of matrices with entries in R can be considered as a preadditive
category by taking as objects the sets Rn for all positive natural numbers n and letting
Mor(Rn, Rm) = Rm×n. Composition is given by matrix multiplication.

3. The category R-Mod of left modules over R is a preadditive semicategory. Here,
objects are left R-modules and morphisms are module homomorphisms between left
R-modules. As a special case, we see that K-Vect, the category of vector spaces over
a field K, is a preadditive semicategory. Note that the objects in these categories
form proper classes and not sets.

4. Another example of a preadditive semicategory is the category Ab of abelian groups,
which has all abelian groups as objects and group homomorphisms as morphisms.

Categories are semicategories with identity morphisms.
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Definition 2.1.3. A semicategory C is a category if, for every object X ∈ Ob(C), there
exists a morphism 1X : X → X (also denoted idX) called the identity morphism for X,
such that, for every f : U → V , we have

1V ◦ f = f = f ◦ 1U .

One can show that an identity morphism for X is unique if it exists. The proof is analogous
to that of the uniqueness of the identity element in a monoid.

A semicategory with involution is a semicategory C together with a mapping ∗, the so-called
involution, that sends every morphism f in C to a morphism f∗ and satisfies the following
conditions:

• if f : U → V , then f∗ : V → U ;

• (f∗)∗ = f ;

• if f : V →W and g : U → V , then (f ◦ g)∗ = g∗ ◦ f∗;

In particular, if C is a category and 1X is the identity morphism on an object X ∈ Ob(C),
then

1∗
X = 1X ◦ 1∗

X = (1∗
X)∗ ◦ 1∗

X = (1X ◦ 1∗
X)∗ = (1∗

X)∗ = 1X .

2.1.1 Abelian categories

An important class of categories, particularly relevant in the field of homological algebra,
is that of abelian categories. To introduce abelian categories, we first recall several classical
notions from category theory. In what follows, C is a category.

A morphism m : U → V is monic (or a monomorphism) in C if, for any two morphisms
f, g : T → U , the equality m ◦ f = m ◦ g implies f = g. In other words, m is monic if it can
always be cancelled on the left. Dually, a morphism e : U → V is epi (or an epimorphism) if,
for any two morphisms f, g : V →W , the equality f ◦ e = g ◦ e implies f = g. Equivalently,
e is epi if it can always be cancelled on the right. A morphism f : U → V is invertible (or
an isomorphism) if there exists a morphism g : V → U with g ◦ f = 1U and f ◦ g = 1V . If
such a g exists, it is unique and denoted by f−1. Two objects U and V are isomorphic if
there exists an invertible morphism f : U → V . Every isomorphism is also a mono- and
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epimorphism. The converse, however, does not hold in all categories; a morphism which is
both monic and epi need not be an isomorphism.

An object Z ∈ Ob(C) is a zero object if, for every object U ∈ Ob(C), there is exactly one
morphism f : U → Z and exactly one morphism g : Z → U . It is straightforward to verify
that a zero object is unique up to isomorphism, if it exists. Furthermore, if C has a zero
object, then, for every two objects U, V ∈ Ob(C), the unique morphism U → Z → V

is called the zero morphism from U to V , denoted by 0U,V . If C is preadditive, the
zero morphisms 0U,V are precisely the identity elements in the abelian groups Mor(U, V ).
Composition of any morphism with a zero morphism is itself a zero morphism. In the
following, for ease of notation, we use the same symbol 0 for all zero morphisms, if the
sources and targets are clear from the context.

Let C have a zero object. A kernel of a morphism f : U → V is a morphism k : K → U ,
where K ∈ Ob(C), such that f ◦k = 0 and such that, for every other morphism k′ : K ′ → U

with K ′ ∈ Ob(C) and f ◦k′ = 0, there exists a unique morphism u : K ′ → K with k ◦u = k′.
The properties of a kernel can be characterised by the following commutative diagram.

U V

K

K ′

f

k

0

k′

∃!u

0

Dually, a cokernel of f : U → V is a morphism c : V → C, where C ∈ Ob(C), such
that c ◦ f = 0 and such that, for every other morphism c′ : V → C ′ with C ′ ∈ Ob(C)
and c′ ◦ f = 0, there exists a unique morphism u : C → C ′ with u ◦ c = c′. One can show
that kernels and cokernels are unique up to isomorphism. The kernel and cokernel of f are
denoted by ker(f) and coker(f), respectively.
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Next, we consider biproducts in a preadditive category C. A (binary) biproduct for two
objects U, V ∈ Ob(C) is a diagram

U W V
i

p

j

q

with morphisms p, q, i, j satisfying

p ◦ i = 1U , q ◦ j = 1V , i ◦ p+ j ◦ q = 1W .

A biproduct need not exist for all objects U, V ∈ Ob(C), but if it does, it is unique up to
an isomorphism of the object W .

Combining all the notions discussed above, we can finally define abelian categories.

Definition 2.1.4. A preadditive category C is called abelian if it satisfies the following
conditions.

1. C has a zero object;

2. C has all binary biproducts;

3. every morphism in C has a kernel and a cokernel;

4. every monomorphism is a kernel, and every epimorphism is a cokernel;

Example 2.1.5. 1. The prototypical example of an abelian category is the category Ab
of abelian groups. The zero object of Ab is the trivial group {0} and the notion of
kernel in the categorical sense coincides with kernel in the algebraic sense. More
precisely, the categorical kernel of a morphism f : U → V is the subgroup K of U
defined by K = {x ∈ U : f(x) = 0} together with the inclusion homomorphism
k : K → U . The cokernel of f is the quotient group C = V/f(U) together with the
natural projection c : V → C. Furthermore, the biproduct is given by the direct sum
with natural projections and inclusions of each factor.

2. The category R-Mod of left modules over a ring R is an abelian category. The zero
object is given by the trivial module, defined as the trivial group equipped with the
trivial R-action. Kernels and cokernels are given by the corresponding algebraic
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objects, like in the case of Ab. As a special case, we see that also the category K-Vect
of vector spaces over a field K is an abelian category.

It follows from the first three conditions of Definition 2.1.4 that an abelian category has
all pullbacks. More generally, an abelian category has all finite limits. In the following,
however, we only care about pullbacks and refer to [Mac13, Sec. VIII.3] for further details.
The pullback of two morphisms f : U → V and g : T → V in a category C is an object
S ∈ Ob(C) together with two morphisms f ′ : S → T and g′ : S → U such that f ◦g′ = g ◦f ′.
Furthermore, for every other object S′ ∈ Ob(C) and pair of morphisms f ′′ : S′ → T and
g′′ : S′ → U with f ◦ g′′ = g ◦ f ′′, there exists a unique u : S′ → S such that f ′′ = f ′ ◦ u and
g′′ = g′ ◦ u. The properties of a pullback can be summarised by the following commutative
diagram.

S′

S T

U V

∃!u

g′′

f ′′

f ′

g′ g

f

In any category C, the morphism f ′ is monic if f is, and, in an abelian category, f ′ is epi if
f is.

Condition 4 in the definition of abelian categories also implies, among other things, that
any morphism that is both monic and epi is an isomorphism. Furthermore, in an abelian
category, every morphism f has a natural factorisation as f = m ◦ e with m monic and e

epi. Moreover,

m = ker(coker(f)), e = coker(ker(f)).

Based on this factorisation, the image and coimage of f are defined uniquely up to
isomorphism as

im(f) = ker(coker(f)), coim(f) = coker(ker(f)).

Note that im(f) is a monomorphism. More generally, every kernel is necessarily monic.
This follows from the unique factorisation requirement in the definition of kernels.
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One of the central notions in abelian categories is that of an exact sequence, which is based
on an equivalence of monomorphisms. If f : U → V and g : T → V are two monomorphisms
with a common target V , we write f ≦ g if f = g ◦ h for some h : U → T . When both
f ≦ g and g ≦ f , we write f ≡ g. This defines an equivalence relation on monomorphisms
with target V , and the equivalence classes are called subobjects of V .

Definition 2.1.6. Let C be an abelian category. A sequence of morphisms

U V W
f g

is exact (at V ) if im(f) ≡ ker(g) (equivalence as subobjects of V ).

2.2 Algebraic structures

In this section, we recall basic algebraic notions and constructions relevant for the theory
developed in the subsequent chapters. In particular, we discuss the construction and
properties of free monoids, free algebras and free (bi)modules.

2.2.1 Free monoid

First, we study the free monoid on a set X, consisting of all finite words over the alphabet X.
To this end, we first recall the definition of a monoid.

Definition 2.2.1. A semigroup is a nonempty set M equipped with an associative binary
operation ∗ : M ×M →M (typically called multiplication). If, additionally, there exists
an element e ∈M satisfying e ∗ x = x ∗ e = x for all x ∈M , then M is called a monoid.

Remark 2.2.2. To emphasise the binary operation ∗ on the set M , we also say that the
pair (M, ∗) is a semigroup or a monoid. This emphasis is important when a set can be
equipped with different operations, leading to possibly different structures.
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The element e in Definition 2.2.1 is called the identity element or the neutral element of
the monoid, and sometimes also denoted by 1. One can show that it is unique. In the
following, we write xy for the product x ∗ y in a semigroup or monoid, and, for n ∈ N,
we abbreviate the n-fold product of x with itself by xn, that is, xn := x ∗ · · · ∗ x⏞ ⏟⏟ ⏞

n times
, with the

special case x0 := e.

The second notion needed to define free monoids is that of a word over an alphabet X.

Definition 2.2.3. An alphabet is a set X and a word over X is a finite sequence
w = x1 . . . xd with d ∈ N and xi ∈ X for i = 1, . . . , d. For d = 0, we obtain the empty
sequence, also called the empty word, which we denote by 1. The quantity d is called the
length of w and denoted by |w|. The set of all words over X is denoted by ⟨X⟩.

A basic binary operation on ⟨X⟩ is that of concatenation,

(x1 . . . xd, x
′
1 . . . x

′
d′) ↦→ x1 . . . xdx

′
1 . . . x

′
d′ .

It is straightforward to check that this operation is associative and that the empty word 1
acts as an identity element. Consequently, the set ⟨X⟩ equipped with the operation of
concatenation is a monoid. More precisely, we arrive at the following definition.

Definition 2.2.4. Let X be a set. The set ⟨X⟩ together with the binary operation of
concatenation is called the free monoid or word monoid over X.

Example 2.2.5. Let X = {x, y, z}. The elements of ⟨X⟩ are of the form

1, x, y, z, xx, yy, zz, xy, yx, xz, zx, yz, zy, xxx, . . .

In ⟨X⟩, we have, for example, xy · z = xyz ̸= zxy = z · xy.

Remark 2.2.6. If X is a singleton X = {x}, then ⟨X⟩ = {xn | n ∈ N} consists of all
nonnegative powers of x and since xixj = xi+j = xj+i = xjxi for all i, j ∈ N, we end up
with a commutative monoid. If |X| > 1, then ⟨X⟩ is noncommutative.
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If the elements of X are given explicitly, say X = {x1, . . . , xn}, we omit the set parentheses
and simply write ⟨x1, . . . , xn⟩ for ⟨{x1, . . . , xn}⟩. Furthermore, for sets X1, . . . , Xk, let
⟨X1, . . . , Xk⟩ = ⟨X1 ∪ · · · ∪Xk⟩.

The multiplication in ⟨X⟩ naturally induces a notion of divisibility of words.

Definition 2.2.7. Let X be a set and w,w′ ∈ ⟨X⟩. We say that w′ divides w, or w is
divisible by w′, if there exist a, b ∈ ⟨X⟩ such that

w = aw′b.

In this case, we call a, b the cofactors of the division. If w′ divides w, we also equivalently
say that w is a multiple of w′. If a = 1, then w′ is a prefix of w, and if b = 1, then w′

is a suffix of w. Furthermore, w′ is a proper prefix (resp. suffix) of w if it is a prefix
(resp. suffix) of w and w′ ̸= w.

Example 2.2.8. Let X = {x, y, z} and w = xyxz, w′ = yx ∈ ⟨X⟩. Then w′ divides w,
since aw′b = w with cofactors a = x and b = z. Also w′′ = xz ∈ ⟨X⟩ divides w, and, in
fact, w′′ is a proper suffix of w.

Remark 2.2.9. Note that, unlike in the commutative case, a word w′ can divide a word w
in several ways, causing the cofactors a and b to be non-unique in general. For example,
consider the words w = xyxyx and w′ = xy in ⟨x, y⟩. Clearly w′ divides w, but we have
w = w′xyx = xyw′x.

Definition 2.2.10. Let M , N be semigroups. A function ψ : M → N is a semigroup
homomorphism if ψ(xy) = ψ(x)ψ(y) for all x, y ∈ M . If M and N are monoids and ψ

additionally satisfies ψ(eM ) = eN , where eM and eN are the identity elements in M and N
respectively, then ψ is a monoid homomorphism.

The free monoid ⟨X⟩ over X earns the attribute free because it is the “generic” monoid
over X, where elements of X do not satisfy any nontrivial relations. In particular, it
satisfies the following universal property.
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Theorem 2.2.11 (Universal property of free monoids). Let X be a set, M be a monoid,
and ι be the canonical injection from X into ⟨X⟩. For any map φ : X →M , there exists a
unique monoid homomorphism ψ : ⟨X⟩ →M such that the following diagram commutes.

X ⟨X⟩

M

φ

ι

ψ

In particular, we have ψ(x1 . . . xd) = φ(x1) . . . φ(xd).

2.2.2 Free module

In this section, we recall the notion of a free module. In the following, R is a (not necessarily
commutative) ring. We note that we only consider left R-modules in the following.

Definition 2.2.12. Let M be an R-module. A set B ⊆M is a basis of M if it satisfies
the following two conditions:

1. B is a generating set of M , that is, every element in M is a finite R-linear combination
of elements of B;

2. B is linearly independent, that is, for every subset {b1, . . . , bn} ⊆ B of distinct
elements and r1, . . . , rn ∈ R, the R-linear combination

∑︁n
i=1 ribi is zero only if ri = 0

for all i = 1, . . . , n;

A module M is called free if it has a basis.

An important example of a free module is the free module on a set X.

Definition 2.2.13. Let X be a set. The free R-module on the set X is the set of finite
formal sums

RX =
{︄∑︂
x∈X

rxx

⃓⃓⃓⃓
rx ∈ R and rx = 0 for almost all x

}︄
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together with the addition and scalar multiplication

∑︂
x∈X

rxx+
∑︂
x∈X

sxx =
∑︂
x∈X

(rx + sx)x r
∑︂
x∈X

rxx =
∑︂
x∈X

(rrx)x.

Remark 2.2.14. Alternatively, the free R-module on X can be constructed as the set of
all functions from X to R with finite support, that is,

RX =
{︁
f : X → R | f(x) = 0 for almost all x

}︁
,

with point-wise addition (f +g)(x) = f(x)+g(x) and scalar multiplication (rf)(x) = rf(x).

One can verify by a direct computation that RX is indeed an R-module and that it is
free with basis X. In fact, one can show that RX is – up to isomorphism – the only free
R-module with basis X.

Proposition 2.2.15. For a set X, any free R-module with basis X is isomorphic to RX.

This is a consequence of the following universal property of the free R-module.

Theorem 2.2.16 (Universal property of free modules). Let X be a set, M be an R-module,
and ι be the canonical injection from X into RX. For any map φ : X →M , there exists a
unique R-module homomorphism ψ : RX →M such that the following diagram commutes:

X RX

M

φ

ι

ψ

In particular, we have
ψ(
∑︂
x∈X

rxx) =
∑︂
x∈X

rxφ(x).
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2.2.3 Free algebra

In the following, we recall how to construct, starting from the free monoid on a set X, a
ring, the free (associative) algebra on X. We also discuss several properties of the free
algebra. In the following, R denotes a commutative ring (with unity).

Definition 2.2.17. Let X be a set. The free (associative) algebra on X over R (or the
ring of noncommutative polynomials in the indeterminates X with coefficients in R) is the
free R-module R⟨X⟩ on the free monoid ⟨X⟩ together with the multiplication⎛⎝ ∑︂

u∈⟨X⟩
cuu

⎞⎠⎛⎝ ∑︂
v∈⟨X⟩

c′
vv

⎞⎠ =
∑︂

w∈⟨X⟩

∑︂
uv=w

(︁
cuc

′
v

)︁
w.

Elements in R⟨X⟩ are called (noncommutative) polynomials.

Remark 2.2.18. If X is a singleton X = {x}, we have already seen that ⟨X⟩ is a
commutative monoid consisting of all nonnegative powers of x. In this case, R⟨X⟩ is the
usual univariate polynomial ring R[x], and in particular, commutative. If |X| > 1, then
R⟨X⟩ is a noncommutative ring.

Example 2.2.19. Let R = Z and X = {x, y}. We consider R⟨X⟩ = Z⟨x, y⟩. For
f1 = xy + x, f2 = xy − 2y ∈ Z⟨x, y⟩, we can compute

f1 + f2 = 2xy + x− 2y,

f1f2 = (xy + x)(xy − 2y) = xyxy + xxy − 2xyy − 2xy,

f2f1 = (xy − 2y)(xy + x) = xyxy + xyx− 2yxy − 2yx.

Note that f1f2 ̸= f2f1.

Definition 2.2.20. Let f = ∑︁
w∈⟨X⟩ cww ∈ R⟨X⟩ be a polynomial. The coefficient cw ∈ R

of the monomial w in f is denoted by coeff(f, w). Furthermore, the support of f is the set
supp(f) = {w ∈ ⟨X⟩ | coeff(f, w) ̸= 0}.

One can verify that the free algebra is indeed a ring. Moreover, the multiplication in R⟨X⟩
is R-bilinear, that is,

r · (fg) = (r · f)g = f(r · g),
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for all r ∈ R and f, g ∈ R⟨X⟩. This shows that the free algebra R⟨X⟩ is in fact not only a
ring, but an R-algebra as defined below.

Definition 2.2.21. An (associative) R-algebra A is a ring that is also an R-module
satisfying

r · (ab) = (r · a)b = a(r · b)

for all r ∈ R and a, b ∈ A. The algebra A is commutative if its multiplication is commuta-
tive.

Definition 2.2.22. Let A, B be R-algebras. A function ψ : A → B is an R-algebra
homomorphism if it satisfies the following conditions:

1. ψ(ra+ sb) = rψ(a) + sψ(b) for all r, s ∈ R, a, b ∈ A;

2. ψ(ab) = ψ(a)ψ(b) for all a, b ∈ A;

3. ψ(1) = 1;

Remark 2.2.23. The first condition of Definition 2.2.22 says that ψ is an R-module
homomorphism (or an R-linear map), and the other two conditions say that ψ is a ring
homomorphism.

Just like the free monoid is the generic monoid over a set X, the free algebra is the generic
R-algebra on X, satisfying an analogous universal property.

Theorem 2.2.24 (Universal property of free algebras). Let X be a set, A be an R-algebra,
and ι be the canonical injection from X into R⟨X⟩. For any map φ : X → A, there exists a
unique R-algebra homomorphism ψ : R⟨X⟩ → A such that the following diagram commutes:

X R⟨X⟩

A

φ

ι

ψ
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In particular, if I is an index set and X = {xi | i ∈ I}, then

ψ(
∑︂
d∈N

i1,...,id∈I

ci1,...,idxi1 . . . xid) =
∑︂
d∈N

i1,...,id∈I

ci1,...,idφ(xi1) . . . φ(xid).

The main algebraic objects of interest in the subsequent chapters are one- and two-sided
ideals. We recall their definition here. In the following, R still denotes a commutative ring
and S is a (not necessarily commutative) ring.

Definition 2.2.25. A subset I ⊆ S is a left (resp. right) ideal of S if it satisfies the
following conditions.

1. I is nonempty;

2. I is closed under addition, that is, f + g ∈ I, for all f, g ∈ I;

3. I is closed under left (resp. right) multiplication by arbitrary ring elements, that is,
sf ∈ I, (resp. fs ∈ I) for all s ∈ S and f ∈ I;

If I is a right (resp. left) ideal of S, we write I ⊴r S (resp. I ⊴l S). Furthermore, I is a
(two-sided) ideal of S, denoted by I ⊴ S, if it is a left and right ideal.

It is straightforward to check that every left/right/two-sided ideal of S forms an additive
subgroup of S.

Example 2.2.26. Every ring S has two trivial ideals, namely the trivial ideal {0} and S
itself.

For the rest of this thesis, when working with one-sided ideals, we restrict ourselves to right
ideals, since the situation for left ideals is completely symmetric and all theorems about
right ideals also hold, mutatis mutandis, for left ideals. In order to help with the distinction
between two-sided ideals and right ideals, we denote the former by capital letters, for
example, I, J, . . . , and the latter by capital letters with an additional subscript ρ, such as,
Iρ, Jρ, . . . .

Any subset J of a (right) ideal I that is itself a (right) ideal, is called a subideal of I.
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For a set F ⊆ S, we denote by (F ) and (F )ρ the two-sided ideal, respectively the right
ideal, generated by F , that is

(F ) :=
{︄

d∑︂
i=1

rifisi

⃓⃓⃓⃓
d ∈ N, ri, si ∈ S, fi ∈ F

}︄
,

(F )ρ :=
{︄

d∑︂
i=1

fisi

⃓⃓⃓⃓
d ∈ N, si ∈ S, fi ∈ F

}︄
.

A set F ⊆ S is a generating set of an ideal I ⊴ S if I = (F ), and a right generating set of I
if I = (F )ρ. Analogously, F is a generating set of a right ideal Iρ ⊴r S if Iρ = (F )ρ. We
agree upon the convention to write (f1, . . . , fm) and (f1, . . . , fm)ρ for ({f1, . . . , fm}) and
({f1, . . . , fm})ρ respectively, if the elements of F = {f1, . . . , fm} are given explicitly.

A (two-sided or right) ideal I of S is finitely generated if it has a finite generating set.

Recall that a ring S is Noetherian if it satisfies the ascending chain condition, meaning
that every ascending sequence I0 ⊆ I1 ⊆ . . . of ideals I0, I1, . . . ⊴ S eventually stabilises,
or equivalently, that every ideal of S is finitely generated.

For example, every field is Noetherian. Furthermore, if R is a Noetherian ring, then, by
Hilbert’s basis theorem, also the univariate polynomial ring R[x] is Noetherian, and thus,
by induction, so is R[x1, . . . , xn] for every n ∈ N. Unfortunately, this is not true for the
free algebra. If |X| > 1, then the free algebra R⟨X⟩ is not Noetherian. Consequently,
there exist ideals in R⟨X⟩ which are not finitely generated. A classical example is the
following.

Example 2.2.27. Let R be a commutative ring (or even a field). The ideal

I = (xynx | n ∈ N) ⊆ R⟨x, y⟩

has no finite generating set, and thus, is not finitely generated. The proof of this fact
relies on the fact that I is a monomial ideal and generated by a so-called minimal infinite
generating set. For further details, we refer to [Xiu12, Rem. 2.1.25].

In the following, we restrict ourselves to finitely generated ideals. A central problem when
working with ideals is the following ideal membership problem.
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Problem 2.2.28 (Ideal membership).
Input: r, r1, . . . , rm ∈ S
Output: True if r ∈ (r1, . . . , rm) and False otherwise

In many settings, most notably in the case of commutative polynomials, this problem is de-
cidable. For the free algebra, however, the ideal membership problem is undecidable, as the
famous word problem for semigroups, which is known to be undecidable [Dav58, Thm. 4.5],
can be reduced to ideal membership in R⟨X⟩, see, for example, [Xiu12, Rem. 2.2.12]. More
precisely, we will see in Section 2.4.3 that the theory of Gröbner bases allows to verify
ideal membership in R⟨X⟩, that is, to give an affirmative answer to Problem 2.2.28, thus
rendering the problem in fact semi-decidable. However, disproving ideal membership in
the free algebra is not always possible.

One way to certify the ideal membership of an element f ∈ R⟨X⟩ in the ideal generated
by a set F ⊆ R⟨X⟩ is to provide a representation of f in terms of the generators F . Such
a representation is called a cofactor representation.

Definition 2.2.29. Let F ⊆ R⟨X⟩. A representation of an element f ∈ (F ) of the form

f =
d∑︂
i=1

aifibi, (2.1)

with d ∈ N, ai, bi ∈ R⟨X⟩, and fi ∈ F is called a cofactor representation of f with
respect to F . We refer to the elements ai and bi as the cofactors of f with respect to the
representation (2.1).

Note that, in general, the cofactors ai and bi from several summands with the same fi
cannot be collected on both sides of fi simultaneously. However, collecting cofactors only
on the right-hand side of summands with the same fi is possible if the left-hand side
cofactors are all equal. For example, we can perform the simplification

k∑︂
j=1

aifibj = aifi

⎛⎝ k∑︂
j=1

bj

⎞⎠ .
Similarly, we can collect the cofactors on the left-hand side if the cofactors on the right-hand
side of the summands are equal.
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Remark 2.2.30. Given a cofactor representation of the form (2.1), we can expand the
cofactors ai and bi into monomials in ⟨X⟩. Hence, we can write every f ∈ (F ) as

f =
d′∑︂
i=1

civifiwi,

with ci ∈ R, vi, wi ∈ ⟨X⟩ and fi ∈ F .

Example 2.2.31. Consider the ideal (f1, f2) ⊴ Z⟨x, y⟩ generated by f1 = yx − xy and
f2 = xy − x and let f = xyyx− xx ∈ (f1, f2). A cofactor representation of f is given by

f = xyf1 + xyf2 + f2x.

Note that the two summands xyf2 and f2x cannot be merged together. This example also
shows that a cofactor representation is not necessarily unique, since we also have

f = f2yx+ f2x. (2.2)

Note that, in (2.2), we can collect the cofactors on the right-hand side of the summands to
obtain f = f2(yx+ x).

We also recall the concept of a quotient ring. As before, S denotes a (not necessarily
commutative) ring.

Definition 2.2.32. The quotient ring of S by an ideal I ⊴ S is the set

S⧸I := {[r] | r ∈ S}

together with the addition and multiplication

[r] + [s] = [r + s] [r][s] = [rs],

where [r] = r + I = {r + i | i ∈ I} denotes the equivalence class of r modulo I.

For inline text, we will also write S/I instead of S⧸I.

It is straightforward to check that the operations in Definition 2.2.32 are well-defined and
that S/I indeed forms a ring.
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To end this section, we recall the concept of a graded ring. We refer to [Row06, Ch. 7]
and [Coh03, Ch. 6.1] for further information.

Definition 2.2.33. Let M be a monoid. A ring S is an M -graded ring if there exists a
decomposition

S =
⨁︂
m∈M

Sm

of S into a direct sum of abelian subgroups Sm such that SmSn ⊆ Smn for all m,n ∈M .

Given an M -graded ring S, an element s ∈ S is called homogeneous if s ∈ Sm for some
m ∈M . If s ≠ 0, then m is called the degree of s, denoted by deg(s) = m. By definition,
zero is a homogeneous element and contained in every Sm. We leave its degree undefined.
Every nonzero s ∈ S has a unique decomposition as

s = sm1 + · · ·+ smd

with mi ∈M and 0 ̸= smi ∈ Smi for i = 1, . . . , d. The elements smi are referred to as the
homogeneous components of s.

We list some classical examples of gradings of the free algebra R⟨X⟩.

Example 2.2.34. For each w ∈ ⟨X⟩, the set Rw = {rw | r ∈ R} ⊆ R⟨X⟩ forms an abelian
subgroup. Furthermore, we have

R⟨X⟩ =
⨁︂
w∈⟨X⟩

Rw,

and since also RwRw′ = Rww′ for all w,w′ ∈ ⟨X⟩, we see that R⟨X⟩ is a ⟨X⟩-graded ring.
In this case, the homogeneous elements are all the terms of the form rw for r ∈ R and
w ∈ ⟨X⟩.

Example 2.2.35. For n ∈ N, let R⟨X⟩n = {f ∈ R⟨X⟩ | |w| = n for all w ∈ supp(f)}.
These abelian subgroups define an N-graded structure on R⟨X⟩, called the standard grading
of R⟨X⟩. If we decompose a nonzero f ∈ R⟨X⟩ as

f = f1 + · · ·+ fd
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with 0 ̸= fi ∈ R⟨X⟩i for i = 1, . . . , d, then the number d ∈ N is called the (standard) degree
of f , denoted by deg(f). Clearly, we have deg(w) = |w| for w ∈ ⟨X⟩ and deg(c) = 0 for
c ∈ R \ {0}.

Example 2.2.36. Let X = {x1, . . . , xn}. A matrix A ∈ Rn×m with rows a1, . . . ,an ∈ Rm

defines a grading of the free algebra R⟨X⟩ by the monoid (Rm,+). The grading can be
specified by the (weighted) degree function degA : ⟨X⟩ → Rm associated to A, defined on X

to be degA(xi) = ai, for i = 1, . . . , n, and extended to be a monoid homomorphism. Such a
degree function decomposes R⟨X⟩ into a direct sum of the abelian subgroups

R⟨X⟩a = {f ∈ R⟨X⟩ | degA(w) = a for all w ∈ supp(f)} ,

for a ∈ Rm. The standard grading of R⟨X⟩ considered in Example 2.2.35 can be obtained
as a special case by choosing A = (1, 1, . . . , 1)T ∈ Rn×1.

Definition 2.2.37. An ideal I ⊴ S of an M-graded ring S is called homogeneous (or
M -graded) if I = ⨁︁

m∈M (I ∩ Sm).

The condition in Definition 2.2.37 can also be expressed by saying that the ideal I can
be generated by homogeneous elements, or equivalently, that, with every nonzero element
s ∈ I, also all homogeneous components of s are contained in I. An M -graded ideal I,
induces an M -grading on the quotient ring S/I.

2.2.4 Free bimodule

In this section, we recall constructions and properties of bimodules. In particular, we discuss
the direct product and sum as well as the tensor product of bimodules. These constructions
allow us to describe the free bimodule on a set, which we use in subsequent chapters to
express and study relations of elements in the free algebra. For further information and
proofs of the claimed statements, we refer to [Row91, Ch. 1.7]. In the following, R,S, T
are (not necessarily commutative) rings.
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Definition 2.2.38. An (R,S)-bimodule is an abelian group (M,+) satisfying the following
two conditions:

1. M is a left R-module and a right S-module;

2. we have (r ·m) · s = r · (m · s) for all r ∈ R, s ∈ S and m ∈M ;

An (R,R)-bimodule is simply called an R-bimodule.

Definition 2.2.39. Let M be an (R,S)-bimodule. A subset N ⊆ M is called an
(R,S)-subbimodule of M if it is an additive subgroup of M and satisfies r · n · s ∈ N for
all r ∈ R, s ∈ S and n ∈ N .

For a subset B ⊆M of an (R,S)-bimodule M , the (R,S)-subbimodule of M generated by
B is the set {︄

d∑︂
i=1

ribisi

⃓⃓⃓⃓
d ∈ N, ri ∈ R, si ∈ S, bi ∈ B

}︄
.

It is the smallest (R,S)-subbimodule of M containing B.

Definition 2.2.40. Let M and N be (R,S)-bimodules. A function ψ : M → N is an
(R,S)-bimodule homomorphism if it satisfies the following conditions:

1. ψ(m+ n) = ψ(m) + ψ(n) for all m,n ∈M ;

2. ψ(rms) = rψ(m)s for all r ∈ R, s ∈ S, m ∈M ;

We recall some standard constructions of bimodules.

Definition 2.2.41. Let I be an index set and (Mi)i∈I be a family of (R,S)-bimodules.
The direct product of (Mi)i∈I is the Cartesian product, that is, the set

∏︂
i∈I

Mi = {(mi)i∈I | mi ∈Mi for all i ∈ I}

with component-wise addition and scalar multiplication:

(mi)i∈I + (m′
i)i∈I = (mi +m′

i)i∈I , r(mi)i∈I = (rmi)i∈I , (mi)i∈Ir = (mir)i∈I ,

where r ∈ R and s ∈ S.
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It is straightforward to verify that the direct product ∏︁i∈IMi is an (R,S)-bimodule. In
particular, if Mi = M for all i ∈ I, we obtain the direct power of M , denoted by M I .

Definition 2.2.42. Let I be an index set and (Mi)i∈I be a family of (R,S)-bimodules.
The (external) direct sum of (Mi)i∈I is the (R,S)-subbimodule

⨁︂
i∈I

Mi =
{︄

(mi)i∈I ∈
∏︂
i∈I

Mi

⃓⃓⃓⃓
mi = 0 for almost all i ∈ I

}︄

of
∏︁
i∈IMi. An element (mi)i∈I ∈

⨁︁
i∈IMi is denoted by the formal sum

∑︁
i∈I mii.

If Mi = M for all i ∈ I, we obtain the direct sum of |I| copies of M , denoted by M (I).
Note that, for a finite index set I, the direct product ∏︁i∈IMi and the direct sum ⨁︁

i∈IMi

coincide, but for infinite I, the direct sum is a strict subset of the direct product.

Another way to construct (R,S)-bimodules is via the tensor product.

Definition 2.2.43. Let M be an (S,R)-bimodule and let N be an (R, T )-bimodule. Fur-
thermore, let G be the free Z-module on the Cartesian product M ×N and let H be the
subgroup of G generated by all elements of the form

(m+m′, n)− (m,n)− (m′, n)

(m,n+ n′)− (m,n)− (m,n′)

(mr, n)− (m, rn)

for m,m′ ∈ M , n, n′ ∈ N , and r ∈ R. The tensor product of M and N over R is the
abelian group

M ⊗R N := G⧸H,

The equivalence class of (m,n) in M ⊗R N is denoted by m⊗ n.

In other words, the tensor product M ⊗R N is the abelian group generated by the set of
pure tensors {m⊗ n | m ∈M,n ∈ N} with relations

(m+m′)⊗ n = m⊗ n+m′ ⊗ n,

m⊗ (n+ n′) = m⊗ n+m⊗ n′,

mr ⊗ n = m⊗ rn.
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Every element in M ⊗R N can be written as a finite sum of pure tensors, that is

M ⊗R N =
{︄

d∑︂
i=1

mi ⊗ ni
⃓⃓⃓⃓
d ∈ N,mi ∈M,ni ∈ N

}︄
.

Furthermore, the tensor product M ⊗R N admits an (S, T )-bimodule structure with scalar
multiplication

s
d∑︂
i=1

(mi ⊗ ni) =
d∑︂
i=1

smi ⊗ ni
d∑︂
i=1

(mi ⊗ ni) t =
d∑︂
i=1

mi ⊗ nit.

The tensor product is a very useful construction. It allows, for example, to consider
R-bimodules as left modules over a larger ring. We recall that Rop denotes the opposite
ring of R where multiplication is defined as r · s := sr for all r, s ∈ R. Then we consider
the tensor product

R⊗Z R
op =

{︄
d∑︂
i=1

ri ⊗ si
⃓⃓⃓⃓
d ∈ N, ri, si ∈ R

}︄
,

which becomes a ring with the multiplication defined on pure tensors to be

(r ⊗ s)(r′ ⊗ s′) = (rr′ ⊗ s′s)

and extended linearly. The ring R⊗Z R
op is called the enveloping ring of R. With this, we

arrive at the following result, see also [Row91, Prop. 1.7.31].

Proposition 2.2.44. Every R-bimodule can be considered as an R⊗Z R
op-module with

scalar multiplication (︄
d∑︂
i=1

ri ⊗ si

)︄
m =

d∑︂
i=1

rimsi.

Conversely, every R⊗Z R
op-module can be considered as an R-bimodule with scalar multi-

plication
rm = (r ⊗ 1)m mr = (1⊗ r)m.
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Combining the tensor product with direct sums, we obtain the main bimodule construction
relevant for this work. To this end, recall that the center Z(R) of a ring R is the
commutative subring

Z(R) = {r ∈ R | rs = sr for all s ∈ R} .

Definition 2.2.45. Let S ⊆ Z(R) be a commutative subring of R and E = {ε1, . . . , εn} be
a finite set. The free R-bimodule on the set E centralising S is the R-bimodule

Σ = (R⊗S R)(E).

By Proposition 2.2.44, the free R-bimodule Σ can be considered as a R⊗Z R
op-module. In

this setting, Σ is free with basis E , and can, in this sense, be regarded as a free R-bimodule,
see also [Coh85, Sec. 0.11].

Remark 2.2.46. More generally, instead of a commutative subring S, an arbitrary (possibly
noncommutative) subring of R can be used in the construction above. Moreover, the finite
set E can be replaced by an arbitrary (possibly infinite) set X. We refer to [Coh85, Sec. 0.11]
for further information.

Elements in Σ are of the form

n∑︂
i=1

⎛⎝ di∑︂
j=1

ai,j ⊗ bi,j

⎞⎠ εi,
with ai,j , bi,j ∈ R. For easier readability, we write them as

n∑︂
i=1

di∑︂
j=1

ai,jεibi,j .

Note that, for all s ∈ S,

s

⎛⎝ n∑︂
i=1

di∑︂
j=1

ai,jεibi,j

⎞⎠ =
n∑︂
i=1

di∑︂
j=1

ai,jsεibi,j =
n∑︂
i=1

di∑︂
j=1

ai,jεisbi,j =

⎛⎝ n∑︂
i=1

di∑︂
j=1

ai,jεibi,j

⎞⎠ s.
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The first and last identities can be derived from the fact that s ∈ S ⊆ Z(R) is central, and
the middle identity follows from the fact that the tensor product in Definition 2.2.45 is
taken over S, which motivates the use of the term “centralising” in the definition.

Remark 2.2.47. The free R-bimodule centralising a commutative subring S will be required
in Chapter 3 for introducing noncommutative signature Gröbner bases. In particular, for
dealing with the so-called mixed algebra (see Sections 3.1.1 and 3.1.2), which contains a
mixture of commutative and noncommutative indeterminates.

2.3 Basics of abstract rewriting

Abstract rewriting describes the concept of traversing some directed graph, or more
concretely, of manipulating some object (for example, a term or formula) in a stepwise
manner, often via the repeated application of certain simplification rules. Mathematically,
this process can be described by a binary relation −→ on a set A.

Definition 2.3.1. Let A be a set and −→ ⊆ A × A be a binary relation on A. The pair
(A,−→) is called an abstract reduction system, and −→ is a reduction relation or simply a
reduction. We write x −→ y for (x, y) ∈ −→.

Remark 2.3.2. The term reduction is coined by the fact that in many applications some
quantity decreases with each reduction step.

The repeated application of reductions corresponds to a composition of relations. Recall
that the composition of two relations R ⊆ A×B and S ⊆ B × C is the relation

R ◦ S := {(x, z) ∈ A× C | ∃y ∈ B : (x, y) ∈ R ∧ (y, z) ∈ S} .

Based on this, we introduce some basic notions of the composition of a reduction with itself.
To this end, we fix an abstract reduction system (A,−→) for the rest of this section.
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Definition 2.3.3. We define the following notions:

0−→ := {(x, x) | x ∈ A} identity
n+1−−→ := n−→ ◦ −→ (n+ 1)-fold composition, n ∈ N
∗−→ := ⋃︁

n∈N
n−→ reflexive transitive closure

←− := {(y, x) | x −→ y} inverse

←→ := −→ ∪ ←− symmetric closure
∗←→ := (←→)∗ reflexive transitive symmetric closure

Remark 2.3.4. Notations like ←− or ←→ only make sense for arrow-like symbols. In case of
an arbitrary relation R ⊆ A×A one could write R−1 for the inverse relation, for example.

One can show that ∗←→ is the least equivalence relation containing −→. More generally, the
P closure of a binary relation −→⊆ A×A is the least set with predicate P containing −→.
While, for an arbitrary predicate P , the P closure of −→ need not always exist, for the cases
defined above it does. The reason is that reflexivity, transitivity and symmetry are closed
under arbitrary intersections, and in such cases, the P closure is simply the intersection of
all sets with predicate P containing −→.

The following definitions extend the notation from above.

Definition 2.3.5. Let x, y, z ∈ A.

1. x is reducible if there exists y such that x −→ y;

2. x is irreducible or in normal form if it is not reducible;

3. y is a normal form of x if x ∗−→ y and y is in normal form; if x has a unique normal
form, the latter is denoted by x↓;

4. x and y are joinable, denoted by x ↓ y, if there exists z such that x ∗−→ z
∗←− y;

To illustrate these notions we consider and slightly extend [BN98, Ex. 2.1.2].
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Example 2.3.6. For A = N>0 \ {1} and −→ = {(m,n) | m > n ∧ n | m}, the following
hold:

1. m is in normal form if and only if m is prime.

2. p is a normal form of m if and only if p is a prime factor of m. Consequently, all
elements of A have a normal form, which however is not always unique. In fact, the
only elements that have a unique normal form are prime powers.

3. m ↓ n if and only if m and n are not relatively prime.

4. For the inverse relation ←− = {(n,m) | ∃k ∈ N>0 \ {1} : m = kn}, no element has a
normal form.

5. ∗←→ = A×A.

Example 2.3.7. For A = ⟨a, b⟩ and −→ = {(ubav, uabv) | u, v ∈ A}, the following hold:

1. w is in normal form if and only if w is sorted, that is, w is of the form ambn for
some m,n ∈ N.

2. Every w has a unique normal form w↓, obtained by sorting w.

3. w ↓ w′ if and only if w ∗←→ w′ if and only if w and w′ contain the same number of as
and bs.

One important application of reduction systems, and the one that we are interested in,
is deciding the equivalence of two elements x and y of A with respect to the equivalence
induced by −→, that is, to solve the following word problem.

Problem 2.3.8 (Word problem).
Input: (A,−→) abstract reduction system, x, y ∈ A
Output: True if x ∗←→ y and False otherwise

One approach to solve this problem is to reduce x and y to normal form x′ and y′ respectively,
and then check x′ and y′ for syntactic equality. However, as easy as this method sounds
in theory, in practice two problems can arise. First of all, there might exist elements
in A that do not admit a normal form, as seen, for example, for the inverse relation in

42



2 Preliminaries

Example 2.3.6. Moreover, normal forms need not be unique; as an example, consider
the relation from Example 2.3.6. These problems render the word problem undecidable
in general. In order to discuss existence and uniqueness of normal forms, we recall the
following central properties of reduction relations.

Definition 2.3.9. A reduction −→ is

1. Church-Rosser if x ∗←→ y implies x ↓ y;

2. confluent if y1
∗←− x ∗−→ y2 implies y1 ↓ y2;

3. normalising if every element has a normal form;

4. terminating if there is no infinite descending chain a0 −→ a1 −→ . . . ;

Example 2.3.10. The reductions in Example 2.3.6 and 2.3.7 are both terminating but
only the second one is Church-Rosser and confluent. The inverse relation in Example 2.3.6
is not even terminating.

The following result relates the Church-Rosser property to confluence.

Theorem 2.3.11. A reduction −→ is Church-Rosser if and only if it is confluent.

Proof. If −→ is Church-Rosser and y1
∗←− x ∗−→ y2, then y1

∗←→ y2, and hence, y1 ↓ y2 by the
Church-Rosser property. So −→ is confluent.

Conversely, if −→ is confluent and x
∗←→ y, then we show x ↓ y by induction on the length

of the chain x
∗←→ y. If x = y, then trivially x ↓ y. If x ∗←→ y′ ←→ y, then the induction

hypothesis implies x ↓ y′, that is, x ∗−→ z
∗←− y′ for some z. Now, we distinguish between

two cases:

• y′ ←− y: in this case, x ↓ y follows immediately from x ↓ y′;

• y′ −→ y: in this case, z ∗←− y′ −→ y, and so confluence implies z ↓ y, which in turn
yields x ↓ y;

The previous theorem has the following consequence.
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Corollary 2.3.12. If −→ is confluent and x ∗←→ y, then

1. x ∗−→ y if y is in normal form;

2. x = y if both x and y are in normal form;

Proof. By Theorem 2.3.11, −→ is Church-Rosser and therefore x ∗←→ y implies x ↓ y, that
is, x ∗−→ z

∗←− y for some z. If y is normal form, then z = y, and so x ∗−→ y. If x is also in
normal form, then also z = x, and x = y follows.

We see that the confluence of a reduction implies that every element has at most one
normal form. Thus, if two elements can be reduced to normal form, then their equivalence
can be decided by syntactically comparing the normal forms. However, normal forms need
not exist for all elements as we can end up with infinite reduction sequences.

To ensure the existence of normal forms, a reduction has to be normalising. A normalising
and confluent reduction has unique normal forms and allows to solve the word problem by
computing these normal forms. This is the result of the following theorem.

Theorem 2.3.13. If −→ is normalising and confluent, then every element has a unique
normal form. Furthermore, x ∗←→ y if and only if x↓ = y↓.

Proof. The uniqueness of the normal forms follows from the definition of normalising and
from Corollary 2.3.12. For the second assertion, the “if”-direction is trivial. For the “only
if”-direction, note that x ∗←→ y implies x↓ ∗←→ y↓, and Corollary 2.3.12 yields x↓ = y↓.

Thus, for normalising and confluent reductions, we obtain a systematic way to solve the
word problem: simply reduce both elements to normal form and check if the normal forms
are equal. This renders Problem 2.3.8 decidable for this kind of reductions, provided that
normal forms are computable and that identity is decidable.

To end this section, we note that proving normalisation for a concrete reduction is often
a nontrivial task. However, it is easy to see that termination implies normalisation,
and for many practical applications the former is easier to verify. Furthermore, while
normalisation is enough for finding normal forms, it often requires a (typically more costly)
breadth-first search rather than a depth-first search which is sufficient for terminating
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reductions. Therefore, in practice, we seek terminating and confluent reductions rather
than normalising and confluent ones.

2.4 Gröbner bases in the free algebra

Gröbner bases have become a fundamental and multipurpose tool in computational algebra.
They are best known in algebras of commutative polynomials over fields [Buc65], where
they can answer questions ranging from solving systems of polynomial equations, over
performing ideal arithmetic operations to examining algebraic varieties. In the last decades,
Gröbner bases have also been extended to various other settings, including noncommutative
polynomials in the free algebra over fields [Bok76; Ber78; Mor85] or over rings [Pri96;
MZ98; Mor15; LMA23]. For recent surveys on the theory of noncommutative Gröbner
bases, we refer to [Nor01; Xiu12; BGV13; Mor16], and for an overview on available software
packages to compute them, see [LSA20] and references therein.

In this section, we recall the main results of the theory of Gröbner bases for one- and
two-sided ideals in the free algebra over a coefficient field. Our presentation is self-contained
and based on the concept of polynomial reduction, which we discuss in Section 2.4.2. Before
doing this, we first give an overview over several noncommutative monomial orders in
Section 2.4.1 and discuss their properties. Here, we also present a novel characterisation of
a large class of such orders by combining totally ordered semigroups with the lexicographic
order as a tiebreaker. Our characterisation also makes use of a result by Higman [Hig52]
and covers many classical orders, such as (weighted) (multi-)degree orders and elimination
orders. Gröbner bases of two-sided ideals in the free algebra are defined in Section 2.4.3,
where we also give several equivalent characterisations, including Bergman’s famous di-
amond lemma [Ber78], which provides an algorithmic test to verify whether a given set
of noncommutative polynomials forms a Gröbner basis. Based on this characterisation,
we then provide a noncommutative version of Buchberger’s algorithm for the free algebra.
However, as the free algebra is not Noetherian, some ideals do not admit finite Gröbner
bases, and consequently, we cannot expect Buchberger’s algorithm to terminate for any
input. Nevertheless, we show that the algorithm always correctly enumerates a (possibly
infinite) Gröbner basis. Finally, in Section 2.4.4, we recall the main results of the theory of
Gröbner bases for one-sided ideals. We restrict our presentation to right ideals and note
that all results also apply symmetrically to left ideals.
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2.4.1 Monomial orders

Recall that a total order ⪯ on a set A is a binary relation on A that is antisymmetric,
transitive, and total. We follow the usual convention to write a ⪯ b instead of (a, b) ∈⪯.
When working with monomials, it is often crucial that every collection of them possesses a
least element. A total order satisfying this property is called a well-order. If we additionally
require that the order respects the multiplication in ⟨X⟩, then we obtain a monomial
order.

Definition 2.4.1. A total order ⪯ on ⟨X⟩ is called a monomial order or an admissible
order on ⟨X⟩ if it satisfies the following two conditions:

1. w ⪯ w′ implies awb ⪯ aw′b for all a, b, w,w′ ∈ ⟨X⟩ (compatibility with multiplica-
tion);

2. every nonempty subset of ⟨X⟩ has a least element (well-order);

The following result characterises well-orders via the non-existence of infinite strictly
decreasing sequences of elements.

Lemma 2.4.2. Let ⪯ be a total order on a set A. Every nonempty subset of A has a least
element if and only if every decreasing sequence of elements in A eventually stabilises, that
is, if

a0 ⪰ a1 ⪰ · · ·

is an infinite decreasing sequence of elements a0, a1, . . . ∈ A, then there exists n ∈ N such
that an = an+k for all k ∈ N.

Proof. For the first implication, assume that every nonempty subset of A has a least
element and let a0, a1, . . . ∈ A be an infinite decreasing sequence. By assumption, the
set B = {ai | i ∈ N} has a least element, say an for some n ∈ N. By definition of a
least element, an ⪯ ai for all i ∈ N, and so, in particular, an ⪯ an+k for all k ∈ N. Since
a0 ⪰ a1 ⪰ · · · is a decreasing sequence, we additionally have an ⪰ an+k for all k ∈ N. Now
the antisymmetry of ⪯ implies that an = an+k for all k ∈ N and so the sequence stabilises.

For the second implication, assume that every decreasing sequence stabilises and assume,
for contradiction, that there exists a nonempty subset of A without a least element. Let
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B ⊆ A be such a set. Then an infinite strictly deceasing sequence can be constructed as
follows: since B is nonempty, choose a0 ∈ B arbitrary. Now, for n ∈ N, choose an+1 ∈ B
such that an ≻ an+1. Note that such a choice is always possible because no an is a
least element of B. This yields the infinite strictly decreasing sequence a0 ≻ a1 ≻ · · · ,
contradicting the assumption.

The compatibility of a monomial order with the multiplication in ⟨X⟩ together with the
property of being a well-order implies that 1 must be the least element.

Proposition 2.4.3. Let ⪯ be a monomial order on ⟨X⟩. Then 1 ⪯ w for all w ∈ ⟨X⟩.

Proof. Assume, for contradiction, that there exists w ∈ ⟨X⟩ such that 1 ≻ w. Then the
first condition of Definition 2.4.1 yields wn = wn · 1 ≻ wn · w = wn+1 for all n ∈ N. This
implies the existence of the infinite strictly decreasing sequence 1 ≻ w ≻ w2 ≻ · · · , which
is a contradiction to Proposition 2.4.2.

Conversely, it can be shown that a total order on ⟨X⟩ that is compatible with the
multiplication in ⟨X⟩ and has 1 as its least element, must be a well-order, provided
that X is finite.

Proposition 2.4.4. Let X be a finite set and let ⪯ be a total order on ⟨X⟩ such that the
following conditions hold:

1. w ⪯ w′ implies awb ⪯ aw′b for all a, b, w,w′ ∈ ⟨X⟩;

2. 1 ⪯ w for all w ∈ ⟨X⟩;

Then ⪯ is a well-order, and consequently, a monomial order.

This result can be seen a consequence of a theorem by Higman [Hig52]. Here, we give a direct
and more elementary proof taken from [Con71], which is based on an idea in [Nas63].
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Proof of Proposition 2.4.4. Assume, for contradiction, that there exist infinite decreasing
sequences w0 ≻ w1 ≻ · · · of elements w0, w1, . . . ∈ ⟨X⟩. We now construct the “smallest”
such sequence. In particular, we choose w0 ∈ ⟨X⟩ such that its length |w0| is minimal
among all elements starting such an infinite sequence. Next, for n ∈ N, we choose
inductively wn+1 ∈ ⟨X⟩ so that its length |wn+1| is minimal among all elements in
{w ∈ ⟨X⟩ | w0, . . . , wn, w starts an infinite strictly decreasing sequence}.

Since X is finite, there exist infinitely many elements wn in the previously constructed
sequence that begin with the same variable, say wn0 = xv0, wn1 = xv1, . . . with x ∈ X,
vi ∈ ⟨X⟩ for all i ∈ N and n0 < n1 < · · · . We record the following two important properties
of this subsequence:

1. Since 1 ≺ x, we also have v0 = 1 · v0 ≺ x · v0 = wn0 .

2. We must have vi ≻ vi+1 for all i ∈ N, as otherwise wni = x · vi ⪯ x · vi+1 = wni+1 ,
which contradicts the fact that the wn form a strictly decreasing sequence.

The two observations above imply that w0 ≻ · · · ≻ wn0−1 ≻ v0 ≻ v1 ≻ · · · is an infinite
strictly decreasing sequence. More precisely, this sequence is “smaller” than the one we
constructed previously because |v0| < |wn0 |. This is a contradiction.

The first concrete order on ⟨X⟩ that we consider is the lexicographic order ⪯lex, which is
probably best known from how the words in a dictionary are ordered. This is why it is
sometimes also referred to as the dictionary order. It is adapted to the free monoid ⟨X⟩ as
follows. From now on, we assume that X = {x1, . . . , xn} is finite.

Definition 2.4.5. Let X = {x1, x2, . . . , xn}. Order the elements of X as

x1 ≺lex x2 ≺lex · · · ≺lex xn.

Then w ⪯lex w
′ for w,w′ ∈ ⟨X⟩ if one of the following conditions holds:

1. there exist l, r, r′ ∈ ⟨X⟩ and xi, xj ∈ X such that w = lxir, w′ = lxjr
′ and xi ≺lex xj;

2. there exists r ∈ ⟨X⟩ such that w′ = wr;

48



2 Preliminaries

Example 2.4.6. Let X = {x, y, z} and order the indeterminates as x ≺lex y ≺lex z. Then
xyx ≺lex xyz by the first condition of Definition 2.4.5 and xy ≺lex xyx by the second
condition of Definition 2.4.5.

Remark 2.4.7. By reordering the elements in X = {x1, . . . , xn}, one can obtain different
orders. Formally, this means that, for a permutation π of {1, . . . , n}, we consider ⪯lex,π

where the indeterminates are ordered as xπ(1) ≺lex,π xπ(2) ≺lex,π · · · ≺lex,π xπ(n) and where
w ⪯lex,π w′ for w,w′ ∈ ⟨X⟩ if one of the following conditions holds:

1. there exist l, r, r′ ∈ ⟨X⟩, xi, xj ∈ X such that w = lxir, w′ = lxjr
′ and xi ≺lex,π xj;

2. there exists r ∈ ⟨X⟩ such that w′ = wr;

The lexicographic order from Definition 2.4.5 can be obtained as a special case by setting
π = id. To keep the notation uncluttered, we only use the “classical” lexicographic order
⪯lex for all future definitions and examples in this thesis.

The lexicographic order is a total order, but it is not a monomial order since it is neither
a well-order nor compatible with the multiplication in ⟨X⟩. This can easily be seen by
taking X = {x, y} and letting x ≺lex y. Then y ≻lex xy ≻lex xxy ≻lex · · · is an infinite
strictly decreasing sequence in ⟨X⟩. Furthermore, we have x ≺lex xx but xy ≻lex xxy.

Remark 2.4.8. In case of commutative monomials, the lexicographic order is a monomial
order. This order can be obtained from Definition 2.4.5 by writing commutative monomials
xa1

1 . . . xan
n in the form

xn . . . xn⏞ ⏟⏟ ⏞
an times

xn−1 . . . xn−1⏞ ⏟⏟ ⏞
an−1 times

. . . x1 . . . x1⏞ ⏟⏟ ⏞
a1 times

.

Although, as seen above, the lexicographic order is not multiplicative in general, there are
elements in ⟨X⟩ for which it is. This fact is captured by the following lemma.

Lemma 2.4.9. Let w,w′ ∈ ⟨X⟩ be such that neither is a prefix of the other. Then w ≺lex w
′

implies awb ≺lex aw
′b for all a, b ∈ ⟨X⟩.
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Proof. The second condition of Definition 2.4.5 would imply that one of w and w′ is a prefix
of the other. Since this is not the case here, there must exist l, r, r′ ∈ ⟨X⟩ and xi, xj ∈ X
such that w = lxir, w

′ = lxjr
′ and xi ≺lex xj . Consequently, we can write awb = alxirb and

aw′b = alxjr
′b. These two words share the same prefix al and at index |al|+ 1 it still holds

that xi ≺lex xj . Thus, the first condition of Definition 2.4.5 implies awb ≺lex aw
′b.

In other words, as long as we can rely only on the first condition of Definition 2.4.5, the
lexicographic order is compatible with the multiplication in ⟨X⟩. Based on this observation,
we present the following construction, which uses the lexicographic order as a building
block for monomial orders on ⟨X⟩. Recall that X = {x1, . . . , xn} is assumed to be finite.

Definition 2.4.10. Let S be a semigroup equipped with a total order ≤ that is compatible
with the multiplication in S and let φ : ⟨X⟩ → S be a semigroup homomorphism such that
φ(1) < φ(w) for all w ∈ ⟨X⟩ \ {1}. The φ-lexicographic order ⪯φ on ⟨X⟩ is defined by
w ⪯φ w′ for w,w′ ∈ ⟨X⟩ if one of the following conditions holds:

1. φ(w) < φ(w′);

2. φ(w) = φ(w′) and w ⪯lex w
′;

Remark 2.4.11. Strictly speaking, the φ-lexicographic order ⪯φ does not only depend
on φ but also on S and ≤. Since S and ≤ are usually clear from the context, we omit these
dependencies in the notation.

In contrast to the lexicographic order, the φ-lexicographic order is a monomial order. To
show this, the following key observation is needed.

Lemma 2.4.12. Let S,≤, and φ be as in Definition 2.4.10 and let w,w′ ∈ ⟨X⟩. If
φ(w) = φ(w′), then neither w nor w′ is a proper prefix of the other.

Proof. Assume, for contradiction, that one is a proper prefix of the other, say, w is a proper
prefix of w′. Then there exists r ∈ ⟨X⟩ \ {1} such that w′ = wr. By assumption on φ,
we have φ(1) < φ(r). This now leads to the following contradiction to the assumption
φ(w) = φ(w′):

φ(w) = φ(w · 1) = φ(w)φ(1) < φ(w)φ(r) = φ(wr) = φ(w′).
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Using this lemma, we can now prove the following result.

Theorem 2.4.13. The φ-lexicographic order ⪯φ is a monomial order.

Proof. The φ-lexicographic order is a total order, since the order ≤ on S and ⪯lex are
both total orders. To show that ⪯φ is compatible with the multiplication in ⟨X⟩, let
a, b, w,w′ ∈ ⟨X⟩ such that w ⪯φ w′. If w = w′, then clearly also awb = aw′b. Hence,
we can assume that w ̸= w′, and consequently w ≺φ w′. Then either φ(w) < φ(w′) or
φ(w) = φ(w′) and w ≺lex w

′. In the first case, we can use the fact that φ is a homomorphism
and that ≤ is compatible with the multiplication in S to obtain

φ(awb) = φ(a)φ(w)φ(b) < φ(a)φ(w′)φ(b) = φ(aw′b),

and thus awb ≺φ aw′b. For the second case, Lemma 2.4.12 implies that neither w nor w′

is a proper prefix of the other. Since also w ̸= w′, Lemma 2.4.9 yields the desired result.
To see that ⪯φ is also a well-order, note that 1 ⪯φ w for all w ∈ ⟨X⟩ as φ(1) < φ(w) for
all w ∈ ⟨X⟩ \ {1} by assumption. With this, the result follows from Proposition 2.4.4.

In the following, we present several well-known monomial orders as special instances of
φ-lexicographic orders.

Example 2.4.14. Recall that X = {x1, . . . , xn}.

1. For S = (N,+) with the usual order and φ(w) = |w|, we obtain the degree lexico-
graphic order ⪯deglex (also called graded lexicographic order).

2. Let a ∈ Rn>0 and let dega : ⟨X⟩ → R be the weighted degree function (see Exam-
ple 2.2.36) associated to a when a is considered as a matrix consisting of one column.
For S = (R≥0,+) with the usual order and φ(w) = dega(w), we obtain the weighted
degree lexicographic order ⪯a (also called weighted graded lexicographic order).

3. Let A ∈ Rn×m
≥0 be a matrix without zero rows and let degA : ⟨X⟩ → Rm be the associ-

ated weighted degree function. For S = (Rm≥0,+) with the usual lexicographic order
and φ(w) = degA(w), we obtain the weighted multidegree lexicographic order ⪯A.
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4. Let [X] = {xa1
1 . . . xan

n | (a1, . . . , an) ∈ Nn} be the set of commutative monomials
in the indeterminates X and let · be the multiplication of commutative monomials.
We can set S = ([X], ·) equipped with any commutative monomial order and use
φ : ⟨X⟩ → [X] as the canonical projection from noncommutative to commutative
monomials.

It is easy to see that in all example above φ is a semigroup homomorphism satisfying
φ(1) < φ(w) for all w ∈ ⟨X⟩ \ {1}. Consequently, Theorem 2.4.13 ensures that the
respective orders are indeed all monomial orders.

We make some remarks on the orders presented above:

1. The weighted degree lexicographic order allows to value the appearance of certain
indeterminates in a monomial more than the appearance of others. The usual degree
lexicographic ordering can be obtained as a special case by setting a = (1, . . . , 1).

2. Note that the vector a used in the weighted degree lexicographic order must consist
of strictly positive numbers. It is not sufficient to demand nonnegative numbers
as the following example shows. Let X = {x, y} and order the indeterminates as
x ≺lex y. Furthermore, let a = (0, 1). Then dega(xny) = 1 for all n ∈ N, and thus,
xn+1y ≺a xny for all n ∈ N, since x ≺lex y. Hence, we end up with the infinite
strictly decreasing sequence y ≻a xy ≻a xxy ≻a · · · of monomials in ⟨X⟩, showing
that ⪯a is not a well-order in this case, and consequently, also not a monomial order.

For the same reason, the matrix A used to construct a weighted multidegree lexico-
graphic order must not contain zero rows.

3. The lexicographic order on Rm≥0 is given by a ≤ b, for a = (a1, . . . , am) and b =
(b1, . . . , bm), if ai = bi for all i = 1, . . . ,m or if ai < bi for the smallest index 1 ≤ i ≤ m
where ai and bi differ.

4. All orderings presented above can be considered as special instances of the last case.

Choosing certain block structures for the matrix A when constructing a weighted multide-
gree lexicographic order, yields so-called elimination orders.
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Definition 2.4.15. Let X and Y be disjoint sets of indeterminates. A monomial order ⪯
on ⟨X,Y ⟩ is an elimination order for Y if

(︁
w ≺ w′ and w′ ∈ ⟨X⟩

)︁
=⇒ w ∈ ⟨X⟩,

for all w,w′ ∈ ⟨X,Y ⟩.

Example 2.4.16. Let X = {x1, . . . , xn}. Using a weighted multidegree lexicographic
order ⪯In on ⟨X⟩ with the n × n identity matrix In yields an elimination order for
{x1, . . . , xk} for every k = 1, . . . , n.

Elimination orders are very useful when simplifying expressions (and, in particular, when
solving systems), as they allow to eliminate the larger indeterminates in Y from a system
of polynomials. Using Gröbner bases, we will be able to express this property formally.
We refer to Theorem 2.4.43 for the precise statement.

To end this section, we recall several classical definitions relevant for studying noncommu-
tative Gröbner bases. Since many of them depend on a monomial order, we fix a monomial
order ⪯ on ⟨X⟩ for the rest of this section. If a particular order is used in an example, we
denote it by the corresponding subscript. In the following, R is a commutative ring.

Definition 2.4.17. Let f ∈ R⟨X⟩\{0}. The leading monomial lm(f) of f is the ⪯-maximal
element in supp(f), and the leading coefficient lc(f) of f is the coefficient of lm(f). The
leading term lt(f) of f is lt(f) = lc(f) · lm(f). Furthermore, we define lc(0) = lt(0) = 0.
A polynomial with leading coefficient 1 is called monic.

Note that, so far, the leading monomial of the zero polynomial is undefined. To avoid
exceptions for the zero polynomial, it is convenient to extend a monomial order ⪯ to
⟨X⟩ ∪ {0} and set 0 ≺ w for all w ∈ ⟨X⟩. In the following, we consider such an extension,
and with this in mind, we define lm(0) = 0. Furthermore, by a slight abuse of notation, for
sets F ⊆ R⟨X⟩, we let lm(F ) = {lm(f) | f ∈ F} ⊆ ⟨X⟩ ∪ {0}.

Remark 2.4.18. To be precise, we should only speak of a leading monomial/coefficient/term
with respect to a monomial order ⪯. In the following, we omit this additional information
when it is clear from the context which monomial order is used.
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The following proposition, lists some basic facts about the notions introduced above. They
follow essentially directly from the definition.

Lemma 2.4.19. Let R be an integral domain and f, g ∈ R⟨X⟩.

1. lm(f + g) ⪯ max⪯{lm(f), lm(g)} with equality if and only if lt(f) + lt(g) ̸= 0;

2. lm(fg) = lm(f)lm(g), lc(fg) = lc(f)lc(g), and thus, lt(fg) = lt(f)lt(g);

The “smaller” terms of a polynomial are all its terms except the leading term. They are
called the tail of the polynomial.

Definition 2.4.20. The tail of f ∈ R⟨X⟩ is tail(f) = f − lt(f).

2.4.2 Polynomial reduction

One central notion for the theory of Gröbner bases in the free algebra is (noncommutative)
polynomial reduction. For a simpler presentation, we restrict ourselves to coefficient fields in
the following. A theory over coefficient rings can also be developed, see, for example, [Pri96;
LMA23] for further information. In the following, K is a field and X = {x1, . . . , xn} is a
finite set of indeterminates. Furthermore, we fix a monomial order ⪯ on ⟨X⟩. We note
that a generalisation of polynomial reduction can also be introduced without the need for
a monomial order, see [GHM19]. We define polynomial reduction as a reduction relation
on K⟨X⟩ in three steps.

Definition 2.4.21. Let a, b ∈ ⟨X⟩, g ∈ K⟨X⟩ \ {0}, and G ⊆ K⟨X⟩. We define the
following reduction relations on K⟨X⟩:

f −→a,g,b f
′ :⇐⇒ lm(agb) ∈ supp(f) and f ′ = f − coeff(f, lm(agb))

lc(g) agb

−→g :=
⋃︂

a,b∈⟨X⟩
−→a,g,b

−→G :=
⋃︂

g∈G\{0}
−→g

These relations are called the polynomial reduction relation with respect to a, g, b, with
respect to g, and with respect to G respectively.
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Note that polynomial reduction cannot increase the leading monomial. More precisely, the
following result follows immediately from the definition.

Lemma 2.4.22. If f −→G f ′, then lm(f) ⪰ lm(f ′). Moreover, if f −→a,g,b f
′, then also

lm(f) ⪰ lm(agb).

As a consequence, we also see that, for every nonzero g ∈ K⟨X⟩, the polynomial tail(g) is
always irreducible with respect to −→g.

A reduction f −→a,g,b f
′ is a top reduction if lm(f) ≻ lm(f ′) and a tail reduction otherwise.

Top and tail reductions are defined analogously for −→g and −→G.

The reduction −→a,g,b is obviously terminating, because if f is reducible, say f −→a,g,b f
′,

then f ′ is in normal form. Furthermore, every element has a unique normal form with
respect to −→a,g,b. This is not necessarily the case for −→g and −→G. However, as an
important consequence of the properties of monomial orders, we see that −→G (and as a
special case −→g) is also terminating. To prove this, we extend the monomial order ⪯ to a
strict partial order Î on polynomials as done in [Win96]. Recall that lm(0) = 0 ≺ w for
all w ∈ ⟨X⟩.

Definition 2.4.23. Let f, g ∈ R⟨X⟩. Then f Î g if one of the following conditions holds:

1. lm(f) ≺ lm(g);

2. lm(f) = lm(g) and tail(f) Î tail(g);

Remark 2.4.24. The order Î coincides with the multiset order <mul discussed in [BN98,
Sec. 2.5] when <mul is induced by ≺ and restricted to finite sets.

Several properties of the monomial order ⪯ carry over to Î. In particular, the property
that infinite strictly decreasing sequences of elements do not exist.

Proposition 2.4.25. There exist no infinite strictly decreasing sequences of elements in
K⟨X⟩ with respect to Î.
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Proof. Assume, for contradiction, that there exists an infinite strictly decreasing sequence

f0 Ï f1 Ï . . .

of elements f0, f1, . . . ∈ K⟨X⟩. Choose this sequence so that lm(f0) is minimal with
respect to ⪯ among all f ∈ K⟨X⟩ starting an infinite sequence. Choosing such f0 is
possible because ⪯ is a well-order. Note that then lm(f0) = lm(fn) for all n ∈ N because
lm(f0) ≻ lm(fn) would violate the minimality of lm(f0) as fn also starts an infinite strictly
decreasing sequence fn Ï fn+1 Ï . . . . Thus, by definition of Î, we must have

tail(f0) Ï tail(f1) Ï . . . ,

which is still an infinite sequence. Note that f0 ̸= 0 as 0 is minimal with respect to Î. But
then lm(tail(f0)) ≺ lm(f0), which is a contradiction to the minimality of lm(f0).

Corollary 2.4.26. The reduction −→G is terminating.

Proof. By the definition of Î, any reduction f →G f ′ implies f Ï f ′. Thus, an infinite
sequence of reductions f0 −→G f1 −→G . . . yields an infinite sequence f0 Ï f1 Ï . . . of
elements in K⟨X⟩, which cannot happen by Proposition 2.4.25.

Recall from Definition 2.3.3, that ∗−→ denotes the reflexive transitive closure of a reduction −→.
For −→G, this means that f ∗−→G f

′ if either f = f ′ or if there exist finitely many h0, . . . , hd ∈
K⟨X⟩ such that

f = h0 −→G h1 −→G . . . −→G hd = f ′.

Note that, despite yielding unique normal forms, the reduction −→a,g,b is not a function,
as it is only defined for polynomials with lm(agb) in their support. This causes proofs
involving polynomial reduction to be a bit cumbersome at times, as one has to make case
distinctions depending on whether an element is reducible or not. To avoid these case
distinctions, it is convenient to associate a function to this reduction.

Therefore, we associate to −→a,g,b the K-vector space endomorphism

ra,g,b : K⟨X⟩ → K⟨X⟩
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defined on the basis ⟨X⟩ to be

ra,g,b(w) :=

⎧⎨⎩f
′ if w −→a,g,b f

′

w otherwise

and extended K-linearly. In [Ber78], such a function is called a reduction homomorphism.
It relates to our notion of polynomial reduction via the following result.

Lemma 2.4.27. Let G ⊆ K⟨X⟩ and f, f ′ ∈ K⟨X⟩ such that f ∗−→G f ′. There exists a
K-vector space endomorphism r : K⟨X⟩ → K⟨X⟩ satisfying

1. r(f) = f ′;

2. g ∗−→G r(g) for all g ∈ K⟨X⟩;

3. r(g) = g for all irreducible g ∈ K⟨X⟩;

Furthermore, r is a composition of reduction homomorphisms.

Proof. If f = f ′, we can set r = id to be the empty composition of reduction homomor-
phisms, which satisfies all the required properties. Otherwise, f ′ is obtained by a sequence
of reductions

f −→a1,g1,b1 . . . −→ad,gd,bd
f ′,

with ai, bi ∈ ⟨X⟩ and gi ∈ G. To each reduction, we consider the associated reduction
homomorphism rai,gi,bi

and define r as the composition r = rad,gd,bd
◦ · · · ◦ ra1,g1,b1 . This is

again a K-vector space endomorphism. We show the three claimed properties for the case
d = 1, that is, r = ra,g,b. The general case d ≥ 1 follows by induction.

Claim 1 follows immediately from the fact that both −→a,g,b and ra,g,b act in the same
way on lm(agb) and leave all other words unchanged. Claim 2 holds trivially if g = r(g).
Otherwise, by definition of reduction homomorphisms, lm(agb) appears in g and we have
g −→a,g,b r(g), showing that also g ∗−→G r(g). Finally, 3 follows from 2.

Using reduction homomorphisms, we can easily prove the following result about polynomial
reduction that will be needed later.
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Lemma 2.4.28. Let G ⊆ K⟨X⟩ and f, f ′ ∈ K⟨X⟩. Then the following hold:

1. f ∗−→G f
′ implies cafb ∗−→G caf

′b for all c ∈ K and a, b ∈ ⟨X⟩;

2. f − f ′ ∗−→G 0 implies f ↓G f ′;

Proof. For c = 0, the first part holds trivially. For nonzero c, the first part follows from the
definition, since f −→u,g,v f

′ implies cafb −→au,g,vb caf
′b. For the second part, let r be the

K-vector space endomorphism associated to the reduction f − f ′ ∗−→G 0 by Lemma 2.4.27.
Then r(f) − r(f ′) = r(f − f ′) = 0 and Lemma 2.4.27 yields f ∗−→G r(f) = r(f ′) G

∗←−f ′,
showing that f ↓G f ′.

If a sequence of reductions yields zero, we can obtain a cofactor representation of the
reduced polynomial with respect to the reducers. More precisely, for a nonzero f ∈ K⟨X⟩,
the fact f ∗−→G 0 corresponds to the existence of a reduction sequence

f = h0 −→a1,g1,b1 h1 −→a2,g2,b2 . . . −→ad,gd,bd
hd = 0.

Expanding this sequence yields the following cofactor representation of f with respect
to G:

f =
d∑︂
i=1

ciaigibi, (2.3)

where ci = coeff(hi−1, lm(aigibi))/lc(gi). This immediately implies the following result.

Lemma 2.4.29. If f ∗−→G 0, then f ∈ (G). More generally, f ∗−→G f
′ implies f − f ′ ∈ (G).

An interesting aspect of cofactor representations obtained by reductions to zero is that
they are bounded as defined below.

Definition 2.4.30. Let G ⊆ K⟨X⟩. For a nonzero f ∈ (G), a cofactor representation

f =
d∑︂
i=1

aigibi,

with ai, bi ∈ K⟨X⟩ and gi ∈ G, of f with respect to G is called bounded if lm(aigibi) ⪯ lm(f)
for all i = 1, . . . , d.
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Corollary 2.4.31. If f ∗−→G 0, then f has a bounded cofactor representation with respect
to G. More precisely, the cofactor representation (2.3) is bounded.

Proof. Equation (2.3) is clearly a cofactor representation of f with respect to G. The fact
that it is bounded follows from Lemma 2.4.22.

Lemma 2.4.29 provides a first connection between polynomial reduction and the ideal
membership problem in K⟨X⟩: Reductions to zero imply ideal membership. This condition,
however, is only sufficient and generally not necessary as the following example shows.

Example 2.4.32. Consider the ideal I = (f1, f2) ⊴ Q⟨x, y⟩ with f1 = xy+1, f2 = xyx−1.
Then

x+ 1 = f1x− f2 ∈ I,

but this element is irreducible with respect to →{f1,f2} (with respect to any monomial order
on ⟨x, y⟩).

By allowing also inverse reductions, we obtain a full characterisation of ideal membership
via polynomial reduction.

Theorem 2.4.33. Let G ⊆ K⟨X⟩ and f, f ′ ∈ K⟨X⟩. Then f ∈ (G) if and only if f ∗←→G 0.
More generally, f − f ′ ∈ (G) if and only if f ∗←→G f

′.

Proof. The first assertion clearly follows from the second one. Thus, we show the latter.

For the “if”-direction, define a relation on K⟨X⟩ by f ∼G f ′ if f − f ′ ∈ (G). This is
an equivalence relation. Furthermore, note that ∗←→G is the smallest equivalence relation
containing −→G. Thus, −→G ⊆ ∼G implies ∗←→G ⊆ ∼G, which in turn yields the desired
result. But −→G ⊆ ∼G follows from Lemma 2.4.29 and the fact that −→G ⊆

∗−→G.

For the “only if”-direction, write f − f ′ as f − f ′ = ∑︁d
i=1 ciaigibi with nonzero ci ∈ K,

ai, bi ∈ ⟨X⟩ and gi ∈ G. We show that f ∗←→G f
′ holds for the case d = 1. Then the general

statement for d ≥ 1 follows by induction on d. Clearly g1 −→G 0, and thus, by the first part
of Lemma 2.4.28, also f −f ′ = c1a1g1b1 −→G 0. With this, the second part of Lemma 2.4.28
yields f ↓G f ′, and consequently, f ∗←→G f

′.
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From a computational point of view, transitioning from ∗−→G to ∗←→G is problematic because
the inverse relation is not terminating. However, if −→G is confluent, then Theorem 2.4.33
yields an algorithmic way to solve the ideal membership problem.

Corollary 2.4.34. If −→G is confluent, then f ∈ (G) if and only if f ∗−→G 0.

Proof. By Theorem 2.4.33, f ∈ (G) if and only if f ∗←→G 0. Note that −→G is terminating
by Corollary 2.4.26, and thus, normalising. Hence, if −→G is additionally confluent, Theo-
rem 2.3.13 is applicable and yields f ∗←→G 0 if and only if f and 0 have the same unique
normal form, and the result follows since 0 is in normal form.

Hence, ideal membership in an ideal (G) can be decided by polynomial reduction provided
that −→G is confluent. Unfortunately, this is not the case for all sets G. Such distinguished
sets for which −→G is confluent are called Gröbner bases of the ideal (G).

2.4.3 Gröbner bases of two-sided ideals

Recall that we have fixed a monomial order ⪯ on ⟨X⟩.

Definition 2.4.35. Let I ⊴ K⟨X⟩. A subset G ⊆ I is a Gröbner basis of I if (G) = I

and −→G is confluent.

By Theorem 2.3.13, every element f ∈ K⟨X⟩ has a unique normal form f↓G with respect
to −→G if G is a Gröbner basis. Conversely, if every element has a unique normal form,
then −→G is clearly confluent, and thus, G is a Gröbner basis. So we arrive at the following
alternative characterisation of Gröbner bases.

Corollary 2.4.36. Let I ⊴ K⟨X⟩. A subset G ⊆ I is a Gröbner basis of I if and only if
(G) = I and every f ∈ K⟨X⟩ has a unique normal form f↓G with respect to −→G.

In fact, there exist many other characterisations of Gröbner bases. In the following, we list
a few common ones.
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Theorem 2.4.37. Let I ⊴ K⟨X⟩ and G ⊆ I. The following conditions are equivalent:

1. G is a Gröbner basis of I;

2. f ∗−→G 0 for all f ∈ I;

3. (lm(I)) = (lm(G));

4. for all nonzero f ∈ I, there exists g ∈ G such that lm(g) divides lm(f);

Proof. We show 1 ⇐⇒ 2 =⇒ 3 =⇒ 4 =⇒ 2.

1 =⇒ 2 Follows from Corollary 2.4.34.

2 =⇒ 1 Note that (G) = I follows from Lemma 2.4.29. For the confluence, let
f, f1, f2 ∈ K⟨X⟩ be such that f1 G

∗←− f
∗−→G f2. Then clearly f1

∗←→G f2, and thus,
f1 − f2 ∈ I by Theorem 2.4.33. Our assumption implies f1 − f2

∗−→G 0. With this,
Lemma 2.4.28 yields f1 ↓G f2, showing that −→G is confluent.

2 =⇒ 3 The inclusion (lm(G)) ⊆ (lm(I)) is clear because G ⊆ I. For the other inclusion,
it suffices to show that lm(I) ⊆ (lm(G)) because (lm(I)) is the smallest ideal containing
lm(I). To this end, let f ∈ I. For f = 0, note that lm(f) = 0 ∈ (lm(G)). Thus, we can
assume f ̸= 0. Then, by assumption, f ∗−→G 0, but this is only possible if f is top reducible
by G, that is, if there exist a, b ∈ ⟨X⟩ and g ∈ G such that lm(f) = lm(agb). This yields
lm(f) = lm(agb) = alm(g)b ∈ (lm(G)).

3 =⇒ 4 Let f ∈ I be nonzero. By assumption, lm(f) ∈ (lm(I)) can be written as

lm(f) =
d∑︂
i=1

ciailm(gi)bi,

with ci ∈ K, ai, bi ∈ ⟨X⟩ and gi ∈ G. Since lm(f) is a monomial, all summands in
this linear combination except for one must cancel, so that lm(f) = aj lm(gj)bj for some
1 ≤ j ≤ d, showing that lm(f) is divisible by lm(gj).

4 =⇒ 2 Assume, for contradiction, that not all elements in I can be reduced to zero with
respect to G. Let f ∈ I be such an element. Without loss of generality, we can assume
that f is irreducible with respect to −→G. By assumption, there exists g ∈ G such that
lm(g) divides lm(f), but then f is (top) reducible by g – a contradiction.
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We make some remarks about the characterisations in Theorem 2.4.37 and their conse-
quences:

• While Definition 2.4.35 has to require explicitly that G is a generating set of the
ideal I, we get this property for free with all conditions of Theorem 2.4.37.

• As a consequence of condition 3, we see that every ideal I has a Gröbner basis. For
example, taking G = I satisfies this condition.

• We can also see that a Gröbner basis of I is by no means unique. In fact, if G is a
Gröbner basis of I, then so is G ∪ {f} for every f ∈ I.

• Condition 2 yields an algorithm for solving the ideal membership problem provided
that we know a Gröbner basis for the ideal I of interest. To determine whether f
lies in I, simplify reduce f to normal form and see if the result is zero.

• Condition 3 is commonly used as the definition of Gröbner bases. For example, the
commutative standard reference [CLO15] as well as the noncommutative introductory
text [Mor94] use this condition.

• The (polynomial) ideals in condition 3 can be replaced by monoid ideals, leading to
the statement that the monoid ideal lm(I) is equal to the monoid ideal generated
by lm(G), which is essentially condition 4. We refer, for example, to [Xiu12] for the
definition of monoid ideals and for further information.

Another common characterisation of Gröbner bases is the following.

Proposition 2.4.38. Let I ⊴ K⟨X⟩. A subset G ⊆ I is a Gröbner basis of I if and only
if all nonzero f ∈ I have a bounded cofactor representation with respect to G.

Proof. The “only if”-part of the statement follows from Corollary 2.4.31 and condition 2
of Theorem 2.4.37. For the “if”-part, we prove that the assumption implies condition 4 of
Theorem 2.4.37. To this end, choose an arbitrary nonzero f ∈ I. By assumption, f can be
written as

f =
d∑︂
i=1

aigibi,
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with ai, bi ∈ K⟨X⟩ and gi ∈ G such that lm(aigibi) ⪯ lm(f) for all i = 1, . . . , d. In
particular, for at least one 1 ≤ j ≤ d, we must have lm(f) = lm(ajgjbj), showing that
lm(gj) divides lm(f).

Although a Gröbner basis of an ideal is not unique in general, we can demand certain
additional properties in order to obtain a distinguished and unique Gröbner basis (with
respect to a fixed monomial order), called the reduced Gröbner basis. To introduce this
notion, we first define an interreduced set of polynomials.

Definition 2.4.39. A set G ⊆ K⟨X⟩ is interreduced if every g ∈ G is irreducible with
respect to −→G\{g}.

Definition 2.4.40. A Gröbner basis G ⊆ I of an ideal I ⊴ K⟨X⟩ is reduced if G is
interreduced and all polynomials in G are monic.

The following result establishes existence and uniqueness of reduced Gröbner bases.

Proposition 2.4.41. Every ideal in K⟨X⟩ has a unique reduced Gröbner basis (with
respect to a fixed monomial order).

Proof. Let I ⊴ K⟨X⟩ be an ideal. To show existence, let G ⊆ I be a Gröbner basis and set

H = {g ∈ G \ {0} | lm(g) is not divisible by any word in lm(G \ {g})} .

By condition 3 of Theorem 2.4.37, the set H is also a Gröbner basis of I because (lm(H)) =
(lm(G)) = (lm(I)). Next, set

G′ = {lm(g)− (lm(g)↓H) | g ∈ H} .

We show that G′ is a reduced Gröbner basis of I. By Lemma 2.4.29, we see that G′ ⊆ I.
Furthermore, (lm(G′)) = (lm(H)) = (lm(G)) = (lm(I)), and so G′ is a Gröbner basis of I.
Finally, by construction, G′ is interreduced and all its elements are monic.

To show uniqueness, let G,H ⊆ I be reduced Gröbner bases of I. We show that G ⊆ H,
and the other inclusion will follow from the symmetry of our argument. Let g ∈ G. Since
H is a Gröbner basis, there exists h ∈ H such that lm(h) divides lm(g). Since G is also a
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Gröbner basis, there exists g′ ∈ G such that lm(g′) divides lm(h). This is only possible
if g = g′ because G is interreduced. Consequently, lm(g) = lm(h) and, more precisely,
lt(g) = lt(h) because both elements are monic. We show that, in fact, g = h. To this end,
consider the difference g − h ∈ I and note that lt(g) = lt(h) cancel in g − h. Since G and
H are interreduced, none of the remaining terms can be reducible. So g − h is in normal
form, showing that g − h = 0 by condition 2 of Theorem 2.4.37.

Given a finite Gröbner basis of an ideal I ⊴ K⟨X⟩, the proof of Proposition 2.4.41 shows
how to construct the (finite) reduced Gröbner basis of I. As a direct consequence of this
construction, we obtain the following result.

Corollary 2.4.42. An ideal in K⟨X⟩ has a finite Gröbner basis if and only if its reduced
Gröbner basis is finite.

Proof. The “if”-direction is clear. For the “only if”-direction, let G be a finite Gröbner
basis of an ideal I. Following the proof of Proposition 2.4.41, the reduced Gröbner basis G′

of I can be constructed from a subset of the leading monomials in G, implying that
|G′| ≤ |lm(G)| ≤ |G| <∞.

However, note that the reduced Gröbner basis of an ideal need not be finite, not even for
principal ideals (see Example 2.4.55). This implies that there exist finitely generated ideals
in K⟨X⟩ that do not admit a finite Gröbner basis.

An important property of Gröbner bases is that they possess the so-called elimination
property allowing to compute elimination ideals [BB98]. If I ⊴ K⟨X,Y ⟩ is an ideal, then,
analogous to the commutative case (see [CLO15, Thm. 3.1.2]), the elimination property of
noncommutative Gröbner bases allows to obtain a Gröbner basis of the elimination ideal
I ∩K⟨X⟩ from a suitable Gröbner basis of I. A Gröbner basis is suitable to do this, if it is
computed with respect to an elimination order for Y (see Definition 2.4.15). The following
theorem states the elimination property of noncommutative Gröbner bases, see also [BB98,
Thm. 3.2].

Theorem 2.4.43. Let I ⊴ K⟨X,Y ⟩ and let G be a Gröbner basis of I with respect to
an elimination order for Y . Then G ∩K⟨X⟩ is a Gröbner basis of the elimination ideal
I ∩K⟨X⟩.
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Proof. Let GX = G∩K⟨X⟩. Clearly, GX ⊆ I∩K⟨X⟩. We use condition 4 of Theorem 2.4.37
to show that GX is a Gröbner basis of I ∩K⟨X⟩. To this end, let f ∈ I ∩K⟨X⟩ be nonzero.
Since G is a Gröbner basis of I, there exists g ∈ G such that lm(g) divides lm(f). Since
f ∈ K⟨X⟩, we have lm(f) ∈ ⟨X⟩, and thus, also lm(g) ∈ ⟨X⟩. Since G is computed with
respect to an elimination order for Y , this implies g ∈ K⟨X⟩, showing that g ∈ GX .

A Gröbner basis of an ideal I also allows to perform computations in the quotient ring
K⟨X⟩/I. To make this precise, for G ⊆ K⟨X⟩, we denote by K⟨X⟩irr,G ⊆ K⟨X⟩ the set of
all irreducible elements with respect to −→G, that is,

K⟨X⟩irr,G = {f ∈ K⟨X⟩ | f is irreducible w.r.t. −→G} .

Note that this set is a K-vector space with basis consisting of all irreducible words.
Furthermore, we consider the set

K⟨X⟩un,G = {f ∈ K⟨X⟩ | f has a unique normal form f↓G w.r.t. −→G} .

of all elements with a unique normal form. The following lemma states that this is also a
K-vector space.

Lemma 2.4.44. Let G ⊆ K⟨X⟩. Then the following hold:

1. K⟨X⟩un,G is a K-vector space;

2. the map ψ : K⟨X⟩un,G → K⟨X⟩irr,G, f ↦→ f↓G is K-linear;

3. for f, g, h ∈ K⟨X⟩, if supp(fgh) ⊆ K⟨X⟩un,G, then fgh ∈ K⟨X⟩un,G. Moreover, if
g

∗−→G g
′, then fg′h ∈ K⟨X⟩un,G and (fg′h)↓G = (fgh)↓G.

Proof. We show 1 and 2 using reduction homomorphisms. To this end, let c ∈ K and
f, g ∈ K⟨X⟩un,G. Let h be a normal form of cf + g with respect to −→G. By Lemma 2.4.27,
there exists a K-vector space endomorphism r satisfying r(cf + g) = h and, since h

is irreducible, r(h) = h. Furthermore, also f
∗−→G r(f), and therefore r(f) ∗−→G f↓G.

Now, again by Lemma 2.4.27, we obtain a K-vector space endomorphism r′ so that
r′(r(f)) = f↓G and r′(h) = h. With this, we now have g ∗−→G r′(r(g)) ∗−→G g↓G, yielding
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yet another K-vector space endomorphism r′′ with r′′(r′(r(g))) = g↓G and r′′(h) = h as
well as r′′(f↓G) = f↓G. Combining all of this yields

h = r′′(r′(r(h))) = r′′(r′(r(cf + g))) = cr′′(r′(r(f))) + r′′(r′(r(g))) = cf↓G + g↓G,

showing that cf↓G + g↓G is the unique normal form of cf + g. This also shows that
ψ(cf + g) = cψ(f) + ψ(g), and thus that ψ is K-linear.

For 3, note that fgh ∈ K⟨X⟩un,G follows from 1. To show that fg′h has a unique normal
form, we first assume that f, g, h ∈ ⟨X⟩ are monomials. In this case, fgh ∗−→G fg′h by
Lemma 2.4.28, and since the former has a unique normal form, so does the latter, with the
same normal form. For the general case, write f = ∑︁

Ai∈⟨X⟩ aiAi, g = ∑︁
Bj∈⟨X⟩ bjBj and

h = ∑︁
Ck∈⟨X⟩ ckCk. Furthermore, let r be the map that Lemma 2.4.27 associates to the

reduction g
∗−→G g

′. With this, we have

fg′h = fr(g)h =
∑︂
i,j,k

aibjckAir(Bj)Ck.

From the case for monomials, we know that Air(Bj)Ck has a unique normal form for
all i, j, k and (AiBjCk)↓G = (Air(Bj)Ck)↓G. Now the result follows from part 1 and 2.

Note that, by Corollary 2.4.36, the set K⟨X⟩un,G is all of K⟨X⟩ if and only if G is a
Gröbner basis of (G). With this, we can state yet another characterisation of Gröbner
bases.

Theorem 2.4.45. Let I ⊴ K⟨X⟩. A subset G ⊆ I is a Gröbner basis of I if and only if
K⟨X⟩ = I ⊕K⟨X⟩irr,G.

Proof. For the “if”-direction, we show condition 2 of Theorem 2.4.37. To this end, let
f ∈ I and let f ′ ∈ K⟨X⟩irr,G be a normal form of f with respect to −→G. By Lemma 2.4.29,
f − f ′ ∈ I, and since f ∈ I, we get that also f ′ ∈ I. Thus f ′ ∈ I ∩K⟨X⟩irr,G = {0}.

For the “only if”-direction, consider the K-linear map

ψ : K⟨X⟩un,G → K⟨X⟩irr,G, f ↦→ f↓G.
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from Lemma 2.4.44. Note that ψ is idempotent. Hence, ψ is a projection and therefore
K⟨X⟩ = K⟨X⟩un,G = ker(ψ)⊕ im(ψ), where the first equality follows since G is a Gröbner
basis. To finish the proof, note that ker(ψ) = I and im(ψ) = K⟨X⟩irr,G.

As a consequence of this theorem, we see that K⟨X⟩/I and K⟨X⟩irr,G are isomorphic
as K-vector spaces provided that G is a Gröbner basis of I. Thus, the normal forms
with respect to −→G form a system of representatives of the quotient ring. This yields an
algorithmic way to perform computation in K⟨X⟩/I:

[f ] + [g] = [f↓G + g↓G] [f ] · [g] = [(fg)↓G]

Thus far, none of the characterisations of Gröbner bases is constructive in the sense that
it allows to algorithmically verify whether a given set is a Gröbner basis of an ideal. In
the commutative case, Buchberger’s Criterion [CLO15, Thm. 2.6.6] provides precisely such
a constructive characterisation. In the following, we present a noncommutative version,
typically referred to as Bergman’s diamond lemma [Ber78]. As a first step towards phrasing
this result, we define the notion of ambiguities as done in [Ber78].

Definition 2.4.46. Let p, q ∈ ⟨X⟩. If there exist a, b ∈ ⟨X⟩\{1} with |a| < |q| and |b| < |p|
such that ap = qb (resp. pa = bq), then we call the tuple

(a⊗ 1, 1⊗ b, p, q) (resp. (1⊗ a, b⊗ 1, p, q))

an overlap ambiguity of p and q.

If there exist a, b ∈ ⟨X⟩ such that p = aqb (resp. apb = q), then we call the tuple

(1⊗ 1, a⊗ b, p, q) (resp. (a⊗ b, 1⊗ 1, p, q)),

an inclusion ambiguity of p and q.

For f, g ∈ K⟨X⟩ \ {0}, an (overlap/inclusion) ambiguity of f and g is

(a⊗ b, c⊗ d, f, g),

where (a⊗ b, c⊗ d, lm(f), lm(g)) is an (overlap/inclusion) ambiguity of lm(f) and lm(g)
and, in case f = g, at least one of a, b, c, d is not 1. We denote by amb(f, g) the set of all
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ambiguities of f and g. When clear by context, we drop the polynomials f and g from an
ambiguity and simply write (a⊗ b, c⊗ d) ∈ amb(f, g).

Remark 2.4.47. Ambiguities correspond to compositions in [Bok76] and to obstructions
in [Mor94; Xiu12].

Note that two elements can give rise to several ambiguities but only to finitely many.
Furthermore, a polynomial can also form overlap ambiguities with itself. We record the
following property which follows directly from the definition.

Lemma 2.4.48. If (a⊗ b, c⊗ d) is an ambiguity of f and g, then lm(afb) = lm(cgd).

Based on this result, we define the leading monomial of an ambiguity.

Definition 2.4.49. Let f, g ∈ K⟨X⟩ \ {0} and a = (a⊗ b, c⊗ d) ∈ amb(f, g). The leading
monomial of a is lm(a) := lm(afb) = lm(cgd).

An ambiguity a of two polynomials f and g captures the fact that the term lm(a) can
be reduced by f and g in two (possibly different) ways. A set G containing f and g can
only be a Gröbner basis if these two reductions lead to a canonical normal form. To check
whether this is the case, one can look at the S-polynomial of the ambiguity. In the following,
for a set G ⊆ K⟨X⟩, let

amb(G) :=
⋃︂

f,g ∈G\{0}
amb(f, g).

Definition 2.4.50. Let G ⊆ K⟨X⟩ and a = (a⊗b, c⊗d, f, g) ∈ amb(G). The S-polynomial
of a is

S-Pol(a) := 1
lc(f)afb−

1
lc(g)cgd.

The ambiguity a is resolvable if S-Pol(a) ∗−→G 0.

The following result is an immediate consequence of the definition.

Lemma 2.4.51. For a ∈ amb(G), we have lm(S-Pol(a)) ≺ lm(a) and S-Pol(a) ∈ (G).

68



2 Preliminaries

If an ambiguity a is resolvable, then, by Lemma 2.4.28, the two different reductions of
lm(a) are joinable, thus yielding the confluence property for these reductions. Furthermore,
by Corollary 2.4.31, the resolvability of an ambiguity implies that its S-polynomial has a
bounded cofactor representation with respect to G.

We note that our definition of resolvability differs slightly from the one in [Ber78]. The
original definition is in general weaker than Definition 2.4.50, requiring only that the two
polynomials that form the S-polynomial are joinable. In fact, [Ber78] also uses a second,
even weaker, notion of resolvability, called resolvable relative to a monomial order ⪯, which
we discuss below. In Theorem 2.4.54, we show that, for a Gröbner basis G, the different
notions of resolvability are all equivalent.

In the following, for G ⊆ K⟨X⟩ and w ∈ ⟨X⟩, let

IG,w :=
{︄

d∑︂
i=1

aigibi

⃓⃓⃓⃓
d ∈ N, ai, bi ∈ K⟨X⟩, gi ∈ G, lm(aigibi) ≺ w

}︄
.

Definition 2.4.52. Let G ⊆ K⟨X⟩. An ambiguity a ∈ amb(G) is resolvable relative to ⪯
if S-Pol(a) ∈ IG,lm(a).

Definition 2.4.52 can also be phrased equivalently in terms of an analogue of the commu-
tative notion of lcm representations [CLO15, Def. 2.9.5]. A cofactor representation of an
S-polynomial S-Pol(a) is called an lcm representation if it is of the form

S-Pol(a) =
d∑︂
i=1

aigibi,

with lm(aigibi) ≺ lm(a) for all i = 1, . . . , d. With this, an ambiguity is resolvable relative
to ⪯ if and only if S-Pol(a) has an lcm representation.

As described above, resolvability of an ambiguity is related to the existence of a bounded
cofactor representation of the S-polynomial. Analogously, resolvability relative to ⪯
corresponds to the existence of lcm representations. In the following, we describe how lcm
representations are related to bounded cofactor representations, and thus, how the two
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notions of resolvability are related to each other. To this end, write S-Pol(a) = ∑︁d
i=1 ciaigibi

and consider the inequalities:

lm(S-Pol(a)) ⪰ lm(aigibi) for all i = 1, . . . , d, (2.4)

lm(a) ≻ lm(aigibi) for all i = 1, . . . , d. (2.5)

Note that (2.4) says that the cofactor representation is bounded, while (2.5) says that it is
an lcm representation. We can see that (2.4) implies (2.5) because lm(a) ≻ lm(S-Pol(a))
by the definition of S-polynomials. This shows that every bounded cofactor representation
of an S-polynomial is also an lcm representation. The converse, however, need not hold,
as, in an lcm representation, we make no assumptions on how lm(S-Pol(a)) and lm(aigibi)
relate to each other. Thus, lcm representations are strictly weaker than bounded cofactor
representations. This is also witnessed by the following example.

Example 2.4.53. Consider the elements

f1 = xy + 1, f2 = yz + 1, f3 = xy − x+ z + 1 ∈ Q⟨x, y, z⟩.

Using ⪯deglex as a monomial order with x ≺lex y ≺lex z, we have an overlap ambiguity

a = (1⊗ z, x⊗ 1, f1, f2)

between f1 and f2. The cofactor representation

z − x = S-Pol(a) = (−1) · f1 + 1 · f3

is an lcm representation because lm(a) = xyz ≻ lm(f1), lm(f3), but it is not bounded as
lm(S-Pol(a)) = z ≺ lm(f1).

In Proposition 2.4.38, we have seen that a set G is a Gröbner basis of an ideal I if and
only if all nonzero elements in I have a bounded cofactor representation with respect
to G. The following diamond lemma [Ber78, Thm. 1.2] weakens this condition in two ways:
First, not all elements in the ideal have to be considered but it is enough to only look at
S-polynomials of G. Moreover, bounded cofactor representations can be replaced by the
weaker lcm representations.
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Theorem 2.4.54 (Bergman’s diamond lemma). Let G ⊆ K⟨X⟩. The following conditions
are equivalent:

1. G is a Gröbner basis of (G);

2. all ambiguities of G are resolvable;

3. all ambiguities of G are resolvable relative to ⪯;

Proof. The implications 1 =⇒ 2 =⇒ 3 are clear. To finish the proof, we show 3 =⇒ 1.
More precisely, we show the condition of Corollary 2.4.36, that is, that every element in
K⟨X⟩ has a unique normal form. By Lemma 2.4.44, the set K⟨X⟩un,G is a K-vector space.
Thus, it suffices to prove ⟨X⟩ ⊆ K⟨X⟩un,G to show that K⟨X⟩ = K⟨X⟩un,G. We show the
former by well-founded induction on words W ∈ ⟨X⟩ with respect to the well-order ⪯.

Assume inductively that all words ≺ W have a unique normal form, which implies that
all polynomials f ∈ K⟨X⟩ with lm(f) ≺ W have a unique normal form. In particular,
cagb↓G = 0 for all c ∈ K, a, b ∈ ⟨X⟩ and g ∈ G such that lm(agb) ≺ W , and so f↓G = 0
for all f ∈ IG,W ⊆ K⟨X⟩un,G by Lemma 2.4.44.

We can assume that W is reducible, as otherwise it is its own unique normal form. Let
f1, f2 ∈ K⟨X⟩irr,G be normal forms of W with respect to −→G. Since W is reducible, we
have f1, f2 ̸= W , and therefore we can expand the first reduction of W , yielding:

f1
∗←−G h1 ←−a1,g1,b1 W −→a2,g2,b2 h2

∗−→G f2

for some h1, h2 ∈ K⟨X⟩. By the definition of polynomial reduction, lm(hi) ≺W , and thus
hi ∈ K⟨X⟩un,G, for i = 1, 2, by induction hypothesis. So we have fi = hi↓G. We show that
h1 ↓G h2, which gives f1 = h1↓G = h2↓G = f2. To this end, we note that we can assume
without loss of generality that g1 and g2 are monic. Then

h2 − h1 = (W − a2g2b2)− (W − a1g1b1) = a1g1b1 − a2g2b2.

We distinguish between different cases depending on the positions of lm(g1) and lm(g2)
relative to each other in W = lm(a1g1b1) = lm(a2g2b2). Without loss of generality, we can
assume that lm(g1) begins no later than lm(g2) in W .
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Case 1 lm(g2) is fully contained in lm(g1), that is, lm(g1) = alm(g2)b for some a, b ∈ ⟨X⟩.
Then there exists the inclusion ambiguity a = (1 ⊗ 1, a ⊗ b, g1, g2) ∈ amb(G). The
respective S-polynomial is S-Pol(a) = g1 − ag2b. Because a is resolvable relative to ⪯, we
have S-Pol(a) ∈ IG,lm(g1). Consequently, h2 − h1 = a1S-Pol(a)b1 ∈ IG,a1lm(g1)b1 = IG,W ,
showing that h2 − h1

∗−→G 0, and thus, h1 ↓G h2 by Lemma 2.4.28.

Case 2 lm(g2) and lm(g1) overlap in W , that is, lm(g1)a = blm(g2). Then there exists the
overlap ambiguity a = (1⊗a, b⊗1, g1, g2) ∈ amb(G). The same reasoning as in the previous
case shows that h2 − h1 = a1S-Pol(a)b2 ∈ IG,a1lm(g1)b2 = IG,W , and thus, h2 − h1

∗−→G 0.

Case 3 lm(g1) is fully contained in a2, that is, W = a1lm(g1)wlm(g2)b2 for some w ∈ ⟨X⟩.
Then

h1 = W − a1g1b1 = −a1tail(g1)wlm(g2)b2.

Note that all terms of h1 are ≺ W , and thus contained in K⟨X⟩un,G. So Lemma 2.4.44
yields that h1 has the unique normal form h1↓G = (a1tail(g1)wtail(g2)b2)↓G. Analogously,
we see that h2↓G = (a1tail(g1)wtail(g2)b2)↓G, showing that h1↓G = h2↓G.

Resolvability relative to ⪯ is interesting from a theoretical point of view as it is the weakest
notion that allows to characterise Gröbner bases. In practical applications, however, it is
hard to verify algorithmically. Resolvability as defined in Definition 2.4.50, on the other
hand, can be checked by reducing the S-polynomial to (a not necessarily unique) normal form.
If this normal form is zero, the ambiguity is resolvable. Thus, Theorem 2.4.54 finally provides
an algorithmic test to verify whether a set G is a Gröbner basis: Check if all ambiguities
of G are resolvable by reducing the corresponding S-polynomials to normal form.

Example 2.4.55. Let K be any field and consider I = (xyx − xy) ⊴ K⟨x, y⟩. We use
⪯deglex as a monomial order with x ≺lex y and show that the reduced Gröbner basis of I is
given by

G = {xynx− xyn | n ∈ N>0} .

Clearly, G is interreduced and all its elements are monic. Furthermore, for gn = xynx−xyn,
we have

gn+1 = xygn + g1y
n(1− x)

and since g1 ∈ I, this yields inductively G ⊆ I.
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It remains to check that G is a Gröbner basis of I. Using the diamond lemma, we can do
this. Note that all ambiguities of G are overlap ambiguities of the form

am,n = (1⊗ ynx, xym ⊗ 1, gm, gn),

for m,n ∈ N>0. The corresponding S-polynomials are

S-Pol(am,n) = xym+nx− xymxyn,

which can be reduced to zero as follows

xym+nx− xymxyn −→1,gm,yn xym+nx− xym+n −→1,gm+n,1 0.

This shows that all ambiguities of G are resolvable, and consequently that G is a Gröbner
basis of I.

Remark 2.4.56. By introducing a new indeterminate z that abbreviates the product
xy and by adding the corresponding generator z − xy, one can extend the ideal I from
Example 2.4.55 to a new (in some sense equivalent) ideal I ′ in K⟨x, y, z⟩, which has a finite
Gröbner basis. We note that the same observation has also been made in [KN85]. More
precisely, using ⪯deglex with z ≺lex x ≺lex y, the ideal I ′ = (xyx− xy, z − xy) ⊴ K⟨x, y, z⟩
has the finite reduced Gröbner basis

G′ = {zx− z, xy − z, zy − z2}.

Using this finite Gröbner basis, one can solve the ideal membership problem (Problem 2.2.28)
for I, because, for any f ∈ K⟨x, y⟩, we have f ∈ I if and only if f ∈ I ′.

It is clear, however, that this trick cannot work for all finitely generated ideals, as otherwise
the word problem would be decidable. It would be interesting to find conditions on the
generators of an ideal I for this technique to work, allowing to solve the ideal membership
problem for I by finding a finite Gröbner basis of an equivalent ideal I ′. We note that we
are not aware of any such conditions.

Note that, if an ambiguity a of a set G is not resolvable, we can make it resolvable by
adding the nonzero normal form of S-Pol(a) to G. Then, to test if the enlarged set is
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a Gröbner basis, we, of course, also have to check whether all ambiguities involving the
newly added element are resolvable. If all ambiguities of the enlarged set, including those
involving the newly added element, are resolvable, then we have successfully computed a
Gröbner basis. If not, then we choose an unresolvable ambiguity and repeat this procedure.
These instructions basically describe Buchberger’s algorithm in the free algebra, given
formally in Algorithm 1. We note that the algorithm contains the notion of a fair selection
strategy, which is defined below in Definition 2.4.57.

Algorithm 1: Buchberger’s algorithm
Input: f1, . . . , fr ∈ K⟨X⟩ generating an ideal I = (f1, . . . , fr)
Output (if the algorithm terminates): G ⊆ I a Gröbner basis of I

1 G←− {f1, . . . , fr};
2 amb←− amb(G);
3 while amb ̸= ∅ :
4 select an ambiguity a ∈ amb using a fair strategy and remove it;
5 f ′ ←− result of reducing S-Pol(a) with respect to −→G;
6 if f ′ ̸= 0 :
7 G←− G ∪ {f ′};
8 amb←− amb ∪

⋃︁
g∈G amb(f ′, g);

9 return G;

The noncommutative version of Buchberger’s algorithm is essentially identical to the
commutative one, with one crucial difference: termination is not guaranteed. Since
K⟨X⟩ contains finitely generated ideals that do not admit a finite Gröbner basis (see
Example 2.4.55), we cannot expect to obtain a terminating algorithm. Instead, we have to
content ourselves with an enumeration procedure satisfying:

• termination if and only if the input ideal I admits a finite Gröbner basis (with respect
to the chosen monomial order) and returning such a finite Gröbner basis;

• otherwise, enumeration of an infinite sequence (gn)n∈N such that the infinite set
{gn | n ∈ N} forms a Gröbner basis of I;

To ensure this behaviour, the selection strategy used in line 4 is crucial. While in the
commutative case, the choice of the selection strategy can have a huge impact on the
performance of the algorithm, it has no influence on its correctness. In the noncommutative
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case, this is different: only a fair selection strategy, selecting every ambiguity that is formed
eventually, ensures correctness of the algorithm.

Definition 2.4.57. A selection strategy, choosing from an ever-changing set S an element
at a time, is called fair if every element that is present in S at some point is selected
eventually.

Example 2.4.58. Important examples of fair selection strategies are:

• A first-in first-out selection strategy, always choosing the ambiguity that has been in
the set amb the longest, is fair.

• More generally, a selection strategy that chooses the elements in amb in generations,
always selecting all ambiguities from one generation before proceeding to the next one,
is fair.

• A monomial order ⪯ is called fair if, for any w ∈ ⟨X⟩, the set {w′ ∈ ⟨X⟩ | w′ ≺ w}
is finite. A selection strategy that always chooses a ∈ amb with lm(a) minimal is fair
if the used monomial order is fair.

Using a non-fair selection strategy in Algorithm 1 can have drastic consequences, resulting
in the algorithm running indefinitely in the worst case, regardless of whether the ideal
possesses a finite Gröbner basis (under the chosen monomial order). Furthermore, in
such cases, the infinite set produced by the algorithm fails to be a Gröbner basis, see also
Example 47.6.27 and the subsequent discussion in [Mor16]. For a more in-depth discussion
on fair selection strategies, we refer to [Mor16, Sec. 47.6.3]. However, if Algorithm 1 is
used as described, employing a fair selection strategy, then it is a correct enumeration
procedure for Gröbner bases.

Theorem 2.4.59. Let f1, . . . , fr ∈ K⟨X⟩ and, for n ∈ N, let Gn be the value of G
in Algorithm 1 after n iterations of the “while” loop given f1, . . . , fr as input. Then
G = ⋃︁

n∈NGn is a Gröbner basis of I = (f1, . . . , fr). In this sense, Algorithm 1 enumerates
a Gröbner basis G of I.
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Proof. First, note that (G) = I because f1, . . . , fr ∈ G and all normal forms f ′ which
are added to G are elements of I by Lemma 2.4.29 and 2.4.51. With Theorem 2.4.54, it
remains to show that all ambiguities of G are resolvable. To this end, let a ∈ amb(G) be
an ambiguity of G. Since the selection strategy in line 4 is fair, the ambiguity a is chosen
eventually from amb, say, at the (n + 1)th iteration. Then its S-polynomial is reduced
with respect to −→Gn . If the normal form f ′ of this reduction is zero, a is resolvable with
respect to Gn, and thus also with respect to G since Gn ⊆ G. Otherwise, the normal form
is added to Gn, so that Gn+1 = Gn ∪ {f ′}, and a becomes resolvable with respect to Gn+1,
implying again that a is also resolvable with respect to G since Gn+1 ⊆ G.

We call the sets Gn produced as intermediate results in Algorithm 1 partial Gröbner bases
of the ideal I. We can also show that Algorithm 1 terminates whenever the ideal admits a
finite Gröbner basis.

Proposition 2.4.60. Let f1, . . . , fr ∈ K⟨X⟩. Algorithm 1 terminates given f1, . . . , fr as
input if and only if the ideal I = (f1, . . . , fr) admits a finite Gröbner basis (with respect to
the chosen monomial order). If the algorithm terminates, the output is a finite Gröbner
basis of I.

Proof. The “only if”-direction of the statement follows immediately from Theorem 2.4.59.
This also implies the last statement. For the “if”-direction, let H = {h1, . . . , hd} ⊆ I be a
finite Gröbner basis of I. Furthermore, for n ∈ N, let Gn be as in Theorem 2.4.59. Then
G = ⋃︁

n∈NGn is also a Gröbner basis of I. Therefore, for every i = 1, . . . , d, there exists
gi ∈ G such that lm(gi) divides lm(hi). But then the finite set G′ = {g1, . . . , gd} ⊆ G

satisfies condition 4 of Theorem 2.4.37 and is consequently also a Gröbner basis of I. Since
gi ∈ Gni for some ni ∈ N, it follows that GN with N = maxi ni is a Gröbner basis of I.
Note that GN can be computed in finite time by Algorithm 1. Furthermore, the set amb in
Algorithm 1 is finite at all times, containing after N iterations, say, M ambiguities. Since
all the respective S-polynomials will reduce to zero with respect to −→GN

by Theorem 2.4.37,
neither GN nor amb will be enlarged anymore. Thus, after M more iterations amb becomes
empty and the algorithm returns the finite Gröbner basis GN = GN+M .

In general, it is undecidable whether an ideal (f1, . . . , fr) admits a finite Gröbner basis, and
thus, whether Algorithm 1 terminates given f1, . . . , fr as input. In practice, we therefore
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add additional constraints to Algorithm 1 to guarantee termination. One way of doing
this is by keeping track of the number of iterations of the while loop and stopping the
algorithm after a prescribed number of iterations. Another way is to impose an upper
bound on the degree of the leading monomials of ambiguities that are considered. If, during
the execution of the algorithm, an ambiguity arises whose leading monomial has a larger
degree than the designated bound, this ambiguity is discarded. Both approaches ensure
termination but only yield a partial Gröbner basis of I. This might even be the case if I
has a finite Gröbner basis but we stop the algorithm too early or impose a degree bound
which is too low.

Thus, even though Gröbner bases theoretically solve the ideal membership problem in K⟨X⟩,
in practice we still face the problem that we cannot always obtain a complete (possibly
infinite) Gröbner basis. This causes the ideal membership problem to be undecidable
in general. More precisely, Algorithm 1 renders the ideal membership problem in K⟨X⟩
semi-decidable. This is a consequence of the following result.

Lemma 2.4.61. Let f, f1, . . . , fr ∈ K⟨X⟩. If f ∈ (f1, . . . , fr), then this fact can be verified
in finite time.

Proof. If f ∈ I = (f1, . . . , fr), then f can be reduced to zero by any complete (possibly
infinite) Gröbner basis of I. For this reduction to zero, however, only finitely many elements
are needed. Thus, we can use Algorithm 1 to enumerate a Gröbner basis G of I, and
whenever a new element is added to the set G, we compute a normal form of f with respect
to −→G. Because f ∈ I this will eventually yield zero, verifying the ideal membership.

Corollary 2.4.62. The ideal membership problem (Problem 2.2.28) in K⟨X⟩ is semi-decidable.

2.4.4 Gröbner bases of right ideals

A theory of Gröbner bases for one-sided ideals can be developed analogously to the two-sided
case. In this section, we recall the most important results of this theory for right ideals.
As noted before, all results also apply symmetrically to left ideals. Like in the previous
section, K is a field, X = {x1, . . . , xn} is a finite set of indeterminates, and ⪯ is a monomial
order on ⟨X⟩.
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Remark 2.4.63. When dealing with right ideals instead of two-sided ideals, the compatibility
condition of a monomial order can be weakened to right compatibility with the multiplication
in ⟨X⟩, so that w ⪯ w′ implies wb ⪯ w′b for all b, w,w′ ∈ ⟨X⟩.

To deal with right ideals, we adapt the definition of polynomial reduction from Defini-
tion 2.4.21.

Definition 2.4.64. Let b ∈ ⟨X⟩, g ∈ K⟨X⟩ \{0}, and G ⊆ K⟨X⟩. We define the following
reduction relations on K⟨X⟩:

−→ρ,g,b := −→1,g,b

−→ρ,g :=
⋃︂

b∈⟨X⟩
−→ρ,g,b

−→ρ,G :=
⋃︂

g∈G\{0}
−→ρ,g

These relations are called the polynomial right reduction relation with respect to g, b, with
respect to g, and with respect to G respectively.

By replacing two-sided ideals by right ideals, all results about polynomial reduction carry
over to polynomial right reduction. In particular, −→ρ,G is terminating and we have the
following result relating right reduction to ideal membership in right ideals.

Lemma 2.4.65. If f −→ρ,G f
′, then f − f ′ ∈ (G)ρ. Moreover, if −→ρ,G is confluent, then

f ∈ (G)ρ if and only if f ∗−→ρ,G 0.

Gröbner bases of right ideals can be defined analogous to the two-sided case.

Definition 2.4.66. Let Iρ ⊴r K⟨X⟩. A subset G ⊆ Iρ is a right Gröbner basis of I if
(G)ρ = Iρ and −→ρ,G is confluent.

Also Theorem 2.4.37 carries over to the one-sided case, with an analogous proof.

Theorem 2.4.67. Let Iρ ⊴r K⟨X⟩ and G ⊆ Iρ. The following conditions are equivalent:

1. G is a right Gröbner basis of Iρ;
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2. f ∗−→ρ,G 0 for all f ∈ Iρ;

3. (lm(Iρ))ρ = (lm(G))ρ;

4. for all nonzero f ∈ Iρ, there exists g ∈ G such that lm(g) is a prefix of lm(f);

Many properties of two-sided Gröbner bases also have a one-sided analogue. In particular,
the elimination property also holds for right ideals and right Gröbner bases. Again, the
proof is analogous to the two-sided case (see Theorem 2.4.43).

Proposition 2.4.68. Let Iρ ⊴r K⟨X,Y ⟩ and let G be a right Gröbner basis of Iρ with
respect to an elimination order for Y . Then G ∩ K⟨X⟩ is a right Gröbner basis of the
elimination ideal Iρ ∩K⟨X⟩.

We shall see that right Gröbner bases are computationally a lot simpler than two-sided
Gröbner bases. To this end, we first introduce the notion of a right interreduced set and a
reduced right Gröbner basis.

Definition 2.4.69. A set G ⊆ K⟨X⟩ is right interreduced if every g ∈ G is irreducible
with respect to −→ρ,G\{g}.

Definition 2.4.70. A right Gröbner basis G ⊆ Iρ of a right ideal Iρ ⊴r K⟨X⟩ is reduced
if G is right interreduced and all polynomials in G are monic.

Existence and uniqueness of reduced right Gröbner bases can be shown just like in the
two-sided case. However, in contrast to two-sided ideals, we can easily obtain the reduced
right Gröbner basis of a finitely generated right ideal from any finite generating set. This
is a consequence of the following two results.

Proposition 2.4.71. Let G ⊆ K⟨X⟩ be a right interreduced set that consists only of monic
polynomials. Then G is the reduced right Gröbner basis of (G)ρ.
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Proof. We only have to show that G is a Gröbner basis. We do this by proving condition 4
of Theorem 2.4.67. To this end, let f ∈ (G)ρ be nonzero. Then f can be written as
f = ∑︁d

i=1 cigibi with nonzero ci ∈ K, bi ∈ ⟨X⟩, and gi ∈ G. Because G is interreduced, no
lm(gi) is a prefix of lm(gj) for i ̸= j. Therefore, lm(gibi) ̸= lm(gjbj) for all i ̸= j, and thus,
by Lemma 2.4.19, lm(f) = maxi lm(gibi), showing that lm(gj) with j = argmaxi lm(gibi)
is a prefix of lm(f).

The following lemma follows from [Xiu12, Thm. 3.2.8].

Lemma 2.4.72. Let G ⊆ K⟨X⟩ be finite. There exists an algorithm to turn G into a
finite (right) interreduced set G′ such that (G) = (G′) (resp. (G)ρ = (G′)ρ).

Consequently, we see that every finitely generated right ideal Iρ has a finite right Gröbner
basis. In particular, the reduced right Gröbner basis of Iρ can be computed by right
interreducing any finite generating set of Iρ. Since right Gröbner bases allow to decide
ideal membership for right ideals, we arrive at the following result.

Corollary 2.4.73. The ideal membership problem for finitely generated right ideals in
K⟨X⟩ is decidable.

To end this section, we mention a different approach for computing right Gröbner bases
that relies on Gröbner bases for two-sided ideals. This approach is described in [Hey01]
and has the advantage that the (more commonly implemented) algorithms for two-sided
ideals (like Algorithm 1) can be reused without any adaptations. The following result
follows from [Hey01, Alg. 4.9] and the discussion afterwards.

Proposition 2.4.74. Let f1, . . . , fr ∈ K⟨X⟩ and let y /∈ X be a new indeterminate.
Let G be a Gröbner basis of the two-sided ideal (yf1, . . . , yfr) ⊆ K⟨X, y⟩. Then the set
{g | yg ∈ G} is a right Gröbner basis of the right ideal (f1, . . . , fr)ρ ⊆ K⟨X⟩.

More generally, the approach described in [Hey01] allows to compute right Gröbner bases
of right ideals in quotients K⟨X⟩/I of the free algebra by a two-sided ideal I.
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2.5 Many-sorted logic

Classical first-order logic is an established logic, satisfying many important theorems such as
the Löwenheim-Skolem theorem [EFT21, Thm. VI.1.1] or the compactness theorem [EFT21,
Thm. VI.2.1]. It also possesses a sound and complete calculus, see, for example, [EFT21,
Ch. IV]. Classical first-order logic can be considered unsorted, as the structures used only
consist of a single universe or domain of objects. In mathematics or computer science,
however, we often formalise statements involving different kinds of objects. The goal of
many-sorted first-order logic is to provide a natural setting for modelling such situations.

In the following sections, we recall the syntax and semantics of many-sorted first-order
logic, and we present a sound and complete calculus for it. Our main reference for this
part is [Man93], but we also include notation from [EFT21].

2.5.1 Syntax

The syntax of a logic describes the allowed symbols of the language and how they can be
composed to construct (well-formed) terms and formulas. In case of many-sorted first-order
logic, we fix the following basic sets that form our alphabet. We assume that all these sets
are pairwise disjoint.

We fix an enumerable set Sort = {s1, s2, . . . } of sorts. Each sort can describe one
type of object we want to model. We also fix enumerable sets Con = {c1, c2, . . . } and
Fun = {f1, f2, . . . } of constant symbols and function symbols respectively. These symbols
allow to model dedicated constants in structures as well as functions on them. Note
that we do not fix any predicate symbols as we will only work with one special predicate
symbol ≈ for equality, which we will interpret as identity. For a description of many-sorted
first-order logic including arbitrary predicate symbols, we refer to [Man93]. Finally, we fix
an enumerable set Var = {x1, x2, . . . } of variables.

A signature lists and describes the non-logical symbols of a logic that are relevant in a
particular context. In many-sorted logic, a signature is defined as follows.

Definition 2.5.1. A signature is a tuple Σ = (S,C, F, σ) consisting of

1. a set of sorts S ⊆ Sort;
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2. a set of constant symbols C ⊆ Con;

3. a set of function symbols F ⊆ Fun;

4. a sort function σ : Var ∪ C ∪ F →
⋃︁
n≥1 S

n satisfying the following conditions:

a) σ(x) ∈ S for all x ∈ Var ∪ C;

b) σ(f) ∈ ⋃︁n>1 S
n for all f ∈ F ;

The set S defines the relevant sorts of the signature. The sets C and F determine which
constant and function symbols the signature contains. The sort function σ assigns to
every variable and to all relevant symbols their sort. Conditions (4a) and (4b) ensure that
variables and constant symbols get mapped to a single sort s ∈ S, while function symbols
get mapped to a tuple of sorts (s1, . . . , sn, s) ∈ Sn+1.

Remark 2.5.2. For a function symbol f , we write σ(f) = s1 × · · · × sn → s instead of
σ(f) = (s1, . . . , sn, s). The quantity n is called the arity of f .

In the following, we fix a signature Σ = (S,C, F, σ). Within this signature, we can construct
terms and formulas.

Definition 2.5.3. The set Term(Σ, s) of terms of sort s ∈ S is the smallest set satisfying
the following conditions:

1. {x ∈ Var ∪ C | σ(x) = s} ⊆ Term(Σ, s);

2. if f ∈ F with σ(f) = s1 × · · · × sn → s and ti ∈ Term(Σ, si) for i = 1, . . . , n, then
f(t1, . . . , tn) ∈ Term(Σ, s);

For a term t ∈ Term(Σ, s), its sort is σ(t) := s. The set Term(Σ) of terms is given by

Term(Σ) :=
⋃︂
s∈S

Term(Σ, s).

A term is called ground if it does not contain any variables. The set of all ground terms is
denoted by Ground(Σ). Note that this set is countable.
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Example 2.5.4. Consider the signature Σ = (S,C, F, σ) with S = {s1, s2}, C = {c, d},
F = {f, g}, and σ such that

σ(c) = s1, σ(d) = s2, σ(f) = s1 × s1 → s2, σ(g) = s2 → s1

Furthermore, let x, y ∈ Var with σ(x) = s1 and σ(y) = s2.

Within this signature, the expression f(x, y) is not a well-formed term because y has the
wrong sort. Examples of well-formed terms are all the basic symbols c, d, x, y, but also
f(x, x) or g(f(g(d), c)). Note that c, d as well as g(f(g(d), c) are ground terms, while
f(x, x) is not.

Definition 2.5.5. The set Form(Σ) of formulas is the smallest set satisfying the following
conditions:

1. if t, t′ ∈ Term(Σ, s) for some s ∈ S, then t ≈ t′ ∈ Form(Σ);

2. if φ ∈ Form(Σ), then ¬φ ∈ Form(Σ);

3. if φ,ψ ∈ Form(Σ), then (φ ∗ ψ) ∈ Form(Σ) with ∗ ∈ {∨,∧,→};

4. if φ ∈ Form(Σ) and x ∈ Var, then Qx : φ ∈ Form(Σ) with Q ∈ {∃,∀};

For convenience in notation, we follow the common convention to drop the outermost
parentheses of formulas and we assume the following precedence of the logical operators:
¬,∨,∧,→, ∃, ∀. Furthermore, we abbreviate a block of consecutive equally quantified vari-
ables Qx1Qx2 . . . Qxk with Q ∈ {∃, ∀} by Qx1, x2, . . . , xk, or simply by Qx. Furthermore,
to indicate the scope of a quantifier, we also write Qx : φ(x).

We recall some standard definitions from (many-sorted) first-order logic. Formulas con-
structed in part 1 of Definition 2.5.5 are called atomic formulas. A literal is an atomic
formula or its negation. In the following, we write t ̸≈ t′ for the literal ¬(t ≈ t′). In the
last part of Definition 2.5.5, Q is called the quantifier of x and φ is the scope of Qx. Any
occurrence of the variable x in the scope φ is called bound. All non-quantified occurrences
of a variable, that is, all occurrences which are not in the scope of a quantifier, are called
free occurrences. A variable x is bound (resp. free) in a formula φ if there is a bound
(resp. free) occurrence of x in φ. We denote the set of all free variables in a formula φ
by Free(φ). If Free(φ) = ∅, then φ is a sentence. The set of all sentences is denoted by
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Sent(Σ). Furthermore, a formula without any quantifiers is called quantifier-free, and a
quantifier-free sentence is called ground. Note that a ground sentence does not contain any
variables.

Example 2.5.6. We reconsider the signature Σ = (S,C, F, σ) from Example 2.5.4, that is,
S = {s1, s2}, C = {c, d}, F = {f, g}, and σ such that

σ(c) = s1, σ(d) = s2, σ(f) = s1 × s1 → s2, σ(g) = s2 → s1

Furthermore, we let x, y ∈ Var with σ(x) = s1 and σ(y) = s2.

Within this signature, the expression f(x, x) ≈ c is not a well-formed formula because
f(x, x) and c have different sorts. Examples of well-formed formulas are f(x, x) ≈ f(g(d), c)
or ∀x : (x ̸≈ c ∨ ∃y : g(y) ≈ c). The first formula is a quantifier-free atomic formula. Note
that it contains the free variable x, and is therefore not a sentence. The second formula is a
sentence because both variables that appear in it are bound, however it is not ground as it is
not quantifier-free. An example of a ground sentence is c ≈ g(d)→ f(c, g(d)) ≈ f(g(d), c).

We denote by φ[x ↦→ t] the substitution of the variable x by the term t in the formula φ.
Such a substitution is only possible if x and t are of the same sort. The result of this
substitution is the formula obtained by the replacement of all free occurrences of x by t,
with renaming, if necessary, those bound variables in φ that coincide with a variable
appearing in t. More precisely, we have the following formal definition of the substitution
process, which we first consider for terms and then extend to formulas.

Definition 2.5.7. Let x ∈ Var and t ∈ Term(Σ) such that σ(x) = σ(t). The substitution
of x by t in a term is recursively defined as follows, where y ∈ Var, c ∈ C, and f ∈ F :

y[x ↦→ t] :=

⎧⎨⎩t if x = y

y otherwise

c[x ↦→ t] := c

f(t1, . . . , tn)[x ↦→ t] := f(t1[x ↦→ t], . . . , tn[x ↦→ t])

84



2 Preliminaries

The substitution of x by t in a formula is recursively defined as:

(s ≈ s′)[x ↦→ t] := s[x ↦→ t] ≈ s′[x ↦→ t]

(¬φ)[x ↦→ t] := ¬(φ[x ↦→ t])

(φ ∗ ψ)[x ↦→ t] := φ[x ↦→ t] ∗ ψ[x ↦→ t]

(Qy : φ)[x ↦→ t] :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qy : φ if x /∈ Free(Qy : φ)

Qy : φ[x ↦→ t] if x ∈ Free(Qy : φ), y /∈ Free(t)

Qz : (φ[y ↦→ z])[x ↦→ t] if x ∈ Free(Qy : φ), y ∈ Free(t),
and z is a new variable with
σ(z) = σ(y)

Here, t1, . . . , tn, s, s′ ∈ Term(Σ), φ,ψ ∈ Form(Σ), ∗ ∈ {∨,∧,→}, and Q ∈ {∃, ∀}.

Example 2.5.8. Consider a signature Σ containing a function symbol f : s1 × s2 → s1.
Furthermore, let x, y, z ∈ Var be such that σ(x) = σ(y) = s1 and σ(z) = s2. We have, for
example,

1. (x ≈ f(y, z))[x ↦→ f(x, z)] = f(x, z) ≈ f(y, z);

2. (∃x : x ≈ f(y, z)) [x ↦→ f(x, z)] = ∃x : x ≈ f(y, z);

3. (∃y : x ≈ f(y, z)) [x ↦→ f(x, z)] = ∃y : f(x, z) ≈ f(y, z);

4. (∃z : x ≈ f(y, z)) [x ↦→ f(x, z)] = ∃z′ : f(x, z) ≈ f(y, z′), with z′ such that σ(z′) =
σ(z) = s2;

2.5.2 Semantics

In ordinary first-order logic, formulas are assigned truth values by an interpretation in
a universe A. In many-sorted logic, we no longer have a single universe but a dedicated
domain As for each sort s ∈ S. These domains, together with constants and functions
that interpret the constant and function symbols, form a structure. Recall that we fixed a
signature Σ = (S,C, F, σ).
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Definition 2.5.9. A structure A of signature Σ is a tuple

A =
(︂
(As)s∈S , (cA)c∈C , (fA)f∈F

)︂
satisfying the following conditions:

1. (As)s∈S is a family of nonempty sets;

2. (cA)c∈C is a family of elements such that σ(c) = s implies cA ∈ As;

3. (fA)f∈F is a family of functions such that σ(f) = s1 × · · · × sn → s implies

fA : As1 × · · · ×Asn → As;

Given a structure A of signature Σ, an assignment on A is a function

a : Var→
⋃︂
s∈S

As

such that a(x) ∈ As if and only if σ(x) = s for all x ∈ Var.

Definition 2.5.10. Let A be a structure of signature Σ and let a be an assignment on A.
The pair I = (A, a) is called an interpretation.

An interpretation allows to map terms to elements in the different universes. More precisely,
the interpretation I(t) of a term t ∈ Term(Σ) is defined as

I(t) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a(x) if t = x ∈ Var

cA if t = c ∈ C

fA(I(t1), . . . , I(tn)) if t = f(t1, . . . , tn) with f ∈ F

Note that all expressions above are well-defined. In particular, if t is of sort s, then I(t) is
an element in As.
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Using interpretations of terms, we can interpret formulas. To do this, we introduce the
following notation. If a is an assignment on a structure A, x ∈ Var is a variable of sort s
and a ∈ As, then a[x ↦→ a] denotes the function

a[x ↦→ a] : Var→
⋃︂
s∈S

As,

that maps every y ̸= x to a(y) and x to a. This function is clearly also an assignment on A.
Furthermore, for I = (A, a), let I[x ↦→ a] = (A, a[x ↦→ a]).

With this, the interpretation of a formula φ ∈ Form(Σ) is the truth value I(φ) ∈ {⊤,⊥}
defined as follows:

I(t ≈ t′) := ⊤ iff I(t) = I(t′) as elements in Aσ(t)

I(¬φ) := ⊤ iff I(φ) = ⊥

I(φ ∨ ψ) := ⊤ iff I(φ) = ⊤ or I(ψ) = ⊤

I(φ ∧ ψ) := ⊤ iff I(φ) = ⊤ and I(ψ) = ⊤

I(φ→ ψ) := ⊤ iff I(φ) = ⊥ or I(ψ) = ⊤

I(∀x : φ) := ⊤ iff for all a ∈ Aσ(x) it holds that I[x ↦→ a](φ) = ⊤

I(∃x : φ) := ⊤ iff there exists some a ∈ Aσ(x) such that I[x ↦→ a](φ) = ⊤

Remark 2.5.11. Note that the equality symbol ≈ is always interpreted as the identity in
the structure A. Such structures that interpret equality as identity are called normal. We
only consider normal structures in this work.

An interpretation I is a model of a formula φ if I(φ) = ⊤. Furthermore, φ is valid
(resp. unsatisfiable) if every (resp. no) interpretation is a model of φ. Two formulas φ
and ψ are logically equivalent if they have the same models.

Similarly, an interpretation is a model of a set of formulas Φ ⊆ Form(Σ) if it is a model
of every formula in Φ, and Φ is valid (resp. unsatisfiable) if every formula in Φ is valid
(resp. unsatisfiable).

A formula φ is a semantic consequence of a set of formulas Φ, if each model of Φ is also
a model of φ. In this case, we write Φ |= φ. If φ is not a semantic consequence of Φ, we
write Φ ̸|= φ. Two formulas φ and ψ are Φ-equivalid if Φ |= φ if and only if Φ |= ψ.
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The following classical result relates the semantic consequence relation to the notion of
unsatisfiability. The first equivalence follows immediately from the definitions and the
second equivalence is the Compactness theorem for many-sorted first-order logic [Man93,
Sec. 2.5].

Proposition 2.5.12. Let Φ ⊆ Form(Σ) and φ ∈ Form(Σ). The following are equivalent:

1. Φ |= φ;

2. Φ ∪ {¬φ} is unsatisfiable;

3. there exist φ1, . . . , φr ∈ Φ such that φ1 ∧ · · · ∧ φr ∧ ¬φ is unsatisfiable;

2.5.3 Formal computations

In this section, we recall how to validate that a formula φ is a semantic consequence of
a set of formulas Φ by performing syntactic operations. Such a syntactic computation is
called a formal computation and one way to perform it is by applying certain syntactic
rules, so-called sequent rules, to the formulas at hand. Several sequent rules form a sequent
calculus.

We recall the sequent calculus LK= for many-sorted first-order logic with equality.
This calculus – for ordinary first-order logic without equality – was first introduced
by Gentzen [Gen35] and has subsequently been extended to include equality, see for exam-
ple [DV01] for further information in the unsorted case. As illustrated in [Man93, Sec. 2],
the adaptation to the many-sorted case is straightforward.

We note that there also exist other inference systems for (many-sorted) first-order logic.
We focus on the sequent calculus LK= in this work as this inference system allows a natural
translation of formal computations with formulas into polynomial computations. We refer
to Chapter 4 for further information.

A sequent is an expression of the form Γ ⊢ ∆ where Γ and ∆ are finite (possibly empty)
multisets of formulas. A sequent can be considered as an assertion of the form “whenever
all φ ∈ Γ are true, then at least one ψ ∈ ∆ is also true”. An expression of the form Γ, φ in
a sequent represents the multiset Γ ∪ {φ}. In particular, φ1, . . . , φm ⊢ ψ1, . . . , ψn means
{φ1, . . . , φm} ⊢ {ψ1, . . . , ψn}.
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Sequent rules allow us to pass from one sequent to another. The sequent calculus LK=

comprises the following sequent rules. In the following, α denotes an atomic formula, φ,ψ
are arbitrary formulas, and t, t′ are terms.

Axioms

(Ax) Γ, α ⊢ ∆, α (Ref) Γ ⊢ ∆, t ≈ t

Structural rules

(W ⊢) Γ ⊢ ∆
Γ, φ ⊢ ∆ (⊢ W) Γ ⊢ ∆

Γ ⊢ ∆, φ

(C ⊢) Γ, φ, φ ⊢ ∆
Γ, φ ⊢ ∆

(⊢ C) Γ ⊢ ∆, φ, φ
Γ ⊢ ∆, φ

Propositional rules

(¬ ⊢) Γ ⊢ ∆, φ
Γ,¬φ ⊢ ∆

(⊢ ¬) Γ, φ ⊢ ∆
Γ ⊢ ∆,¬φ

(∨ ⊢) Γ, φ ⊢ ∆ Γ, ψ ⊢ ∆
Γ, φ ∨ ψ ⊢ ∆

(⊢ ∨) Γ ⊢ ∆, φ, ψ
Γ ⊢ ∆, φ ∨ ψ

(∧ ⊢) Γ, φ, ψ ⊢ ∆
Γ, φ ∧ ψ ⊢ ∆

(⊢ ∧) Γ ⊢ ∆, φ Γ ⊢ ∆, ψ
Γ ⊢ ∆, φ ∧ ψ

(→ ⊢) Γ ⊢ ∆, φ Γ, ψ ⊢ ∆
Γ, φ→ ψ ⊢ ∆

(⊢ →) Γ, φ ⊢ ∆, ψ
Γ ⊢ ∆, φ→ ψ
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Quantification rules

(∃ ⊢) Γ, φ[x ↦→ y] ⊢ ∆ if y is a new variable with σ(y) = σ(x)Γ, ∃x : φ ⊢ ∆

(⊢ ∃) Γ ⊢ ∆, φ[x ↦→ t] if t is a term with σ(t) = σ(x)Γ ⊢ ∆, ∃x : φ

(∀ ⊢) Γ, φ[x ↦→ t] ⊢ ∆ if t is a term with σ(t) = σ(x)Γ,∀x : φ ⊢ ∆

(⊢ ∀) Γ ⊢ ∆, φ[x ↦→ y] if y is a new variable with σ(y) = σ(x)Γ ⊢ ∆, ∀x : φ

Equational rule

(Sub) Γ, φ[x ↦→ t′], t ≈ t′ ⊢ ∆ if σ(x) = σ(s)
Γ, φ[x ↦→ t], t ≈ t′ ⊢ ∆

A rule without a sequent on top is called an axiom. Any statement that can be derived from
the axioms using the rules stated above, is provable by a formal computation (cf. [EFT21,
Def. IV.1.1]).

Definition 2.5.13. A formula φ is provable by a formal computation from a set Φ of
formulas if there exists a finite subset {φ1, . . . , φn} ⊆ Φ such that the sequent φ1, . . . , φn ⊢ φ
is derivable by the rules of the sequent calculus LK= stated above starting from axioms. In
this case, we write Φ ⊢ φ.

The following theorem recalls that LK= is correct and complete. Correctness refers to the
fact that every formal computation yields a semantic consequence and completeness states
that every semantic consequence is provable by a formal computation. While the former
follows easily from the definition of the sequent rules, the latter is essentially the result of
Gödel’s completeness theorem [Göd30], see also [Man93, Sec. 2] for the many-sorted case.

Theorem 2.5.14. Let Φ ⊆ Form(Σ) and φ ∈ Form(Σ). Then Φ |= φ if and only if
Φ ⊢ φ.
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3 Noncommutative signature Gröbner bases

For commutative polynomials, the latest generation of Gröbner basis algorithms are
so-called signature-based algorithms, heralded by the F5 algorithm [Fau02]. This class of
algorithms was the subject of extensive research in the past 20 years, a survey of which
can be found in [EF17]. By using the concept of signatures, these algorithms compute, in
addition to a Gröbner basis, some information on how the polynomials in that basis were
computed. Using this information, the algorithms are able to identify relations between the
computed polynomials, and use them to predict and avoid reductions to zero, leading to a
significant performance improvement. This approach, which improves upon the earlier idea
of tracing syzygies [MMT92], has had a drastic impact on the field, leading to advances also
in other algorithmic tools such as staggered linear bases [HJ20; HM23], initially introduced
in [GM86].

Beyond their original purpose of optimising the algorithms, it was more recently observed
that the data of signatures also has direct applications. For instance, they have been used
in computational geometry [Ede+23], and they allow to perform a number of operations
on the syzygy module of a family of polynomials, without the computational overhead of
module Gröbner basis computations. Specifically, the data encoded in signatures allows to
reconstruct cofactor representations of the Gröbner basis elements in terms of the input
polynomials as well as a Gröbner basis of the input’s syzygy module [GVW16].

This potential has led to signature Gröbner bases being generalised beyond commutative
polynomials over fields, for instance to polynomial ideals over rings [EPP17; FV21] or to
one-sided ideals in solvable noncommutative algebras [Sun+12]. In [Kin14], a noncom-
mutative version of the F5 algorithm for right modules over quotients of path algebras
was described and used to efficiently compute bases of Loewy layers. Additionally, recent
independent work [CLV21] introduced analogous definitions to those in Section 3.2 for
the free algebra and established lower bounds for the complexity of the set of leading
monomials of the module of syzygies, in the sense of the Chomsky hierarchy.
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In this chapter, we extend the notion of signature Gröbner bases to noncommutative
polynomials in the free algebra, and more generally, to mixed polynomials that involve both
commutative and noncommutative variables. More precisely, we consider the mixed algebra
R[X]⟨Y ⟩ = R[x1, . . . , xk]⟨y1, . . . , yn⟩ over a commutative principal ideal domain R. This
structure was first studied in [MZ98] and arises, for example, when introducing auxiliary
variables to a free algebra, such as homogenisation variables or tag variables for computing
the intersection of ideals or the homogeneous part of an ideal (see Section 5.3.1, 5.3.3).
Furthermore, the mixed algebra provides a natural setting for studying many finitely pre-
sented structures, such as Iwahori-Hecke algebras [Hum90; LMA23] or (discrete) Heisenberg
groups [LS15]. Moreover, by considering coefficient rings instead of fields, computations
over Z become possible, which can be considered universal as they remain valid over
any ring.

A theory of classical Gröbner bases in the mixed algebra can be developed analogously to
the free algebra. However, since the coefficient domain is now a ring, different notions of
Gröbner bases exist, namely weak and strong ones, corresponding to different notions of
reductions. Of the two, strong bases and reductions are the most similar to fields and the
ones we will focus on in the following. Weak Gröbner bases in the free algebra were studied
in [Pri96], for example. For the theory of strong Gröbner bases in the mixed algebra over
the ring of integers Z or a field, we refer to [MZ98].

After formally introducing the mixed algebra and the concept of signatures in Section 3.1,
we define signature Gröbner bases in this setting in Section 3.2. To facilitate understanding,
we initially focus, for their computation, on the simpler case of signature Gröbner bases in
the free algebra over a coefficient field. This approach allows us to become familiar with
the relevant notions and algorithms in a less complex setting before transitioning to full
generality. Additionally, the free algebra over a coefficient field enjoys significant relevance,
justifying a separate discussion of this case.

Therefore, we present in Section 3.3 a generalisation of the commutative signature cover
criterion [GVW16] to the free setting. Building upon this criterion, we state Algorithm 3
for computing signature Gröbner bases in the free algebra. We also extend classical
signature-based elimination criteria such as the syzygy criterion, the F5 criterion, and the
singular criterion, in order to use signatures to enhance the efficiency of the algorithms.
Moreover, we show how, starting from a signature Gröbner basis, cofactor representations
of the basis elements can be reconstructed, and how a basis of the syzygy module of the
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generators can be obtained. We note that, while the results of this section are published
in [HV22], the presentation here is new, using the language and techniques from our
joint work [HV23b]. In particular, in [HV22], signature Gröbner bases are characterised
essentially via reductions to zero. In contrast, here we use the cover criterion for that,
which not only simplifies the presentation but also leads to a more general algorithm
compared to [HV22] (see Remark 3.3.15).

More precisely, for introductory purposes, we initially present Algorithm 2 for computing
labelled Gröbner bases. However, this algorithm is impractical due to its expensive module
computations. Replacing those computations with signature manipulations naturally leads
to Algorithm 3, which also includes the signature-based criteria. This algorithm can be
considered as a generic template for signature-based algorithms in the free algebra. Finally,
we introduce Algorithms 4 and 5, which allow to reconstruct the output of Algorithm 2
using only the signatures.

In Section 3.4, we then present the theory of signature Gröbner bases in the mixed algebra
in full generality. As in the free case, our main result is a generalisation of the cover
criterion, which allows us to state Algorithm 6 for computing signature Gröbner bases in
the mixed algebra. More precisely, Algorithm 6 allows to compute labelled Gröbner bases
in the mixed algebra, but an adaptation to signature Gröbner bases is straightforward and
works analogous to the free case, which is discussed in detail in Section 3.3.3. Notably, the
cover criterion has also been adapted in the commutative setting to coefficient rings [FV21].
The results of this section are published in [HV23b].

A difficulty specific to the case of noncommutative polynomials is that some ideals do not
possess a finite signature Gröbner basis, even if they have a finite Gröbner basis. Addition-
ally, the module of syzygies of the generators typically does not admit a finite Gröbner basis.
While this is an inherent limitation, we prove that our algorithms nevertheless correctly
enumerate a signature Gröbner basis, providing a Gröbner basis for the input ideal, as well
as an effective description of the module of syzygies of the input polynomials.

We also provide (prototype) implementations of the algorithms presented in this chapter for
SageMath. More precisely, the algorithms for the free algebra presented in Section 3.3 are
implemented in the package signature_gb, which is described in more detail in Section 6.3,
and a prototype implementation of Algorithm 6 in the mixed algebra is available at

https://clemenshofstadler.com/software/,
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but, so far, only supports computations over coefficient fields.

In Section 3.5, we show empirically that the use of signatures allows to drastically reduce
the number of S-polynomials considered and reduced to zero. First timings also indicate
that, as in the commutative case, noncommutative signature-based algorithms can lead to
an acceleration of Gröbner basis computations in the free algebra. Additionally, we provide
experimental data indicating that the mixed algebra setting provides a clear advantage
over other (more naive) approaches for computing noncommutative (signature) Gröbner
bases involving some commutative variables.

3.1 Basics

In this section, we recall the definition of the mixed algebra and the free bimodule over
the mixed algebra as well as of Gröbner bases in both of these settings. Additionally, we
introduce the central concept of signatures.

3.1.1 The mixed algebra

In the following, R is a commutative ring (with unity) and X = {x1, . . . , xk}, Y =
{y1, . . . , yn} are disjoint sets of indeterminates. First, we define the main algebraic structure
of interest in this chapter, the mixed algebra. To this end, we first introduce mixed
monomials.

Definition 3.1.1. The set of (commutative) monomials in X is denoted by [X], that is,

[X] = {xa = xa1
1 . . . xak

k | a = (a1, . . . , ak) ∈ Nk}.

A mixed monomial is a product xaw with xa ∈ [X] a (commutative) monomial in X and
w ∈ ⟨Y ⟩ a (noncommutative) word in Y . The set of all mixed monomials is denoted by
[X]⟨Y ⟩.
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The set of mixed monomials becomes a (noncommutative) monoid with a component-wise
multiplication of the commutative and noncommutative parts, that is, for xav,xbw ∈
[X]⟨Y ⟩, we have (︃

xav

)︃
·
(︃

xbw

)︃
= xa+bvw.

With this, the mixed algebra can be defined as the monoid ring of the monoid of mixed
monomials over the ring R.

Definition 3.1.2. The monoid ring A = R[X]⟨Y ⟩ of [X]⟨Y ⟩ over R is called the mixed
algebra on X and Y over R. Elements in A are called (mixed) polynomials.

Remark 3.1.3. The mixed algebra can also be considered as the quotient

A = R⟨X,Y ⟩⧸([X,X ∪ Y ]),

where [U, V ] = {uv − vu | u ∈ U, v ∈ V } is the set of commutator relations between two
sets U and V .

Note that, if X = ∅, we simply recover the definition of the free algebra on Y over R. Thus,
the mixed algebra can be considered as a generalisation of the free algebra. Furthermore,
there are canonical monomorphisms from the commutative polynomial ring R[X] as well
as from the free algebra R⟨Y ⟩ into A. So we can consider these sets as subrings of A.

Each element f ∈ A is of the form

f =
∑︂

xaw∈[X]⟨Y ⟩
ca,wxaw,

with only finite many nonzero ca,w ∈ R. Note that, in this algebra, xif = fxi for all f ∈ A,
but in general yif ̸= fyi.
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Example 3.1.4. Consider the mixed algebra A = Z[s, t]⟨x, y⟩. For f1 = s2xy + styx,
f2 = s2xy − 2t2yx ∈ A, we can compute

f1 + f2 = 2s2xy + styx− 2t2yx

f1f2 = (s2xy + styx)(s2xy − 2t2yx) = s4xyxy − 2s2t2xyyx+ s3tyxxy − 2st3yxyx

f2f1 = (s2xy − 2t2yx)(s2xy + styx) = s4xyxy + s3txyyx− 2s2t2yxxy − 2st3yxyx

Note that f1f2 ̸= f2f1.

A term in A is the product of a nonzero coefficient in R and a mixed monomial. We denote
by T(A) the set of all terms of A. Divisibility of terms in A is defined component-wise:
given nonzero c, d ∈ R and xav,xbw ∈ [X]⟨Y ⟩, we say

cxav divides dxbw :⇐⇒ c divides d, xa divides xb, and v is a subword of w.

Monomial orders on mixed monomials can be defined analogously to the case of noncom-
mutative monomials (see Definition 2.4.1).

Definition 3.1.5. A total order ⪯ on [X]⟨Y ⟩ is called a monomial order if it satisfies the
following two conditions:

1. m ⪯ m′ implies amb ⪯ am′b for all a, b,m,m′ ∈ [X]⟨Y ⟩;

2. every nonempty subset of [X]⟨Y ⟩ has a least element;

Remark 3.1.6. In condition 1 of Definition 3.1.5, it is, in fact, enough to consider
b ∈ ⟨Y ⟩.

For ease of notations, we extend the definition of monomial and term to contain 0, which
is assumed to be smaller than all other elements. Furthermore, the notions of leading
monomial, leading coefficient, and leading term are defined analogously to the free case
(see Definition 2.4.17).
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Example 3.1.7. Let ⪯X be a monomial order on [X] and ⪯Y be a monomial order on ⟨Y ⟩.
The following are examples of monomial orders on [X]⟨Y ⟩:

• xav ⪯ xbw :⇐⇒
(︂
xa ≺X xb

)︂
or

(︂
xa = xb and v ⪯Y w

)︂
;

• xav ⪯ xbw :⇐⇒ (v ≺Y w) or
(︂
v = w and xa ⪯X xb

)︂
;

Additionally, any degree function deg : [X]⟨Y ⟩ → Rm on [X]⟨Y ⟩ can be used as a first
comparison criterion before using any of the orders above.

In the following, we gather the most important results about (strong) Gröbner bases in
the mixed algebra over a principal ideal domain R. We assume that R is computable, in
the sense that all arithmetic operations, including gcd-computations and the computation
of Bézout coefficients, can be performed effectively. Classical examples of such rings are
the integers Z or the univariate polynomial ring K[x] over a field K, with the extended
Euclidean algorithm.

We start by adapting the notion of polynomial reduction to A. To this end, we fix a
monomial order ⪯ on [X]⟨Y ⟩.

Definition 3.1.8. Let a, b ∈ [X]⟨Y ⟩, g ∈ A \ {0}, and G ⊆ A. We define the following
reduction relations on A:

f −→a,g,b f
′ :⇐⇒ all the following conditions hold:

• lm(agb) ∈ supp(f);

• lc(g) divides coeff(f, lm(agb));

• f ′ = f − coeff(f, lm(agb))
lc(g) agb;

−→g :=
⋃︂

a,b∈⟨X⟩
−→a,g,b

−→G :=
⋃︂

g∈G\{0}
−→g

The relations introduced above differ in two ways from the polynomial reduction relations
in Definition 2.4.21. First, noncommutative polynomials and monomials are replaced
by mixed polynomials and monomials. Moreover, the second condition in the definition
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of −→a,g,b is new. This condition arises due to the fact that A = R[X]⟨Y ⟩ is defined over a
coefficient ring, while Definition 2.4.21 considers the free algebra over a coefficient field. In
the latter case, divisibility of coefficients is trivially fulfilled in all cases. Thus, if X = ∅
and if R is a field, we recover Definition 2.4.21.

Remark 3.1.9. When working with (commutative, noncommutative, or mixed) polynomials
over coefficient rings, several notions of reductions exist (weak, strong, and also modular
reductions by the coefficients), see, for example, [AL94, Ch. 4] or [Mor16, Ch. 46]. In this
work, we focus on strong reductions requiring divisibility of the leading coefficients.

Like in the free case, a reduction f −→G f
′ is a top reduction if lm(f) ≻ lm(f ′) and a tail

reduction otherwise. Furthermore, recall that ∗−→G denotes the reflexive, transitive closure
of −→G. We also note that termination of −→G can be proven like in the free case (see
Proposition 2.4.25 and Corollary 2.4.26).

In the following, we introduce Gröbner bases in the mixed algebra via reducibility to
zero. We note that a Gröbner theory could also be developed analogous to Section 2.4.3
using confluence of the reduction relation as the defining property. The two definitions are
equivalent, and the proof is the same as in the classical case. Here, however, we stick to
the following definition, which shall prove more useful.

Definition 3.1.10. Let I ⊴ A. A subset G ⊆ I is a (strong) Gröbner basis of I if f ∗−→G 0
for all f ∈ I.

Proposition 3.1.11. Let I ⊴ A. A subset G ⊆ I is a Gröbner basis of I if and only if,
for all nonzero f ∈ I, there exists g ∈ G such that lt(g) divides lt(f).

The proof of Proposition 3.1.11 is analogous to that of the corresponding statements in
Theorem 2.4.37. We nevertheless include it here for the convenience of the reader.

Proof. For the “if”-direction, assume, for contradiction, that there exists f ∈ I \ {0} which
cannot be reduced to zero by G. Without loss of generality, we can assume that f is
irreducible with respect to −→G. By assumption, there exists g ∈ G such that lt(g) divides
lt(f), but then f is (top) reducible by g – a contradiction.

98



3 Noncommutative signature Gröbner bases

For the “only if”-direction, let f ∈ I \ {0} be arbitrary. By assumption, f ∗−→G 0, but this
is only possible if f is top reducible by G, that is, if there exist c ∈ R, a, b ∈ [X]⟨Y ⟩, and
g ∈ G such that lt(f) = lt(cagb), showing that lt(f) is divisible by lt(g).

3.1.2 Free bimodule over the mixed algebra

Let A = R[X]⟨Y ⟩ be the mixed algebra on X = {x1, . . . , xk} and Y = {y1, . . . , yn} over the
commutative principal ideal domain R. For r ∈ N>0, we considered the free A-bimodule
(see Definition 2.2.45)

Σ = (A⊗Z(A) A)(E)

on the set E = {ε1, . . . , εr} centralising the center Z(A) of A. Note that Z(A) = R[X] if
|Y | ≠ 1 and, if Y = {y}, then Z(A) = A, as, in this case, A = R[X]⟨y⟩ = R[X, y].

Recall that elements in this bimodule are of the form

α =
r∑︂
i=1

⎛⎝ di∑︂
j=1

pi,j ⊗ qi,j

⎞⎠ εi,
with pi,j , qi,j ∈ A, which we also write as

α =
r∑︂
i=1

di∑︂
j=1

pi,jεiqi,j .

Note that Σ is a free R-module with basis

M(Σ) := {aεib | a, b ∈ [X]⟨Y ⟩, 1 ≤ i ≤ r} . (3.1)

Remark 3.1.12. The representation (3.1) of M(Σ) lists elements more than once, as

xavεix
bw = xa+bvεiw = vεix

a+bw = xbvεix
aw.

If |Y | ≠ 1, a representation of M(Σ) in which every element occurs precisely once, is given
by

M(Σ) = {xavεiw | xa ∈ [X], v, w ∈ ⟨Y ⟩, 1 ≤ i ≤ r} .
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Every nonzero α ∈ Σ can be written uniquely as α = ∑︁d
i=1 ciµi with nonzero ci ∈ R

and pairwise different µi ∈ M(Σ). We call M(Σ) the set of (bi)module monomials of Σ.
Furthermore, the set of (bi)module terms of Σ is defined as

T (Σ) := {cµ | c ∈ R,µ ∈M(Σ)} .

Divisibility of nonzero terms in Σ is defined as follows: let c, d ∈ R be nonzero and
aεib, a

′εjb
′ ∈M(Σ) be module monomials. We assume that all commutative variables have

been collected on the left-hand sides, that is, b, b′ ∈ ⟨Y ⟩ if |Y | > 1 and b, b′ = 1 otherwise.
Then we say

caεib divides da′εjb
′ :⇐⇒ c divides d, i = j, ∃a′′, b′′ ∈ [X]⟨Y ⟩ : a′ = a′′a and b′ = bb′′,

Just like a monomial order allows to compare monomials, a (bi)module order on M(Σ)
allows to compare module monomials.

Definition 3.1.13. A total order ⪯Σ on M(Σ) is called a (bi)module order if it satisfies
the following two conditions:

1. µ ⪯ σ implies aµb ⪯Σ aσb for all µ, σ ∈M(Σ) and a, b ∈ [X]⟨Y ⟩;

2. every nonempty subset of M(Σ) has a least element;

Many classical module orders arise as extensions of a monomial order. We mention a few
important ones.

Example 3.1.14. In the following, tuples p = (p1, . . . , pm) and q = (q1, . . . , qm) are
compared lexicographically from left to right, that is, p ≤ q if pi = qi for all i = 1, . . . ,m or
pi < qi for the smallest index 1 ≤ i ≤ m where pi and qi differ. In this process, if pi and qi
are monomials, they are compared using a fixed monomial order. Let aεib, a′εjb

′ ∈M(Σ)
be module monomials. We assume that all commutative variables have been collected on
the left-hand sides, that is, b, b′ ∈ ⟨Y ⟩ if |Y | > 1 and b, b′ = 1 otherwise.

1. The position-over-term order ⪯PoT is defined by:

aεib ⪯PoT a′εjb
′ :⇐⇒ (i, a, b) ≤ (j, a′, b′).
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2. The term-over-position order ⪯ToP is defined by:

aεib ⪯ToP a
′εjb

′ :⇐⇒ (a, b, i) ≤ (a′, b′, j).

For the following orders, we fix, for each basis element εi, a nonzero polynomial fi ∈ A.

3. The degree-over-position-over-term order ⪯DoPoT is defined by:

aεib ⪯DoPoT a′εjb
′ :⇐⇒

(︁
deg(afib), i, a, b

)︁
≤
(︁

deg(a′fjb
′), j, a′, b′)︁.

4. The degree-over-term-over-position order ⪯DoToP is defined by:

aεib ⪯DoToP a
′εjb

′ :⇐⇒
(︁

deg(afib), a, b, i
)︁
≤
(︁

deg(a′fjb
′), a′, b′, j

)︁
.

We fix a module order ⪯Σ on M(Σ). For ease of notation, we extend ⪯Σ to M(Σ) ∪ {0}
and set 0 ≺Σ µ for all µ ∈M(Σ).

Definition 3.1.15. Let α = ∑︁d
i=1 ciµi with nonzero ci ∈ R and pairwise different µi ∈

M(Σ). The support of α is supp(α) = {µ1, . . . , µd}. For α ̸= 0, the signature monomial
sm(α) of α is the ⪯Σ-maximal element in supp(α) and the signature coefficient sc(α) of α
is the coefficient of sm(α). For α = 0, we define sc(0) = sm(0) = 0. The signature sig(α)
of α is sig(α) = sc(α) · sm(α).

Remark 3.1.16. We define the signature sig(α) of a module element α ∈ Σ, which is
different to the original (commutative) definition of a signature. Initially, signatures were
looked at from a polynomial point of view, and therefore, signatures of polynomials were
defined [Fau02]. We refer to Remark 3.1.22 for further information on the original definition
of signatures, see also [EF17, Rem. 2.1]. Our notion of signature is a noncommutative
adaptation of the concept first introduced in [GGV10]. Furthermore, we note that our
signatures are terms, and thus, also include a coefficient. This inclusion is motivated by
our consideration of signature Gröbner bases over coefficient rings, and was also done in
the commutative setting, see [FV21].

One immediate consequence of our definition of signatures is the following lemma.
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Lemma 3.1.17. If α ∈ Σ, a, b ∈ [X]⟨Y ⟩, and c ∈ R, then sig(caαb) = casig(α)b.

Note that the signature consists of a coefficient and a module monomial. Thus, to easily
compare signatures, we extend ⪯Σ to a total preorder on nonzero terms.

Definition 3.1.18. Let µ, σ ∈M(Σ) and c, d ∈ R \ {0}. The terms cµ and dσ are similar,
denoted by cµ ≃ dσ, if µ = σ. Furthermore, we write cµ ⪯Σ dσ if µ ≺Σ σ or cµ ≃ dσ.

To define Gröbner bases in Σ, we adapt the reduction relation to this setting.

Definition 3.1.19. Let a, b ∈ [X]⟨Y ⟩, β ∈ Σ \ {0}, and H ⊆ Σ. We define the following
reduction relations on Σ:

α −→a,β,b α
′ :⇐⇒ all the following conditions hold:

• sm(aβb) ∈ supp(α);

• sc(β) divides coeff(α, sm(aβb));

• α′ = α− coeff(α, sm(aβb))
sc(β) aβb;

−→β :=
⋃︂

a,b∈[X]⟨Y ⟩
−→a,β,b

−→H :=
⋃︂

β∈H\{0}
−→β

The relations introduced above can be compared to those of Definition 3.1.8; the main
difference is that mixed polynomials are replaced by bimodule elements, which also requires
to exchange notions like leading coefficient and monomial by the corresponding signature
analogues.

Analogous to the polynomial case, a reduction α −→H α′ is called a top reduction if
sig(α) ≻Σ sig(α′) and a tail reduction otherwise. Termination of −→H can be proven like in
the polynomial case (see Proposition 2.4.25 and Corollary 2.4.26).

Gröbner bases in Σ can be defined just like in the mixed algebra via reducibility to zero.
As noted in the previous section, a definition using confluence of the reduction relation
is also possible and equivalent to ours, however, for the present application less practical.
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Furthermore, since signature-based algorithms allow to compute Gröbner bases of the
syzygy module in a very structured way, we also introduce the notion of Gröbner bases up
to a signature σ.

Definition 3.1.20. Let M ⊆ Σ be an A-subbimodule. A subset H ⊆M is a Gröbner basis
of M up to signature σ ∈ T (Σ) if α ∗−→H 0 for all α ∈M with sig(α) ≺Σ σ. Furthermore,
H is a Gröbner basis of M if α ∗−→H 0 for all α ∈M .

Proposition 3.1.21. Let M ⊆ Σ be an A-subbimodule. A subset H ⊆ M is a Gröbner
basis of M if and only if, for all nonzero α ∈M , there exists β ∈ H such that sig(β) divides
sig(α).

The proof of Proposition 3.1.21 is a direct adaptation of that of Proposition 3.1.11. We
nevertheless include it here for the convenience of the reader.

Proof. For the “if”-direction, assume, for contradiction, that there exists α ∈ M \ {0}
which cannot be reduced to zero by H. Without loss of generality, we can assume that
α is irreducible with respect to −→H . By assumption, there exists β ∈ H such that sig(β)
divides sig(α), but then α is (top) reducible by β – a contradiction.

For the “only if”-direction, let α ∈M \ {0} be arbitrary. By assumption, α ∗−→H 0, but this
is only possible if α is top reducible by H, that is, if there exist c ∈ R, a, b ∈ [X]⟨Y ⟩, and
β ∈ H such that sig(α) = sig(caβb), showing that sig(α) is divisible by sig(β).

3.1.3 Signature and labelled polynomials

In this section, we relate the mixed algebra A to the free A-bimodule Σ introduced
in the previous section. More precisely, in order to encode relations between a family
(f1, . . . , fr) ∈ Ar of polynomials in A generating an ideal I = (f1, . . . , fr), we consider the
map

· : Σ→ I, α =
r∑︂
i=1

di∑︂
j=1

pi,jεiqi,j ↦→ α :=
r∑︂
i=1

di∑︂
j=1

pi,jfiqi,j .
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Remark 3.1.22. The original definition of signatures given in [Fau02] uses the map ·
and looks as follows: given a nonzero polynomial f ∈ I, its signature is uniquely defined as
min{sm(α) | α = f}. Note that signatures were originally defined for polynomials, while
we use signatures of module elements. Furthermore, originally, signatures did not contain
a coefficient, which was due to the fact that only coefficient fields were considered.

The following lemma follows immediately from the definition.

Lemma 3.1.23. The map · is a surjective A-bimodule homomorphism.

Using the map ·, we can relate the elements in an ideal I = (f1, . . . , fr) ⊴ A to their
module representations in Σ. To this end, we adapt notation from [Sun+12].

Definition 3.1.24. We denote by f [α] a pair (f, α) ∈ I × Σ with f = α and refer to it as
a labelled polynomial. Furthermore, we denote by f (σ) a pair (f, σ) ∈ I × T (Σ) such that
there exists f [α] with sig(α) = σ and refer to it as a signature polynomial.

We denote by I [Σ] and I(Σ) the set of all labelled polynomials and the set of all signature
polynomials respectively, that is,

I [Σ] :=
{︂
f [α] | α ∈ Σ, f = α

}︂
⊆ I × Σ,

I(Σ) :=
{︂
f (σ) | ∃f [α] ∈ I [Σ] : sig(α) = σ

}︂
⊆ I × T (Σ).

We refer to I [Σ] and I(Σ) as the labelled module and the signature module respectively
generated by f1, . . . , fr.

Remark 3.1.25. Different families of generators of the same ideal I ⊴ A lead to different
sets I [Σ]. More precisely, given I [Σ], the family of generators of I used in the construction
can be recovered: fi is the polynomial part of the element f [εi]

i in I [Σ].

Lemma 3.1.23 implies that I [Σ] is indeed an A-bimodule with component-wise addition
and scalar multiplication, that is, for f [α], g[β] ∈ I [Σ], c ∈ R, and a, b ∈ [X]⟨Y ⟩ we have

f [α] + g[β] = (f + g)[α+β], caf [α]b = (cafb)[caαb].

Also, by definition, f [α] = g[β] if and only if f = g and α = β.

104



3 Noncommutative signature Gröbner bases

We extend the definition of signature to labelled and signature polynomials and define, for
f [α] ∈ I [Σ] and f (σ) ∈ I(Σ), sig(f [α]) = sig(α) and sig(f (σ)) = σ respectively.

The motivation for using the notation f [α] (resp. f (σ)) is that the polynomial f , rather than
the module element α (resp. the module term σ), is the main object of interest. Furthermore,
the reason for introducing both labelled polynomials and signature polynomials is that
the former allow to present the theory in a simpler fashion and lead to simpler proofs.
However, in an actual implementation of a signature-based algorithm, keeping track of the
full module representation stored in a labelled polynomial causes a significant overhead
in terms of memory consumption and overall computation time. Fortunately, we will see
that all theoretical results only depend on information encoded in signature polynomials.
Consequently, when implementing a signature-based algorithm, one would only work
with signature polynomials. This reduces the computational overhead to a minimum.
Additionally, we note that the reconstruction techniques discussed in Section 3.3.3 allow
to efficiently recover all information encoded in labelled polynomials from the signature
polynomials computed by signature-based algorithms.

In what follows, we will sometimes work with sets of polynomials, sometimes with sets of
labelled polynomials and sometimes with sets of signature polynomials. To be able to better
distinguish between these cases, we denote subsets of A by capital letters (for example,
G ⊆ A) and subsets of I [Σ] and I(Σ) by capital letters with the additional exponent [Σ] and
(Σ) respectively (for example, G[Σ] ⊆ I [Σ] and G(Σ) ⊆ I(Σ)).

To end this section, we introduce the notion of syzygies of a labelled module I [Σ]. To this
end, we fix a family of polynomials (f1, . . . , fr) ∈ Ar and let I [Σ] be the labelled module
generated by f1, . . . , fr.

Definition 3.1.26. A syzygy of I [Σ] is any element γ ∈ Σ such that 0[γ] ∈ I [Σ]. The set
of all syzygies of I [Σ] is denoted by Syz(I [Σ]).

In other words, a syzygy of I [Σ] is a bimodule element γ such that γ = 0. Thus, any syzygy
of I [Σ] encodes a relation between the generators f1, . . . , fr. Some of these relations are
trivial, originating from the fact that fmg − fmg = 0 for all f, g ∈ A and m ∈ ⟨Y ⟩. This
leads to the following definition.
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Definition 3.1.27. Let f [α], g[β] ∈ I [Σ]. For all m ∈ ⟨Y ⟩, the syzygy αmg − fmβ is called
a trivial syzygy between f [α] and g[β]. For G[Σ] ⊆ I [Σ], the set of all trivial syzygies of G[Σ]

is
Triv(G[Σ]) :=

{︂
αmg − fmβ

⃓⃓
f [α], g[β] ∈ G[Σ],m ∈ ⟨Y ⟩

}︂
.

We note that Syz(I [Σ]) forms an A-subbimodule of Σ.

Remark 3.1.28. Note that trivial syzygies are defined only for purely noncommutative
middle parts m ∈ ⟨Y ⟩. While they could also be defined more generally for mixed monomials
m = xaw ∈ [X]⟨Y ⟩, any such element is always a multiple of a trivial syzygy with purely
noncommutative middle part, since

αmg − fmβ = αxawg − fxawβ = xa (αwg − fwβ) .

Therefore, it suffices to focus solely on trivial syzygies as defined in Definition 3.1.27.

3.2 Signature and labelled Gröbner bases

In this section, we introduce the notion of signature Gröbner bases of ideals in the mixed
algebra A. As an intermediate notion, we define the concept of labelled Gröbner bases,
which are Gröbner bases keeping track of cofactor representations of each element with
respect to the generators. As in the commutative case, signature Gröbner bases are defined
using a more restrictive notion of polynomial reduction, called sig-reduction. Moreover, we
also define and characterise noncommutative minimal signature/labelled Gröbner bases.
We note that all notions introduced here are straightforward generalisations of the same
notions for commutative polynomials. The key differences between the commutative and
noncommutative case will become apparent in Sections 3.3 and 3.4.

We fix (f1, . . . , fr) ∈ Ar and let I [Σ] be the labelled module generated by f1, . . . , fr.
Furthermore, we fix a monomial order on [X]⟨Y ⟩ and a module order on M(Σ), both of
which will be denoted by the same symbol ⪯. It will be clear from the context which order
is meant, as we will denote elements from Σ by Greek letters and elements from A by
Roman letters.
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In order to discuss signature Gröbner bases, we adapt the notion of polynomial reduction
to labelled polynomials. Recall that we focus on strong reductions requiring divisibility of
the leading coefficients. This leads to the following definition of (strong) sig-reduction.

Definition 3.2.1. Let f [α], g[β] ∈ I [Σ] with g ̸= 0. We say that f [α] is (strongly)
sig-reducible by g[β] if there exist a, b ∈ [X]⟨Y ⟩ such that the following conditions hold:

• lm(agb) ∈ supp(f);

• lc(g) divides coeff(f, lm(agb));

• sig(aβb) ⪯ sig(α);

The corresponding sig-reduction is

f ′[α′] = f [α] − coeff(f, lm(agb))
lc(g) ag[β]b,

which we denote by f [α] −→g[β] f ′[α′].

A sig-reduction is a top sig-reduction if lm(f ′) ≺ lm(f), and a tail sig-reduction otherwise.
Furthermore, a sig-reduction is called singular if sig(α′) ≺ sig(α), and regular if sig(α′) =
sig(α).

Remark 3.2.2. The first two conditions in Definition 3.2.1 mean that we perform classical
polynomial reduction, which implies that lm(f ′) ⪯ lm(f). The last condition ensures that
this inequality also transfers over to Σ, so that sig(α′) ⪯ sig(α), with equality if and only
if the sig-reduction is regular. Note that there are also sig-reductions which are neither
regular nor singular; in this case sig(α′) ≃ sig(α). Furthermore, if R is a field, then the
second condition is trivially fulfilled in all cases.

Those observations allow to generalise the definition to signature polynomials. More
precisely, given f (σ), g(µ) ∈ I(Σ), it is possible to test whether f (σ) is sig-reducible by g(µ).
Furthermore, if the sig-reduction is regular, it is possible to compute its remainder as a
signature polynomial.

We extend the notions from Definition 3.2.1 to sets of labelled polynomials G[Σ] ⊆ I [Σ].
In particular, f [α] is sig-reducible by G[Σ] if there exists g[β] ∈ G[Σ] such that f [α] is
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sig-reducible by g[β]. Furthermore, f [α] →G[Σ] f ′[α′] if there exists g[β] ∈ G[Σ] such that
f [α] →g[β] f ′[α′]. Recall that ∗−→G[Σ] denotes the reflexive transitive closure of →G[Σ] .

If f [α] sig-reduces to 0[α′] (in zero or more steps), we say that f [α] sig-reduces to zero.

We capture some useful facts about sig-reductions that will be needed later. This first
lemma follows immediately from the definition (in particular, from the first sentence in
Remark 3.2.2).

Lemma 3.2.3. If f [α] ∗−→G[Σ] f ′[α′], then f
∗−→G f

′, where G = {g | g[β] ∈ G[Σ]}.

Using the notion of sig-reducibility, we now define (strong) labelled Gröbner bases of the
module I [Σ], extending the definition from the commutative case [FV21, Def. 2.4] in a
straightforward way.

Definition 3.2.4. A set G[Σ] ⊆ I [Σ] is a (strong) labelled Gröbner basis of I [Σ] up to
signature σ ∈ T (Σ) if all f [α] ∈ I [Σ] with sig(α) ≺ σ sig-reduce to zero by G[Σ]. Furthermore,
G[Σ] is a (strong) labelled Gröbner basis of I [Σ] if all f [α] ∈ I [Σ] sig-reduce to zero by G[Σ].

Remark 3.2.5. Since different families of generators of the ideal I lead to different labelled
modules I [Σ], they also lead to different labelled Gröbner bases (see also Example 3.2.16).
Additionally, the labelled Gröbner bases also depend on the used monomial and module
orders.

Disregarding the module labelling from Definition 3.2.4 recovers the definition of classical
Gröbner bases in A (see Definition 3.1.10). The following result follows immediately from
Lemma 3.2.3.

Lemma 3.2.6. If G[Σ] ⊆ I [Σ] is a labelled Gröbner basis of I [Σ], then {g | g[β] ∈ G[Σ]} is a
Gröbner basis of I ⊆ A.

We also provide the following equivalent characterisation of labelled Gröbner bases that
will turn out useful later.
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Lemma 3.2.7. A set G[Σ] ⊆ I [Σ] is a labelled Gröbner basis of I [Σ] (up to signature
σ ∈ T (Σ)) if and only if every f [α] ∈ I [Σ] with f ≠ 0 (and sig(α) ≺ σ) is top sig-reducible
by G[Σ].

Proof. The “only if”-direction is clear. For the “if”-direction, assume, for contradiction, that
G[Σ] is not a labelled Gröbner basis (up to signature σ). Then there exists f [α] ∈ I [Σ] with
f ̸= 0 (and sig(α) ≺ σ) which does not sig-reduce to zero by G[Σ]. Choose such an element
with minimal leading monomial lm(f). By assumption, f [α] is top sig-reducible by G[Σ].
Let f ′[α′] be the result of this sig-reduction. By the minimality of lm(f), the element f ′[α′]

can be sig-reduced to zero by G[Σ], but then so can be f [α] – a contradiction.

Like classical Gröbner bases of an ideal, a labelled Gröbner basis of I [Σ] is not unique. In
fact, if G[Σ] ⊆ I [Σ] is a labelled Gröbner basis of I [Σ], then so is G[Σ] ∪ {f [α]} for every
f [α] ∈ I [Σ]. Furthermore, the set I [Σ] is always a labelled Gröbner basis of I [Σ].

Lemma 3.2.8. Let (f1, . . . , fr) ∈ Ar. The labelled module I [Σ] generated by f1, . . . , fr has
a (possibly infinite) labelled Gröbner basis.

We remind the reader that we present all the relevant theory for our signature-based
algorithm in terms of labelled polynomials, keeping in mind that in an actual implementation
one would work only with signature polynomials. Consequently, such an implementation
would not compute a labelled Gröbner basis but instead a signature Gröbner basis as
defined below.

Definition 3.2.9. A set G(Σ) ⊆ I(Σ) is a (strong) signature Gröbner basis of I [Σ] (up to
signature σ ∈ T (Σ)) if there exists a labelled Gröbner basis G[Σ] ⊆ I [Σ] (up to signature σ)
such that

G(Σ) =
{︂
g(sig(β)) | g[β] ∈ G[Σ]

}︂
.

In the theoretical sections, which are this one and Sections 3.3.1 and 3.3.2, we focus
on the notion of labelled Gröbner bases and present all theoretical results in terms of
this concept. However, one should always keep in mind that all relevant results also
transfer over to signature Gröbner bases as they only depend on information that is also
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available in signature polynomials. In Section 3.3.3, we then shift our focus to a more
application-oriented point of view and present our signature-based algorithm in terms of
signature polynomials. Additionally, we show how to reconstruct a labelled Gröbner basis
from a signature Gröbner basis.

The outcome of classical polynomial reduction depends on more than just the leading term
of the polynomial that is reduced. Polynomials which share the same leading term can still
reduce to different elements, even under reduction by a partial Gröbner basis. In case of
regular sig-reductions by a partial labelled Gröbner basis over a coefficient field, all labelled
polynomials with similar signatures yield the same regular sig-reduced normal form (up
to multiplication by a constant). This fact follows from the following lemma, which is an
analogue of [RS12, Lem. 2] in the mixed algebra.

Lemma 3.2.10. Let A = K[X]⟨Y ⟩ with a field K and let I [Σ] be the labelled module
generated by (f1, . . . , fr) ∈ Ar. Furthermore, let f [α], g[β] ∈ I [Σ] be such that sig(α) ≃ sig(β)
and let G[Σ] ⊆ I [Σ] be a labelled Gröbner basis up to signature sig(α). Then, with c ∈ K
such that sig(cα) = sig(β), the following hold:

• If f [α] and g[β] are regular sig-reduced by G[Σ], then cf = g.

• If f [α] and g[β] are regular top sig-reduced by G[Σ], then lt(cf) = lt(g).

Proof. We first prove that cf = g if f [α] and g[β] are regular sig-reduced. Consider h[γ] =
cf [α]− g[β] and assume, for contradiction, that h ̸= 0. Note that, since sig(cα) = sig(β), we
have sig(γ) ≺ sig(α). Hence, by assumption, h[γ] sig-reduces to zero by G[Σ]. In particular,
there exists p[δ] ∈ G[Σ] with sig(δ) ⪯ sig(γ) such that p[δ] top sig-reduces h[γ]. Without
loss of generality, we may assume that lm(h) comes from a term in f [α]. But then f [α] is
regular sig-reducible by p[δ], which is a contradiction.

The proof of the second statement is similar: consider h[γ] = cf [α] − g[β] and assume, for
contradiction, that lm(h) = max{lm(f), lm(g)}. Without loss of generality, we may assume
that lm(h) = lm(f). The rest of the proof is identical: sig(γ) ≺ sig(α), so h[γ] sig-reduces
to zero, and in particular, it is top sig-reducible. This is a contradiction to f [α] being
regular top sig-reduced.
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Although a labelled Gröbner basis G[Σ] of I [Σ] is not unique in general, we can impose
certain additional conditions on G[Σ] in order to at least obtain one that is as small as
possible. We call such a labelled Gröbner basis minimal.

Definition 3.2.11. A labelled Gröbner basis G[Σ] of I [Σ] (up to signature σ ∈ T (Σ)) is
called minimal if no g[β] ∈ G[Σ] is top sig-reducible by G[Σ] \ {g[β]}.

We also extend this definition to signature Gröbner bases.

Definition 3.2.12. A signature Gröbner basis G(Σ) of I [Σ] (up to signature σ ∈ T (Σ))
is called minimal if there exists a minimal labelled Gröbner basis G[Σ] of I [Σ] (up to
signature σ) such that

G(Σ) =
{︂
g(sig(β)) ⃓⃓ g[β] ∈ G[Σ]

}︂
.

Note that the definition does not depend on the particular choice of the labelled Gröbner
basis, as, in fact, all relevant information to check whether G(Σ) is minimal is already
contained in G(Σ) itself. This follows from the fact that sig-reducibility can be tested for
signature polynomials, see also Remark 3.2.2.

A minimal labelled Gröbner basis is minimal in the following sense. In the following, R∗

denotes the group of invertible elements of the commutative ring R.

Proposition 3.2.13. Let G[Σ] be a minimal labelled Gröbner basis and H [Σ] be a labelled
Gröbner basis of I [Σ]. Then, for every g[β] ∈ G[Σ] there exists h[γ] ∈ H [Σ] such that

∃c ∈ R∗ : lt(g) = lt(ch) and sig(β) ≃ sig(γ).

Proof. Let g[β] ∈ G[Σ]. Since H [Σ] is a labelled Gröbner basis, g[β] can be sig-reduced to
zero by H [Σ]. In particular, this means that g[β] is top sig-reducible by H [Σ], that is, there
exist h[γ] ∈ H [Σ] and a, b ∈ [X]⟨Y ⟩, c ∈ R such that

lt(g) = lt(cahb) and sig(β) ⪰ sig(aγb).
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Similarly, since G[Σ] is also a labelled Gröbner basis, there exist g′[β′] ∈ G[Σ] and a′, b′ ∈
[X]⟨Y ⟩, c′ ∈ R such that

lt(h) = lt(c′a′g′b′) and sig(γ) ⪰ sig(a′β′b′).

Combining these two statements yields

lt(g) = lt(cahb) = lt(cc′aa′g′b′b) and sig(β) ⪰ sig(aγb) ⪰ sig(aa′β′b′b).

Now, if g[β] ̸= g′[β′], then g′[β′] could be used to top sig-reduce g[β], which contradicts the
minimality of G[Σ]. Thus g[β] = g′[β′], which implies that cc′ = a = a′ = b = b′ = 1, and
therefore,

lt(g) = lt(ch) and sig(β) ≃ sig(γ).

We note that a labelled module I [Σ] always has a minimal labelled Gröbner basis, which is
finite if and only if I [Σ] has a finite labelled Gröbner basis. This follows from the following
proposition, which tells us that we can obtain a minimal basis by removing top sig-reducible
elements.

Proposition 3.2.14. Let G[Σ] ⊆ I [Σ] be a labelled Gröbner basis of I [Σ] such that there
exists g[β] ∈ G[Σ] which is top sig-reducible by G[Σ] \ {g[β]}. Then G[Σ] \ {g[β]} is also a
labelled Gröbner basis of I [Σ].

Proof. By assumption, there exists g′[β′] ∈ G[Σ] \ {g[β]} such that g[β] is top sig-reducible
by g′[β′]. Then every element which is top sig-reducible by g[β] is also top sig-reducible
by g′[β′]. Consequently, it follows from Lemma 3.2.7 that G[Σ] \ {g[β]} is also a labelled
Gröbner basis of I [Σ].

Corollary 3.2.15. The labelled module I [Σ] has a finite labelled Gröbner basis if and
only if I [Σ] has a finite minimal labelled Gröbner basis. Furthermore, all minimal labelled
Gröbner bases of I [Σ] are either infinite or have the same finite cardinality.

Proof. If I [Σ] has a finite labelled Gröbner basis G[Σ], then, applying Proposition 3.2.14
repeatedly, G[Σ] contains a finite minimal labelled Gröbner basis as a subset. The converse
is clear.
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For the last statement, assume that G[Σ]
1 and G

[Σ]
2 are minimal labelled Gröbner bases

of I [Σ]. If they are both infinite, there is nothing to show. Otherwise, assume that G[Σ]
2

is finite. We show that |G[Σ]
1 | ≤ |G

[Σ]
2 |. To this end, assume, for contradiction, that

|G[Σ]
1 | > |G

[Σ]
2 |. Then, by Proposition 3.2.13 and the pigeonhole principle, there exist

distinct g[β1]
1 , g

[β2]
2 ∈ G[Σ]

1 and h[γ] ∈ G[Σ]
2 such that

lt(g1) = lt(c1h), lt(g2) = lt(c2h), sig(β1) ≃ sig(γ) ≃ sig(β2),

with invertible c1, c2 ∈ R. Rearranging these equations shows that lt(g1) = lt(c1c
−1
2 g2)

and sig(β1) ≃ sig(β2), and consequently, that g[β1]
1 is top sig-reducible by g

[β2]
2 , which

contradicts the minimality of G[Σ]
1 . Analogously, one can show that |G[Σ]

2 | ≤ |G
[Σ]
1 |, and

the result follows.

Assuming that |Y | > 1, we cannot expect all labelled modules to have a finite (minimal)
labelled Gröbner basis, as there are finitely generated ideals in A that simply do not have a
finite Gröbner basis, and, consequently, also no finite labelled Gröbner basis. Unfortunately,
the condition that an ideal I = (f1, . . . , fr) has a finite Gröbner basis is also not sufficient
to ensure that the labelled module generated by f1, . . . , fr has a finite labelled Gröbner
basis as the following example shows.

Example 3.2.16. We give an example of a family of generators whose ideal admits a finite
Gröbner basis, but whose labelled module does not admit a finite labelled Gröbner basis.
The construction and the proof of the claims rely on notions introduced in Section 3.3, and
will be deferred until that point.

Let K be a field. We consider the family (f, g0) ∈ K⟨x, y⟩2 with

f = yx− xy, g0 = xy − 1.

Using ⪯deglex as a monomial order with x ≺lex y and ⪯DoPoT as a module order, the set
G = {f, g0} is already a Gröbner basis of the ideal I = (f, g0).

A minimal labelled Gröbner basis of the module I [Σ] generated by f, g0 is given by the
infinite set

G[Σ] =
{︂
f [ε1], g

[ε2]
0

}︂
∪
{︂
g[βn]
n | n ∈ N>0

}︂
,

with gn = xn+1y − xn and certain βn ∈ Σ with sig(βn) = ε2x
n for n > 0.
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So, Corollary 3.2.15 implies that I [Σ] does not have a finite labelled Gröbner basis. The
obstruction to having a finite labelled Gröbner basis is that g[ε2]

0 cannot be used to sig-reduce
any of the elements g[βn]

n for n > 0. Indeed, since xnε2 ≻ ε2x
n = sig(βn), the reductions

would cause the signatures to increase, and would not be sig-reductions.

If we exchange the order of f and g0, and consider the family of generators g0, f generating
the module I [Σ′], where Σ′ = (K⟨X⟩ ⊗K K⟨X⟩)(D) denotes the free K⟨X⟩-bimodule on the
set D = {δ1, δ2}, then the finite set

G[Σ′] =
{︂
g

[δ1]
0 , f [δ2]

}︂
is a minimal labelled Gröbner basis of I [Σ′]. The difference is that g[δ1]

0 has now signature δ1

instead of ε2, which causes the elements g[βn]
n , for n > 0, to have signature sig(βn) = xnδ2

and renders them all top sig-reducible by g[δ1]
0 .

Remark 3.2.17. For a fixed monomial order, having a finite Gröbner basis is a property
of an ideal, independently of its generators and their order, see also [Mor94, Sec. 6] for
further information. By contrast, exchanging the order of the generators or using different
generating sets for the same ideal can affect the finiteness of its (minimal) labelled Gröbner
bases. Here, the ideal spanned is the same, but the underlying module is different. In
general, different choices of generators of an ideal I can lead to drastically different module
structures for I [Σ], and thus, to different (minimal) labelled Gröbner bases.

3.3 Computations in the free algebra

Before discussing the computation of labelled Gröbner bases in the more general setting of
the mixed algebra, we first present the theory in the easier case of the free algebra over a
coefficient field. This shall help, on the one hand, to get familiar with the relevant notions
and the algorithms in a simpler setting, before transitioning to full generality. Furthermore,
the free algebra over a coefficient field is probably also the most relevant setting, making it
worth discussing this case separately.

We note that all results in this section only depend on similarity of signatures, that is,
only equality up to coefficients is required. This is a consequence of the fact that we
are working over a coefficient field here. Consequently, in this setting, one could define
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signatures without coefficients, as done in [HV22], for example. For the sake of consistency,
we, however, stick to Definition 3.1.15 and consider signatures with coefficients.

In this section, we fix a monomial order ⪯ on ⟨X⟩ and a module order ⪯Σ on M(Σ).
We assume that the two orders are compatible in the sense that, for all a, b ∈ ⟨X⟩ and
i ∈ {1, . . . , r}, we have

a ≺ b ⇐⇒ aεi ≺Σ bεi ⇐⇒ εia ≺Σ εib.

We will denote both orders by the same symbol ⪯. As before, this shall cause no confusion
as module elements will be denoted by Greek letters and polynomials by Roman letters.

Example 3.3.1. All the module orders in Example 3.1.14 are compatible with the underlying
monomial order that is used for the monomial comparisons.

3.3.1 Computation of labelled Gröbner bases

The objective of this section is to state an adaptation of the noncommutative version of
Buchberger’s algorithm (Algorithm 1) to include signatures. To this end, we need to adapt
the notion of ambiguities and S-polynomials to the case of labelled polynomials.

Regular ambiguities

We first extend the notion of ambiguities from Definition 2.4.46 from polynomials to labelled
polynomials. To this end, we fix a family of polynomials (f1, . . . , fr) ∈ K⟨X⟩r generating
a labelled module I [Σ] and note that, in this setting, the free bimodule is simply

Σ = (K⟨X⟩ ⊗K K⟨X⟩)(E) ,

with basis E = {ε1, . . . , εr}.

Definition 3.3.2. For f [α], g[β] ∈ I [Σ] with f, g ̸= 0 an (overlap/inclusion) ambiguity of
f [α] and g[β] is

(a⊗ b, c⊗ d, f [α], g[β]),
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where (a⊗ b, c⊗ d, f, g) is an (overlap/inclusion) ambiguity of the polynomials f and g.
We denote by amb(f [α], g[β]) the set of all ambiguities of f [α] and g[β]. Furthermore, for
G[Σ] ⊆ I [Σ], let

amb(G[Σ]) :=
⋃︂

f [α],g[β]∈G[Σ]

f,g ̸=0

amb(f [α], g[β]).

Like for polynomials, when clear by context, we drop f [α] and g[β] from an ambiguity
and simply write (a ⊗ b, c ⊗ d) ∈ amb(f [α], g[β]). As ambiguities of labelled polynomials
are the same as ambiguities of classical polynomials, we have the same relationship
lm(afb) = lm(cgb) for ambiguities (a⊗ b, c⊗ d, f [α], g[β]) of labelled polynomials that we
also have for classical polynomials (see Lemma 2.4.48). Hence, we define the leading
monomial of an ambiguity analogously, and additionally, we now also define the signature
of an ambiguity.

Definition 3.3.3. Let f [α], g[β] ∈ I [Σ] be such that f, g ̸= 0 and let a = (a ⊗ b, c ⊗ d) ∈
amb(f [α], g[β]). The leading monomial of a is lm(a) := lm(afb) and the signature of a is

sig(a) := max {sig(aαb), sig(cβd)} ,

choosing the first if sig(aαb) ≃ sig(cβd). Furthermore, a is called regular if sig(aαb) ̸≃
sig(cβd) and singular otherwise, that is, if sig(aαb) ≃ sig(cβd).

Example 3.3.4. Let K be a field. We consider the labelled module I [Σ] generated by the
following family of polynomials in K⟨a, b, c, d⟩:

f1 = aba− a, f2 = ab− cd, f3 = ba− dc.

We use ⪯deglex as a monomial order with a ≺lex b ≺lex c ≺lex d and ⪯DoPoT as a module
order.

The labelled polynomial f [ε1]
1 forms an (overlap) ambiguity with itself:

a = (1⊗ ba, ab⊗ 1, f [ε1]
1 , f

[ε1]
1 ).

Note that lm(a) = ababa and sig(a) = abε1 ≻ ε1ba, showing that a is regular.
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Furthermore, I [Σ] contains the labelled polynomials

f [α] = cba− abc[cε3−ε2c] g[β] = bada− da[ε3da−dε2a+dε1],

which form the (overlap) ambiguity

a′ = (1⊗ da, c⊗ 1, f [α], g[β]).

Note that a′ is singular since sig(a′) = αda = cβ = cε3da.

Definition 3.3.5. Let G[Σ] ⊆ I [Σ] and a = (a ⊗ b, c ⊗ d, f [α], g[β]) ∈ amb(G[Σ]). The
S-polynomial of a is

S-Pol(a) := 1
lc(f)af

[α]b− 1
lc(g)cg

[β]d.

Remark 3.3.6. Ambiguities of signature polynomials can be defined analogously to am-
biguities of labelled polynomials. Furthermore, for regular ambiguities, it is possible to
compute the S-polynomial as a signature polynomial (in particular, it is possible to compute
its signature).

Recall that the signature of a labelled polynomial is simply the signature of its module
part. With this, note that, if a is a regular ambiguity, then sig(a) ≃ sig(S-Pol(a)).

The following lemma asserts that any situation, where multiples of two labelled polynomials
share a common leading monomial but differ in their signatures, can be characterised by a
regular ambiguity or a trivial syzygy between the two elements. This lemma is technical and
useful for the rest of the proofs. It ensures that it suffices to consider regular ambiguities.

Lemma 3.3.7. Let g[β1]
1 , g

[β2]
2 ∈ I [Σ] be such that g1, g2 ≠ 0 and let ai, bi ∈ ⟨X⟩, i = 1, 2,

such that
lm(a1g1b1) = lm(a2g2b2) and sig(a1β1b1) ≻ sig(a2β2b2).

Then there exist a3, b3 ∈ ⟨X⟩ such that one of the following conditions holds:

1. there exists a trivial syzygy π between g[β1]
1 and g[β2]

2 such that sig(a3πb3) = sig(a1β1b1);

2. there exists a regular ambiguity a ∈ amb(g[β1]
1 , g

[β2]
2 ) with a3lm(a)b3 = lm(a1g1b1) and

a3sig(a)b3 = sig(a1β1b1);
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Proof. We distinguish between different cases (see Figure 3.1), depending on the position
of lm(g1) and lm(g2) relative to each other in W = lm(a1g1b1) = lm(a2g2b2).

Case 1 lm(g1) is fully contained in a2 or b2, or equivalently, lm(g1) and lm(g2) do not
overlap in W . We first consider the case where lm(g1) is contained in a2, that is, where
W = Alm(g1)Blm(g2)C for some A,B,C ∈ ⟨X⟩. Then π = β1Bg2 − g1Bβ2 is a trivial
syzygy between g

[β1]
1 and g

[β2]
2 . To prove the assertion regarding the signatures, note that

sig(π) = sig(β1Bg2) ≻ sig(g1Bβ2) as Asig(β1Bg2)C = sig(Aβ1Blm(g2)C) = sig(a1β1b1) ≻
sig(a2β2b2) = sig(Alm(g1)Bβ2C) = Asig(g1Bβ2)C. Hence, with a3 = A and b3 = C, we
obtain sig(a3πb3) = sig(AπC) = sig(Aβ1Bg2C) = sig(a1β1b1).

The other case, where lm(g1) is contained in b2, works along the same lines using the trivial
syzygy π = g2Bβ1 − β2Bg1.

Case 2 lm(g1) is fully contained in lm(g2), that is, Alm(g1)C = lm(g2) for some A,C ∈
⟨X⟩. In this case, there exists an inclusion ambiguity a = (A⊗C, 1⊗ 1) ∈ amb(g[β1]

1 , g
[β2]
2 ).

Note that sig(a) = sig(Aβ1C) ≻ sig(β2) as a2sig(Aβ1C)b2 = sig(a1β1b1) ≻ sig(a2β2b2) =
a2sig(β2)b2. Hence, a is regular and, with a3 = a2 and b3 = b2, we have a3sig(a)b3 =
sig(a2Aβ1Cb2) = sig(a1β1b1) and a3lm(a)b3 = lm(a2g2b2) = lm(a1g1b1).

Case 3 lm(g2) is fully contained in lm(g1), that is, lm(g1) = Alm(g2)C for some A,C ∈
⟨X⟩. In this case, there exists an inclusion ambiguity a = (1⊗ 1, A⊗C) ∈ amb(g[β1]

1 , g
[β2]
2 ).

Note that sig(a) = sig(β1) ≻ sig(Aβ2C) as a1sig(β1)b1 = sig(a1β1b1) ≻ sig(a2β2b2) =
a1sig(Aβ2C)b1. Hence, a is regular and, with a3 = a1 and b3 = b1, we have a3sig(a)b3 =
sig(a1β1b1) and a3lm(a)b3 = lm(a1g1b1).

Case 4 lm(g1) and lm(g2) overlap but are not fully contained in one another and lm(g1)
begins before lm(g2), that is, lm(g1)C = Alm(g2) for some A,C ∈ ⟨X⟩. In this case, there
exists an overlap ambiguity a = (1 ⊗ C,A ⊗ 1) ∈ amb(g[β1]

1 , g
[β2]
2 ). Note that sig(a) =

sig(β1C) ≻ sig(Aβ2) as a1sig(β1C)b2 = sig(a1β1b1) ≻ sig(a2β2b2) = a1sig(Aβ2)b2. Hence, a
is regular and, with a3 = a1 and b3 = b2, we have a3sig(a)b3 = sig(a1β1Cb2) = sig(a1β1b1)
and a3lm(a)b3 = lm(a1g1Cb2) = lm(a1g1b1).
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ACase 1: lm(g1) B lm(g2) C

a1 b1

a2 b2

A lm(g2) B lm(g1) C

a2 b2

a1 b1

a2

Case 2:
lm(g2) b2

A lm(g1) C

a1 b1

a1Case 3: lm(g1) b1

A lm(g2) C

a2 b2

a1Case 4: lm(g1) C

A lm(g2) b2

a2

b1

Case 5: A lm(g1) b1
lm(g2)a2 C

a1

b2

Figure 3.1: Relative position of lm(g1) and lm(g2) in the proof of Lemma 3.3.7.

119



3 Noncommutative signature Gröbner bases

Case 5 lm(g1) and lm(g2) overlap but are not fully contained in one another and lm(g1)
begins after lm(g2), that is, Alm(g1) = lm(g2)C for some A,C ∈ ⟨X⟩. In this case, there
exists an overlap ambiguity a = (A ⊗ 1, 1 ⊗ C) ∈ amb(g[β1]

1 , g
[β2]
2 ). Note that sig(a) =

sig(Aβ1) ≻ sig(β2C) as a2sig(Aβ1)b1 = sig(a1β1b1) ≻ sig(a2β2b2) = a2sig(β2C)b1. Hence,
a is regular and, with a3 = a2 and b3 = b1, we have a3sig(a)b3 = sig(a2Aβ1b1) = sig(a1β1b1)
and a3lm(a)b3 = lm(a2Ag1b1) = lm(a1g1b1).

Remark 3.3.8. The case distinction in the proof of Lemma 3.3.7 can be compared to
the one in the proof of Theorem 2.4.54; both have to consider the same cases. The only
difference is that in the latter we can rely more on symmetries eliminating some cases
immediately. This does not work in the former because of the (asymmetric) assertion
regarding the signatures.

Cover criterion

In Section 2.4.3, we have seen that the weakest property that allows to characterise classical
Gröbner bases in the free algebra is resolvability relative to a monomial order ⪯ (see
Definition 2.4.52). In the setting with signatures, a similar characterisation of labelled
Gröbner bases can be given by the notion of covered ambiguities. We define this property
as a straightforward adaptation of the notion introduced in [GVW16].

Definition 3.3.9. Let G[Σ] ⊆ I [Σ], H ⊆ Syz(I [Σ]), and f [α], g[β] ∈ I [Σ] with f, g ̸= 0. An
ambiguity a ∈ amb(f [α], g[β]) is covered by (G[Σ], H) if there exist h[δ] ∈ G[Σ]∪{0[γ] | γ ∈ H}
and a, b ∈ ⟨X⟩ such that the following conditions hold:

• lm(a) ≻ lm(ahb);

• sig(a) ≃ sig(aδb);

In the definition, h can also be zero, in which case the first condition is always fulfilled since
lm(0) = 0 ≺ w for all w ∈ ⟨X⟩. Also, note that only similarity of signatures is required.

Remark 3.3.10. The property of being covered only depends on information encoded in the
polynomial part and the signature of the labelled polynomials, and thus, can be generalised
directly to signature polynomials.
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The following theorem extends the characterisation of signature Gröbner bases provided
in [HV22, Thm. 39] (item 2 below) by a noncommutative version of the GVW cover
criterion [GVW16, Thm. 2.4] (item 3 below).

In the following, we say that an element f [α] ∈ I [Σ] is singular top sig-reducible by a syzygy
γ ∈ Syz(I [Σ]) if there exist a, b ∈ ⟨X⟩ such that sig(α) ≃ sig(aγb).

Theorem 3.3.11. Let σ ∈ T (Σ), G[Σ] ⊆ I [Σ], and H ⊆ Syz(I [Σ]) be such that the following
conditions hold:

• for all g[β] ∈ G[Σ] : g ̸= 0;

• for all εi ≺ σ, there exists βi ∈ H ∪ {β | g[β] ∈ G[Σ]} with sig(βi) ≃ εi;

• {γ ∈ Triv(G[Σ]) | sig(γ) ≺ σ} ⊆ H;

Then the following are equivalent:

1. G[Σ] is a labelled Gröbner basis of I [Σ] up to signature σ and H is a Gröbner basis of
Syz(I [Σ]) up to signature σ;

2. the S-polynomials of all regular ambiguities a of G[Σ] with sig(a) ≺ σ regular sig-reduce
by G[Σ] to elements which are singular top sig-reducible by G[Σ] or by H;

3. all regular ambiguities a of G[Σ] with sig(a) ≺ σ are covered by (G[Σ], H);

Remark 3.3.12. The notion of being singular top sig-reducible is equivalent to what
is in the (commutative) literature also called sig-redundant (see [EP11]) and included
in the concept of super top reductions in [GVW16]. Additionally, a regular sig-reduced
element being singular top sig-reducible corresponds to the notion of not being primitive
sig-irreducible in [AP11].

Proof of Theorem 3.3.11. 1 =⇒ 2 Let a ∈ amb(G[Σ]) be regular with sig(a) ≺ σ and let
p[π] be the result of regular sig-reducing S-Pol(a) by G[Σ]. Note that sig(π) ≃ sig(a) ≺ σ. If
p = 0, then π is a syzygy of I [Σ]. Since H is a Gröbner basis of Syz(I [Σ]) up to signature σ
by assumption, there exist γ ∈ H and a, b ∈ ⟨X⟩ such that sig(π) ≃ sig(aγb), showing that
p[π] is singular top sig-reducible by H. If p ̸= 0, then p[π] is singular top sig-reducible by
G[Σ] as G[Σ] is a labelled Gröbner basis up to signature σ.
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2 =⇒ 3 Let a ∈ amb(G[Σ]) be regular with sig(a) ≺ σ and let p[π] be the result of
regular sig-reducing S-Pol(a) by G[Σ]. Note that sig(π) ≃ sig(a) ≺ σ. By assumption p[π]

is singular top sig-reducible by some element in G[Σ] or H but then a is covered by the
same element as lm(a) ≻ lm(p).

3 =⇒ 1 The proof follows the same structure as the proof of [GVW16, Thm. 2.4].

Assume, for contradiction, that 1 is wrong. Then there exists f [α] ∈ I [Σ] with sig(α) ≺ σ
such that either f ̸= 0 and f [α] is not sig-reducible by G[Σ] or f = 0 and α is not reducible
by H. Choose such f [α] with minimal signature sig(α). Note that this means that G[Σ] is
a labelled Gröbner basis up to signature sig(α).

By the second assumption, there exist a1, b1 ∈ ⟨X⟩ and g
[β1]
1 ∈ G[Σ] ∪ {0[γ] | γ ∈ H} with

sig(a1β1b1) ≃ sig(α). We select these elements so that lm(a1g1b1) is minimal and claim
that a1g

[β1]
1 b1 is not regular top sig-reducible by G[Σ].

To prove this claim, suppose that a1g
[β1]
1 b1 is regular top sig-reducible by g[β2]

2 ∈ G[Σ]. Note
that this implies that both elements have nonzero polynomial part. By Lemma 3.3.7, there
exist a3, b3 ∈ ⟨X⟩ and either a trivial syzygy or a regular ambiguity between g[β1]

1 and g[β2]
2

satisfying certain conditions. We distinguish between the two possible cases.

Trivial syzygy Let π be the trivial syzygy such that sig(a3πb3) = sig(a1β1b1). As sig(α) ≃
sig(a1β1b1), this implies that α is reducible by π ∈ {γ ∈ Triv(G[Σ]) | sig(γ) ≺ σ} ⊆ H – a
contradiction.

Regular ambiguity Let a ∈ amb(g[β1]
1 , g

[β2]
2 ) be regular such that

a3lm(a)b3 = lm(a1g1b1) and a3sig(a)b3 = sig(a1β1b1). (3.2)

Since sig(a) ⪯ sig(a1β1b1) ≺ σ, the ambiguity a is covered by (G[Σ], H). So there exist
h[δ] ∈ G[Σ]∪{0[γ] | γ ∈ H} and a, b ∈ ⟨X⟩ such that lm(a) ≻ lm(ahb) and sig(a) ≃ sig(aδb).
Combining this with (3.2) yields the following contradiction to the minimality of lm(a1g1b1):

lm(a3ahbb3) ≺ a3lm(a)b3 = lm(a1g1b1),

sig(a3aδbb3) ≃ a3sig(a)b3 = sig(a1β1b1) ≃ sig(α).
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Consequently, both f [α] and a1g
[β]
1 b1 are not regular top sig-reducible by G[Σ]. Then

Lemma 3.2.10 yields lm(f) = lm(a1g1b1), showing that f [α] is (singular) top sig-reducible
by g[β1]

1 – a contradiction.

If the conditions of Theorem 3.3.11 hold for all signatures, we have a complete labelled
Gröbner basis and a complete Gröbner basis of the syzygy module.

Corollary 3.3.13. Let G[Σ] ⊆ I [Σ] and H ⊆ Syz(I [Σ]) be such that the following conditions
hold:

• for all g[β] ∈ G[Σ] : g ̸= 0;

• for all εi, there exists βi ∈ H ∪ {β | g[β] ∈ G[Σ]} with sig(βi) ≃ εi;

• Triv(G[Σ]) ⊆ H;

Then G[Σ] is a labelled Gröbner basis of I [Σ] and H is a Gröbner basis of Syz(I [Σ]) if and
only if all regular ambiguities of G[Σ] are covered by (G[Σ], H).

Proof. Note that G[Σ] is a labelled Gröbner basis of I [Σ] and H is a Gröbner basis of
Syz(I [Σ]) if and only if they are a (labelled) Gröbner basis up to signature σ for all
σ ∈ T (Σ). With this, the result follows from Theorem 3.3.11.

Example 3.2.16 (continuing from p. 113). Recall that in Example 3.2.16 we considered
the family (f, g0) ∈ K⟨x, y⟩2 with

f = yx− xy, g0 = xy − 1.

over a field K. We used ⪯deglex, where x ≺lex y, as a monomial order and ⪯DoPoT as a
module order.

We claimed that a minimal labelled Gröbner basis of the labelled module I [Σ] generated by
f, g0, is given by

G[Σ] =
{︂
f [ε1], g

[ε2]
0

}︂
∪
{︂
g[βn]
n | n ∈ N>0

}︂
,

with gn = xn+1y − xn and certain βn ∈ Σ with sig(βn) = ε2x
n for n > 0. We now prove

this claim. To this end, we let β0 = ε2 in the following.
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First, for the minimality of G[Σ], observe that the only possible top reductions would be
using g[βm]

m to reduce g[βn]
n for m < n. But as xm−nsig(βn) = xm−nε2x

n ≻ ε2x
m = sig(βm),

those reductions would not be sig-reductions. Therefore, none of the elements of G[Σ] is top
sig-reducible by the others, and G[Σ] is minimal.

Now, we prove that G[Σ] is indeed a labelled Gröbner basis of I [Σ] using Corollary 3.3.13.
The first two hypotheses of the theorem are clearly satisfied. Then we verify that all regular
ambiguities of G[Σ] are covered by G[Σ] and the set H = {γ}∪Triv(G[Σ]) of syzygies, where
γ = yε2 − ε2y − ε1y.

We have, for all n ∈ N, the following regular ambiguities af,n and an,f between f and gn:

af,n =
(︂
1⊗ xny, y ⊗ 1, f [ε1]

1 , g[βn]
n

)︂
,

an,f =
(︂
1⊗ x, xn+1 ⊗ 1, g[βn]

n , f
[ε1]
1

)︂
.

Note that sig(af,n) = ysig(βn) = yε2x
n. Thus, each of these ambiguities is covered by the

syzygy γ ∈ H as sig(γ) = yε2. Furthermore, we have sig(an,f ) = sig(βn)x = sig(βn+1) and
lm(an,f ) = lm(gn)x. Since lm(gn+1) ≺ lm(gn)x, each ambiguity an,f is covered by g[βn+1]

n+1 .

Additionally, for each pair m,n ∈ N with m > n, we have a regular ambiguity between
g

[βm]
m and g[βn]

n given by

am,n =
(︂
1⊗ 1, xm−n ⊗ 1, g[βm]

m , g[βn]
n

)︂
.

As sig(am,n) = xm−nsig(βn), these ambiguities are all covered by the trivial syzygies

xm−nβn − βm ∈ Triv(G[Σ]) ⊆ H.

Thus all regular ambiguities of G[Σ] are covered by (G[Σ], H), showing that G[Σ] is a minimal
labelled Gröbner basis of I [Σ] and that H is a Gröbner basis of the syzygy module.

We also claimed that the finite set G[Σ′] = {g[δ1]
0 , f [δ2]} forms a minimal labelled Gröbner

basis of the labelled module I [Σ′] generated by g[δ1]
0 , f [δ2]. The minimality of G[Σ′] is clear.

To show that G[Σ′] is also a labelled Gröbner basis, we note that G[Σ′] only has two regular
ambiguities, given by

af,0 =
(︂
1⊗ y, y ⊗ 1, f [δ2], g

[δ1]
0

)︂
, a0,f =

(︂
1⊗ x, x⊗ 1, g[δ1]

0 , f [δ2]
)︂
,
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which are covered by the syzygies

γf,0 = δ2y − yδ1 + δ1y, γ0,f = xδ2 − δ1x+ xδ1.

Similarly to Bergman’s diamond lemma characterising classical Gröbner bases, Theo-
rem 3.3.11 allows us to state a first non-optimised version of a signature-based algorithm
for noncommutative polynomials by ensuring that all regular ambiguities are covered.
Additionally, the theorem also allows us to describe more precisely Gröbner bases of the
syzygy module Syz(I [Σ]). Consider the set Htriv of trivial syzygies of G[Σ] ⊆ I [Σ], that is,

Htriv =
{︂
αmg − fmβ

⃓⃓
f [α], g[β] ∈ G[Σ],m ∈ ⟨X⟩

}︂
. (3.3)

Note that, for all f [α], g[β] ∈ G[Σ] and m ∈ ⟨X⟩ for which sig(αmlt(g)) ̸≃ sig(lt(f)mβ), the
set of signatures of Htriv contains

max {sig(αmlt(g)),−sig(lt(f)mβ)} .

Because of this, it may happen that this set contains infinitely many signatures that do
not divide each other, and indeed this will be the case for all sufficiently nontrivial ideals.
This observation implies that, for all such ideals, Syz(I [Σ]) does not admit a finite Gröbner
basis.

However, Theorem 3.3.11 shows that a Gröbner basis of Syz(I [Σ]) is given by adding to Htriv

all the syzygies found by regular sig-reducing to zero all S-polynomials coming from regular
ambiguities of G[Σ]. Furthermore, if G[Σ] is finite, the set of trivial syzygies in Htriv can be
enumerated using the description (3.3), and altogether we obtain an effective description
of the syzygy module of f1, . . . , fr.

Algorithm

The algorithm, incorporating both the computation of the labelled Gröbner basis and of
the aforementioned description of the syzygy module of f1, . . . , fr, is given in Algorithm 2.
We note that we state this algorithm only for theoretical consideration. In an actual imple-
mentation, one would replace all computations with labelled polynomials in Algorithm 2
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by computations with signature polynomials. In Section 3.3.3, we state with Algorithm 3
an optimised version of Algorithm 2 incorporating this.

Algorithm 2 follows the same basic structure as Algorithm 1. It runs on a loop, processing
ambiguities from a queue. At each step, it selects an ambiguity using a fair selection
strategy. Like in the classical case without signatures (see Definition 2.4.57 and line 4 in
Algorithm 1), such a selection strategy has to ensure that every ambiguity that is formed
is eventually processed.

Algorithm 2: Labelled Gröbner basis algorithm
Input: (f1, . . . , fr) ∈ K⟨X⟩r
Output (if the algorithm terminates):

• G[Σ] a labelled Gröbner basis of the labelled module I [Σ] generated by f1, . . . , fr;
• H ⊆ Syz(I [Σ]) such that H ∪ Triv(G[Σ]) is a Gröbner basis of Syz(I [Σ]);

1 G[Σ] ←− {f [ε1]
1 , . . . , f

[εr]
r };

2 H ← ∅;
3 amb←− amb(G[Σ]);
4 while amb ̸= ∅ :
5 select an ambiguity a ∈ amb using a fair strategy and remove it;
6 if a is regular and a is not covered by (G[Σ], H) :
7 f ′[α′] ←− result of regular sig-reducing S-Pol(a) by G[Σ];
8 if f ′ = 0 :
9 H ←− H ∪ {α′};

10 else:
11 G[Σ] ←− G[Σ] ∪ {f ′[α′]};
12 amb←− amb ∪

⋃︁
g[β]∈G[Σ] amb(f ′[α′], g[β]);

13 return G[Σ], H;

Example 3.3.14. Important examples of fair selection strategies are the following. One
can compare them to the fair strategies for Buchberger’s algorithm in the free algebra
mentioned in Example 2.4.58.

• A first-in first-out selection strategy, always choosing the ambiguity that has been in
the set amb the longest, is fair.
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• More generally, a selection strategy that chooses the elements in amb in generations,
always selecting all ambiguities from one generation before proceeding to the next one,
is fair.

• A module order ⪯ is called fair if, for any µ ∈M(Σ), the set {µ′ ∈M(Σ) | µ′ ≺ µ}
is finite. A selection strategy that always chooses a ∈ amb with sig(a) minimal is fair
if the used module order is fair.

Theorem 3.3.11 implies that any ambiguity that is not regular or that is already covered
by (G[Σ], H) can be discarded without having to perform any sig-reductions. This fact is
incorporated into Algorithm 2 in line 6.

Remark 3.3.15. Compared to [HV22, Algo. 1] for computing labelled Gröbner bases in
the free algebra, Algorithm 2 provides two main advantages: the stronger cover criterion
and additional flexibility by allowing any fair selection strategy. Especially the latter
is an important improvement. The algorithm in [HV22] could only process ambiguities
by increasing signatures, which restricted the allowed module orders to only fair orders,
excluding, for example, any kind of elimination order.

If an ambiguity is not redundant, its S-polynomial is regular sig-reduced and its normal
form is either added to the partial Gröbner basis of Syz(I [Σ]) (if the normal form is zero)
or to the partial labelled Gröbner basis G[Σ] (if the normal form is nonzero). In the latter
case, also the set of ambiguities to process is updated. The algorithm ensures that for
every regular ambiguity of G[Σ], an element is eventually added to G[Σ] or to H which
covers it.

Like in the case of noncommutative Gröbner bases without signatures, we cannot expect
Algorithm 2 to always terminate. However, the following theorem ensures that the algorithm
correctly enumerates a labelled Gröbner basis of the labelled module I [Σ] generated by the
input (f1, . . . , fr) ∈ K⟨X⟩r and a Gröbner basis of the syzygy module Syz(I [Σ]). It can be
compared to Theorem 2.4.59.

Theorem 3.3.16. Let (f1, . . . , fr) ∈ K⟨X⟩r and, for n ∈ N, let G[Σ]
n , Hn, and ambn be

the value of G[Σ], H, and amb respectively, in Algorithm 2 after n iterations of the “while”
loop given the family (f1, . . . , fr) as input. Furthermore, let σn = min{sig(a) | a ∈ ambn},
choosing an arbitrary element in case of similarity.

127



3 Noncommutative signature Gröbner bases

Then, for n ∈ N, the following hold:

1. G[Σ]
n is a labelled Gröbner basis of the labelled module I [Σ] generated by f1, . . . , fr up

to signature σn;

2. Hn ∪ {γ ∈ Triv(G[Σ]
n ) | sig(γ) ≺ σn} is a Gröbner basis of Syz(I [Σ]) up to signature

σn;

Furthermore,

1. G[Σ] = ⋃︁
n∈NG

[Σ]
n is a labelled Gröbner basis of I [Σ];

2. H ∪ Triv(G[Σ]) = ⋃︁
n∈N

(︂
Hn ∪ Triv(G[Σ]

n )
)︂

is a Gröbner basis of Syz(I [Σ]);

In this sense, Algorithm 2 enumerates a labelled Gröbner basis of I [Σ] and a Gröbner basis
of Syz(I [Σ]).

Proof. For the first part, fix n ∈ N. We show that the algorithm enforces the requirements
of Theorem 3.3.11. By construction, all elements in G

[Σ]
n have nonzero polynomial part,

and, for all signatures εi, the element f [εi]
i lies in G

[Σ]
0 ⊆ G

[Σ]
n . Finally, the algorithm

ensures that all regular ambiguities it considers are covered: either an ambiguity a is
already covered, or an element is added to either G[Σ] or H with signature similar to sig(a)
and leading monomial strictly smaller than lm(a). Either way, this element covers the
ambiguity a. To finish the proof of the first part, we note that if σn is a minimal signature
left in ambn, then all ambiguities of G[Σ]

n with signature ≺ σn have already been processed.
With this, Theorem 3.3.11 implies the result.

The second part follows analogously to the first part from Corollary 3.3.13 and the fact
that, due to the fair selection strategy, every ambiguity of G[Σ] is processed eventually.

Remark 3.3.17. Theorem 3.3.16 implies that, if a fair module order is used in Algorithm 2
and the selection of the ambiguities is done by increasing signature, then the algorithm
allows to compute, for any signature σ ∈M(Σ), a labelled Gröbner basis up to signature σ
and a Gröbner basis of Syz(I [Σ]) up to signature σ in finite time.

Just like Algorithm 1, we can show that Algorithm 2 terminates if and only if the labelled
module admits a finite labelled Gröbner basis.
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Proposition 3.3.18. Let (f1, . . . , fr) ∈ K⟨X⟩r. Algorithm 2 terminates given the family
(f1, . . . , fr) as input if and only if the labelled module generated by f1, . . . , fr admits a finite
labelled Gröbner basis (with respect to the chosen orders).

Proof. Analogous to Proposition 2.4.60.

3.3.2 Elimination criteria

In the commutative case, it is well known that signature-based algorithms can be equipped
with strong elimination criteria, allowing to detect and avoid sig-reductions to zero. So
far, we have already seen that we can immediately discard all singular ambiguities and
remove a regular ambiguity if it is covered. In this section, we adapt some other classical
techniques from the commutative case to our setting, namely the syzygy criterion, the
singular criterion and the F5 criterion. In Algorithm 3, we include these criteria to show
how to use them in practice.

Proposition 3.3.19 (Syzygy criterion). Let f [α] ∈ I [Σ] and let G[Σ] ⊆ I [Σ] be a labelled
Gröbner basis up to signature sig(α). If there exists a syzygy γ ∈ Syz(I [Σ]) such that sig(γ)
divides sig(α), then f [α] can be regular sig-reduced to zero by G[Σ].

Proof. Let c ∈ K and a, b ∈ ⟨X⟩ such that sig(α) = sig(caγb). Consider f [β] = f [α]−ca0[γ]b

and note that sig(β) ≺ sig(α). Since G[Σ] is a labelled Gröbner basis up to signature sig(α),
the labelled polynomial f [β] sig-reduces to zero by G[Σ]. Using the same reductions, we see
that f [α] regular sig-reduces to zero by G[Σ].

Hence, we can discard any regular ambiguity during the computation of a labelled Gröbner
basis whose signature is divisible by the signature of a syzygy. In particular, all elements
stored in the set H are known syzygies and can be used directly to remove redundant
ambiguities. We note that excluding covered ambiguities already encapsulates this part of
the syzygy criterion. Another way to leverage the syzygy criterion is to exploit the fact
that signatures of trivial syzygies can be predicted in advance without having to perform
any reductions. The aim of the F5 criterion is to detect these trivial syzygies. It follows
immediately from the cover criterion (Theorem 3.3.11) but is not directly included in
Algorithm 2.
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Corollary 3.3.20 (F5 criterion). In Algorithm 2, let a ∈ amb be regular such that there
exist f [α], g[β] ∈ G[Σ] and m ∈M(Σ) with

• sig(αmg) ̸≃ sig(fmβ), and

• sig(a) is divisible by max{sig(αmg), sig(fmβ)}.

Then a is covered by the trivial syzygy αmg − fmβ ∈ Triv(G[Σ]) and can be discarded.

The F5 criterion as phrased above also includes Buchberger’s coprime criterion for elimi-
nating S-polynomials coming from elements with coprime leading monomials, see [LMA23,
Lem. 22] for a noncommutative version without signatures over coefficient rings.

Unlike in the commutative case, it is not possible to simply add all trivial syzygies to H
whenever a new element is added to the labelled Gröbner basis, as there are infinitely
many. Indeed, each pair of polynomials gives rise to infinitely many trivial syzygies, one
for each choice of m ∈ ⟨X⟩. However, to check the F5 criterion, there are only finitely
many syzygies which can possibly apply, and we can construct them on demand. This
renders the complexity of applying Corollary 3.3.20 essentially quadratic in the size of G[Σ].
Analogous to the commutative case, this cost can be reduced to linear for homogeneous
polynomials under certain module orders. We refer to Section 3.4.3 for further details.

To end this section, we mention with the singular criterion another important elimination
criterion. If the selection strategy in Algorithm 2 chooses ambiguities with the same
signature by increasing leading monomial, it is also fully encapsulated by the cover
criterion.

Corollary 3.3.21 (Singular criterion). If, at any point in Algorithm 2, there are reg-
ular a, b ∈ amb with sig(a) ≃ sig(b) and lm(a) ⪯ lm(b), then b can be removed after
processing a.

Proof. The assumptions imply that b is covered by S-Pol(a). So, after processing a (and
thus reducing S-Pol(a)) both ambiguities are covered.
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3.3.3 Computation of signature Gröbner bases and reconstruction

So far, Algorithm 2 keeps but does not exploit all the information encoded in the full module
representation contained in labelled polynomials. As indicated earlier, keeping track of
the full module representation, however, causes a significant overhead in terms of memory
consumption and overall computation time. Consequently, in an actual implementation of
Algorithm 2, one would only keep track of the signature of each polynomial, and thereby,
work with signature polynomials. In doing so, instead of computing a labelled Gröbner basis
and a Gröbner basis of Syz(I [Σ]), the algorithm only computes a signature Gröbner basis
(see Definition 3.2.9) of I [Σ] and a Gröbner basis of the K⟨X⟩-subbimodule of Σ generated
by all signatures of syzygies, that is, the K⟨X⟩-subbimodule generated by sig(Syz(I [Σ])).
Here, by a slight abuse of notation, we let sig(H) = {sig(α) | α ∈ H} ⊆ T (Σ) for sets
H ⊆ Σ. Additionally, to obtain an efficient implementation, one would also exploit the
elimination criteria discussed in the previous section. Note that these criteria only depend
on information encoded in signature polynomials. Incorporating these changes leads to
Algorithm 3, which is an optimised version of Algorithm 2.

Theorem 3.3.22. Algorithm 3 is correct.

Proof. Follows from the correctness of Algorithm 2 and from Corollary 3.3.20 and 3.3.21.

In the following, we discuss how to recover the information that is lost when Algorithm 3
is used instead of Algorithm 2. In particular, this means reconstructing a labelled Gröbner
basis from a signature Gröbner basis and reconstructing a Gröbner basis of Syz(I [Σ]) from
one of the bimodule generated by sig(Syz(I [Σ])). To this end, we adapt the reconstruction
methods described in [GVW16] to recover module representations of elements of the ideal
and of syzygies from signatures to our noncommutative setting.

We let G(Σ) ⊆ I(Σ) and H ⊆ sig(Syz(I [Σ])) be the output of Algorithm 3 when given the
family of generators (f1, . . . , fr) ∈ K⟨X⟩r as input. Recall that the algorithm does not
necessarily terminate. As such, G(Σ) will either be the full output of Algorithm 3 assuming
termination, or the partial output after interrupting the computation. In the latter case,
the set G(Σ) is only a signature Gröbner basis up to a certain signature σ ∈ T (Σ) and H

together with the signatures of the trivial syzygies only forms a partial Gröbner basis of
the bimodule generated by sig(Syz(I [Σ])).
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Algorithm 3: Signature Gröbner basis algorithm
Input: (f1, . . . , fr) ∈ K⟨X⟩r
Output (if the algorithm terminates):

• G(Σ) a signature Gröbner basis of the labelled module I [Σ] generated by f1, . . . , fr;
• H ⊆ sig(Syz(I [Σ])) such that H ∪ sig(Triv(G(Σ))) is a Gröbner basis of the

K⟨X⟩-subbimodule generated by sig(Syz(I [Σ]));

1 G(Σ) ←− {f (ε1)
1 , . . . , f

(εr)
r };

2 H ← ∅;
3 amb←− amb(G(Σ));
4 while amb ̸= ∅ :
5 select an ambiguity a ∈ amb using a fair strategy and remove it;
6 if a is regular and a is not covered by (G(Σ), H) :
7 remove all regular b ∈ amb with sig(a) ≃ sig(b) and lm(a) ⪯ lm(b) (singular

criterion);
8 if a does not satisfy the hypotheses of the F5 criterion (Corollary 3.3.20) :
9 f ′(σ) ←− result of regular sig-reducing S-Pol(a) by G(Σ);

10 if f ′ = 0 :
11 H ←− H ∪ {σ};
12 else:
13 G(Σ) ←− G(Σ) ∪ {f ′(σ)};
14 amb←− amb ∪

⋃︁
g(µ)∈G(Σ) amb(f ′(σ), g(µ));

15 return G(Σ), H;

In this general setting, the goal of this section is twofold. First of all, starting from G(Σ)

we want to reconstruct a labelled Gröbner basis G[Σ] (up to signature σ). Secondly, for
each element µ ∈ H, we want to find a syzygy γ ∈ Syz(I [Σ]) such that sig(γ) ≃ µ.

In situations where Algorithm 3 terminates, that is, when G(Σ) is a signature Gröbner
basis and H together with the signatures of the trivial syzygies forms a Gröbner basis of
the bimodule generated by sig(Syz(I [Σ])), achieving both of these goals allows us to also
recover a Gröbner basis of Syz(I [Σ]). The algorithms which we describe in this section are
a direct adaptation of the ones outlined in [GVW16].

Our first goal can be achieved by the following Algorithm 4. We note that no matter
whether Algorithm 3 terminates by itself or whether we interrupt the computation, the
sets G(Σ) and H are always finite. Also note that Algorithm 4 requires a minimal signature
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Gröbner basis as input, but the output of Algorithm 3 is not necessarily minimal. Thus,
before calling Algorithm 4, redundant elements have to be removed from the signature
basis, using, for example, Proposition 3.2.14.

Algorithm 4: Labelled Gröbner basis reconstruction
Input: G(Σ) a finite minimal signature Gröbner basis of I [Σ] (up to some signature

σ ∈ T (Σ))
Output: G[Σ] a finite minimal labelled Gröbner basis of I [Σ] (up to signature σ)

1 G[Σ] ← ∅;
2 H(Σ) ← G(Σ); /* make a copy so that we do not alter G(Σ) */
3 while H(Σ) ̸= ∅ :
4 choose f (µ) ∈ H(Σ) such that µ ≃ min{µ′ | f ′(µ′) ∈ H(Σ)};
5 H(Σ) ← H(Σ) \ {f (µ)};
6 choose a, b ∈ ⟨X⟩, g[β] ∈ G[Σ] ∪ {f [ε1]

1 , . . . , f
[εr]
r } such that sig(aβb) ≃ µ and lm(agb)

is minimal;
7 g′[β′] ← result of regular top sig-reducing ag[β]b by G[Σ];
8 G[Σ] ← G[Σ] ∪ {g′[β′]};
9 return G[Σ];

Remark 3.3.23. As will be clear from the proof of Proposition 3.3.24, the minimality
condition in line 6 of Algorithm 4 is not required for the correctness of the algorithm. It
is included purely for efficiency reasons with the hope of having to do less sig-reductions
if lm(agb) is minimal. We note that the same also holds for the minimality condition in
line 3 of Algorithm 5.

Proposition 3.3.24. Algorithm 4 is correct.

Proof. Let G̃[Σ] ⊆ I [Σ] be a minimal labelled Gröbner basis of I [Σ] (up to signature σ) such
that G(Σ) = {g(sig(β)) | g[β] ∈ G̃[Σ]}. Furthermore, let G[Σ] be the output of Algorithm 4
given G(Σ) as input. To prove the correctness of the algorithm, we show that{︂

(lm(g), sm(β))
⃓⃓
g[β] ∈ G[Σ]

}︂
=
{︂

(lm(g), sm(β))
⃓⃓
g[β] ∈ G̃[Σ]}︂

. (3.4)

In other words, we show that the labelled polynomials in G[Σ] have the same leading
monomials and similar signatures as the elements in the labelled Gröbner basis G̃[Σ]. Then,
every element in I [Σ] is sig-reducible by G[Σ] if and only if it is sig-reducible by G̃[Σ], and
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Lemma 3.2.7 yields that G[Σ] is a labelled Gröbner basis (up to signature σ). Furthermore,
the minimality of G̃[Σ] implies the minimality of G[Σ].

To prove (3.4), we show that the following loop invariant holds whenever the algorithm
reaches line 3:{︂

(lm(g), sm(µ))
⃓⃓
g(µ) ∈ G(Σ) \H(Σ)

}︂
=
{︂

(lm(g), sm(β))
⃓⃓
g[β] ∈ G[Σ]

}︂
. (3.5)

Once the algorithm terminates and H(Σ) = ∅, this implies (3.4) since the leading monomials
and signatures of the elements in G(Σ) are equal to those of G̃[Σ] by definition of G̃[Σ].

Obviously (3.5) holds in the very beginning when H(Σ) = G(Σ). So, now assume that (3.5)
holds at some point when the algorithm reaches line 3 and let f (µ) ∈ H(Σ) be the signature
polynomial that is chosen in line 4. Furthermore, let α ∈ Σ be such that f [α] ∈ G̃[Σ] with
sig(α) = µ. Then, let a, b ∈ ⟨X⟩ and g[β] ∈ G[Σ] ∪ {f [ε1]

1 , . . . , f
[εr]
r } be as chosen in line 6.

Due to the presence of the generators f [ε1]
1 , . . . , f

[εr]
r , such a choice of a, b and g[β] is always

possible. Let g′[β′] be the result of the computation in line 7. By construction, g′[β′] is
regular top sig-reduced by G[Σ]. Furthermore, note that f [α] is regular top sig-reduced
by G̃

[Σ] because G̃[Σ] is minimal. Consequently, the loop invariant implies that f [α] is
also regular top sig-reduced by G[Σ]. Note that, since we only care about regular top
sig-reducibility, it is irrelevant whether we consider G[Σ] before or after adding g′[β′] as
sig(α) ≃ sig(β′). Also, note that the loop invariant, together with the fact that µ was
chosen to be minimal among all signatures in H(Σ), implies that G[Σ] is a labelled Gröbner
basis up to signature µ ≃ sig(α). Hence, Lemma 3.2.10 is applicable to f [α] and g′[β′],
yielding lm(f) = lm(g′). Since also µ ≃ sig(aβb) = sig(β′), the loop invariant still holds
after removing f (µ) from H(Σ) and adding g′[β′] to G[Σ].

After recovering a labelled Gröbner basis, we can proceed with the following Algorithm 5
to also recover the syzygies whose signatures are saved in H.

Proposition 3.3.25. Algorithm 5 is correct.

Proof. To see the correctness of the algorithm, the only problematic lines are line 3 and 4.
Note that, due to the presence of the generators f [ε1]

1 , . . . , f
[εr]
r in line 3, a choice of a, b and

g[β] as required is always possible. It remains to show that ag[β]b really regular sig-reduces
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to zero by G[Σ], but this follows from Proposition 3.3.19 and the fact that the elements in
H are signatures of syzygies.

Algorithm 5: Syzygy reconstruction
Input:

• G[Σ] a labelled Gröbner basis of I [Σ] (up to some signature σ ∈ T (Σ));
• H ⊆ sig(Syz(I [Σ])) (such that maxH ≺ σ);

Output: H̃ ⊆ Syz(I [Σ]) such that sig(H̃) = H
1 H̃ ← ∅;
2 for µ ∈ H :
3 choose a, b ∈ ⟨X⟩, g[β] ∈ G[Σ] ∪ {f [ε1]

1 , . . . , f
[εr]
r } such that sig(aβb) ≃ µ and lm(agb)

is minimal;
4 0[β′] ← result of regular sig-reducing ag[β]b by G[Σ];
5 H̃ ← H̃ ∪ {cβ′} with c = sc(µ)/sc(β′);
6 return H̃

To conclude this section, we note that if Algorithm 3 terminates without interruption, a
Gröbner basis of Syz(I [Σ]) can be obtained as follows: First, apply Algorithm 4 to obtain
a labelled Gröbner basis of I [Σ]. Next, use Algorithm 5 to get the set H̃ containing the
recovered syzygies. Finally, a Gröbner basis of Syz(I [Σ]) is given by H̃ ∪ Triv(G[Σ]).

3.4 Computations in the mixed algebra

In this section, we only present the theory in terms of labelled Gröbner bases and leave all
adaptations for signature polynomials to the reader. The required changes are completely
analogous to the free algebra, and also the reconstruction techniques from Section 3.3.3
can be adapted to the more general setting of the mixed algebra.

We fix a family of polynomials (f1, . . . , fr) ∈ Ar generating a labelled module I [Σ], as well
as a monomial order ⪯ on [X]⟨Y ⟩ and a module order ⪯Σ on M(Σ). As in the previous
section, we assume that the two orders are compatible, which, in this setting now, means
that, for all a, b ∈ [X]⟨Y ⟩ and i ∈ {1, . . . , r}, we have

a ≺ b ⇐⇒ aεi ≺Σ bεi ⇐⇒ εia ≺Σ εib.

As before, we will denote both orders by the same symbol ⪯ from now on.

135



3 Noncommutative signature Gröbner bases

3.4.1 Computation of labelled Gröbner bases

Regular ambiguities

In order to define S- (and G-)polynomials in our setting, we first adapt the notion of
ambiguities to the mixed algebra. Since we now work over a coefficient ring and deal
with mixed monomials, the adaptation is not as straightforward as in the free case. In
particular, we now have to define a new type of ambiguity, called external ambiguity.
These ambiguities encode situations where a term can be reduced by f [α] and g[β] in two
(possibly different) non-overlapping ways. More precisely, they ensure that all terms of the
form lm(f)mlm(g) with m ∈ ⟨Y ⟩ have canonical normal forms. In the free algebra over a
coefficient field, such ambiguities are redundant, which is reflected by Case 3 in the proof
of Theorem 2.4.54 and by Case 1 in the proof of Lemma 3.3.7 respectively. Intuitively,
a noncommutative analogue of Buchberger’s coprime criterion [Mor94, Cor. 5.8] ensures
that the respective reductions yield a canonical normal form, making external ambiguities
useless in that setting. Now, when dealing with coefficient rings and mixed monomials,
Buchberger’s coprime criterion (Corollary 3.4.29) is weaker, and we cannot discard all
external ambiguities a priori. We note that external ambiguities also have to be considered
when computing Gröbner bases in the mixed algebra without signatures [MZ98], or when
computing Gröbner bases in the free algebra over coefficient rings [LMA23].

We first define ambiguities for mixed monomials and then extend them to labelled mixed
polynomials.

Definition 3.4.1. Let xap,xbq ∈ [X]⟨Y ⟩ and (a⊗ b, c⊗ d, p, q) be an (overlap/inclusion)
ambiguity of the words p and q. An (overlap/inclusion) ambiguity of xap and xbq is given
by

(ua⊗ b, vc⊗ d,xap,xbq),

where u = lcm(xa,xb)/xa and v = lcm(xa,xb)/xb.

Furthermore, for every m ∈ ⟨Y ⟩, we call the tuples

(u⊗mq, vpm⊗ 1,xap,xbq) and (uqm⊗ 1, v ⊗mp,xap,xbq)

external ambiguities of xap and xbq.
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For f [α], g[β] ∈ I [Σ] with f, g ̸= 0, an (overlap/inclusion/external) ambiguity of f [α] and
g[β] is

(ua⊗ b, vc⊗ d, f [α], g[β])

where (ua ⊗ b, vc ⊗ d, lm(f), lm(g)) is an (overlap/inclusion/external) ambiguity of the
mixed monomials lm(f) and lm(g). We denote by amb(f [α], g[β]) the set of all ambiguities
of f [α] and g[β]. Also, for G[Σ] ⊆ I [Σ], let

amb(G[Σ]) :=
⋃︂

f [α],g[β]∈G[Σ]

f,g ̸=0

amb(f [α], g[β]).

Remark 3.4.2. Note that two elements f [α] and g[β] can only have finitely many overlap
and inclusion ambiguities, but they always have infinitely many external ambiguities.

As in the previous cases, when clear by context, we drop f [α] and g[β] from an ambiguity.
Ambiguities of labelled mixed polynomials differ in two ways from ambiguities of (labelled)
polynomials in the free algebra. First, since we now deal with mixed monomials, they also
have to match the commutative part of the leading monomials. Furthermore, the more
general setting of the mixed algebra requires the consideration of external ambiguities.

Nevertheless, also in this setting, ambiguities of labelled polynomials still satisfy the
following relation regarding their leading monomial.

Lemma 3.4.3. If (a⊗ b, c⊗ d) is an ambiguity of f [α] and g[β], then lm(afb) = lm(cgd).

We define the leading monomial and the signature of an ambiguity analogously to the free
case (Definition 3.3.3). In the following, for a pair of nonzero f, g ∈ A, let lcmlc(f, g) be
the least common multiple of lc(f) and lc(g).

Definition 3.4.4. Let f [α], g[β] ∈ I [Σ] be such that f, g ̸= 0 and let a = (a ⊗ b, c ⊗ d) ∈
amb(f [α], g[β]). The leading monomial of a is lm(a) := lm(afb) and, with cf = lcmlc(f,g)

lc(f) ,
cg = lcmlc(f,g)

lc(g) , the signature of a is

sig(a) := max {sig(cfaαb),−sig(cgcβd)} ,
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choosing the first if sig(aαb) ≃ sig(cβd). Furthermore, a is called regular if sig(aαb) ̸≃
sig(cβd) and singular if sig(cfaαb) = sig(cgcβd).

Compared to Definition 3.3.3, the notion of singularity is now more restrictive. This implies
that it can happen that an ambiguity is neither regular nor singular. Also note that,
in comparison to Definition 3.3.3, the signature of an ambiguity now also incorporates
information about the leading coefficients of the polynomials. In the free case over a
coefficient field, this information was redundant, but now, when working over a coefficient
ring, it is essential.

The following lemma is an analogue of Lemma 3.3.7.

Lemma 3.4.5. Let g[β1]
1 , g

[β2]
2 ∈ I [Σ] be such that g1, g2 ̸= 0 and let ti ∈ T (A), bi ∈ ⟨Y ⟩,

i = 1, 2, such that

lm(t1g1b1) = lm(t2g2b2) and sig(t1β1b1) ≻ sig(t2β2b2).

Then there exist a regular ambiguity a ∈ amb(g[β1]
1 , g

[β2]
2 ), t3 ∈ T (A), and b3 ∈ ⟨Y ⟩ with

t3lm(a)b3 = lm(tigibi) and t3sig(a)b3 ≃ sig(t1β1b1),

with equality of signatures if lc(t1g1b1) = lc(t2g2b2).

Proof. Write ti = cix
aivi ∈ T (A) and lm(gi) = xbiwi ∈ [X]⟨Y ⟩. Then, by assumption,

xa1+b1 = xa2+b2 and v1w1b1 = v2w2b2 =: W . If, in W , either of w1 and w2 is completely
contained in the other, then there exists an inclusion ambiguity of w1 and w2 characterising
this situation (see Case 2 and 3 in Figure 3.1), otherwise one of them starts earlier in W and
the other finishes later, in which case there is an overlap (see Case 4 and 5 in Figure 3.1)
or external ambiguity (see Case 1 in Figure 3.1) of w1 and w2 characterising this situation.
Hence, in any case, there exists an ambiguity (p1 ⊗ q1, p2 ⊗ q2) of w1 and w2 such that
p1w1q1 = p2w2q2 is a subword of W . Thus, there exist l, r ∈ ⟨Y ⟩ such that lp1w1q1r =
lp2w2q2r = W . By definition, a = (u1p1⊗ q1, u2p2⊗ q2), with ui = lcm(xb1 ,xb2)/xbi , is an
ambiguity in amb(g[β1]

1 , g
[β2]
2 ). We claim that a satisfies the conditions of the lemma with

t3 = m3l ∈ T (A), where m3 = xa1+b1/lcm(xb1 ,xb2) = xa2+b2/lcm(xb1 ,xb2) and b3 = r.
The condition on the leading monomials is clear by construction. For the claim concerning
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the signatures, we note that m3ui = xai and, by the choice of l, r, we have lpi = vi and
qir = bi. Thus, for i = 1, 2,

sig(t3uipiβiqib3) = sig(m3uilpiβiqir) = sig(xaiviβibi) ≃ sig(tiβibi),

showing that a is regular since sig(t1β1b1) ≻ sig(t2β2b2) and that

t3sig(a)b3 = lcmlc(g1, g2)
lc(g1) sig(t3u1p1β1q1b3) ≃ sig(t1β1b1). (3.6)

For the final part, assume that also lc(t1g1b1) = lc(t2g2b2), that is, c1lc(g1) = c2lc(g2).
Then, multiplying t3 by c1lc(g1)/lcmlc(g1, g2) turns the similarity in (3.6) into equality.

Remark 3.4.6. Lemma 3.4.5 contains, in contrast to Lemma 3.3.7, no special case for
trivial syzygies. This is because the trivial syzygy constructed in Lemma 3.3.7 might no
longer satisfy all the required conditions in the general setting of the mixed algebra. Instead,
such situations are now characterised by the existence of external ambiguities, and are thus
included in the stated version. Furthermore, since the signature of an ambiguity now also
incorporates information about the leading coefficients of the polynomials, we only obtain
equality of signatures in the conclusion of Lemma 3.4.5 in case of equality of leading terms.
This is also why the left cofactors ti now hold a coefficient as well, which is in contrast to
Lemma 3.3.7 where they are just (noncommutative) monomials.

Next, we extend the definition of S-polynomials to labelled mixed polynomials.

Definition 3.4.7. Let f [α], g[β] ∈ I [Σ] be such that f, g ̸= 0 and let a = (a ⊗ b, c ⊗ d) ∈
amb(f [α], g[β]). The S-polynomial of a is

S-Pol(a) := lcmlc(f, g)
lc(f) af [α]b− lcmlc(f, g)

lc(g) cg[β]d.

As usual, S-polynomials are defined so that leading terms cancel, that is, if h[δ] = S-Pol(a),
then lm(h) ≺ lm(a). Furthermore, sig(δ) ⪯ sig(a), with equality if and only if the
ambiguity is regular and strict inequality if and only if the ambiguity is singular.

In the setting of coefficient rings, only considering S-polynomials is not enough to compute
Gröbner bases. This has been observed in the commutative case, see, for example, [BW93,
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Sec. 10.1] for a textbook exposition of the setting without signature and [FV21] for the
case with signatures, as well as in the noncommutative case, see, for example, [LMA23]. In
addition to S-polynomials, we now also need G-polynomials, which do not aim at cancelling
leading terms but at obtaining minimal leading coefficients.

Definition 3.4.8. Let f [α], g[β] ∈ I [Σ] be such that f, g ̸= 0 and let a = (a ⊗ b, c ⊗ d) ∈
amb(f [α], g[β]). Furthermore, let r, s ∈ R be Bézout coefficients of lc(f) and lc(g), that is,
rlc(f) + slc(g) = gcd(lc(f), lc(g)). The G-polynomial of a with respect to r, s is

G-Polr,s(a) := raf [α]b+ scg[β]d.

The coefficients r, s in the definition of G-polynomials are not unique, and the leading
term is only unique up to multiplication by an invertible element. More precisely, the
leading monomial of G-Polr,s(a) is lm(a) and the leading coefficient is gcd(lc(f), lc(g)). The
signature of the G-polynomial also depends on the choice of r, s. A crucial observation [FV21,
Prop. 2.13] is that these coefficients can be chosen so that G-polynomials are never singular,
that is, so that the signatures of the two summands do not cancel each other.

Lemma 3.4.9. Let f [α], g[β] ∈ I [Σ] be such that f, g ̸= 0 and let a ∈ amb(f [α], g[β]). There
exist r, s ∈ R such that sig(G-Polr,s(a)) ≃ sig(a).

Proof. The proof of [FV21, Prop. 2.13] only relies on properties of the leading coefficients
and carries over directly to our setting. We repeat it here for completeness. If the
ambiguity a is regular, any pair of Bézout coefficients works. Otherwise, let a = lc(f),
b = lc(g), c = sc(α), d = sc(β). The goal is to show that there are Bézout coefficients
r, s ∈ R of a, b so that (︄

a b

c d

)︄(︄
r

s

)︄
=
(︄

gcd(a, b)
h

)︄
,

with h ̸= 0. Assume, for contradiction, that h = 0 for all choices of r, s. Now, if ad− bc = 0,
then

ah = a(cr + ds) = c(ar + bs) = c gcd(a, b) ̸= 0,
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which is a contradiction. Otherwise, if ad− bc ̸= 0, we consider(︄
a b

c d

)︄(︄
r − b
s+ a

)︄
=
(︄

gcd(a, b)
ad− bc

)︄
,

yielding again a contradiction.

We assume that, for every potential pair of leading coefficients, a set of Bézout coefficients
r, s, as described in Lemma 3.4.9, has been fixed. We then refer to the corresponding
G-polynomial as the G-polynomial of a, denoted by G-Pol(a). Note that if h[δ] = G-Pol(a),
then sig(δ) ≃ sig(a) and lm(h) = lm(a).

The following lemma captures the significance of G-polynomials for our computations. It
states that, if a leading term can be written as a sum of two other leading terms, then it is
divisible by the leading term of a G-polynomial.

Lemma 3.4.10. Let f [α], g
[β1]
1 , g

[β2]
2 ∈ I [Σ] be such that f, g1, g2 ̸= 0 and such that there

exist ti ∈ T (A), bi ∈ ⟨Y ⟩, i = 1, 2, with

lt(f) = lt(t1g1b1) + lt(t2g2b2) and sig(t1β1b1) ≻ sig(t2β2b2).

Then there exists g[β3]
3 = G-Pol(a) for some a ∈ amb(g[β1]

1 , g
[β2]
2 ) and t3 ∈ T (A), b3 ∈ ⟨Y ⟩

such that lt(t3g3b3) = lt(f) and sig(t3β3b3) ≃ sig(t1β1b1).

Proof. Note that lm(t1g1b1) = lm(t2g2b2). Thus, the result follows from Lemma 3.4.5, 3.4.9,
and the properties of G-polynomials.

Definition 3.4.11. A set G[Σ] ⊆ I [Σ] is complete if the G-polynomials of all ambiguities
of G[Σ] are top sig-reducible by G[Σ].

A set can be completed by adding G-polynomials to it. The following definition extends the
idea of G-polynomials to syzygies. To this end, we define the least common multiple of two
module monomials as follows. For i = 1, 2, let σi = xaiviεjwi ∈M(Σ) with commutative
part xai ∈ [X], noncommutative parts vi, wi ∈ ⟨Y ⟩, and some 1 ≤ j ≤ r. In the special
case Y = {y}, we assume that all appearances of y have been collected in vi, so that wi = 1.
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Now, if vk′ is a suffix of vk and wl′ is a prefix of wl, where {k, k′} = {l, l′} = {1, 2}, then
lcm(σ1, σ2) := lcm(xa1 ,xa2)vkεjwl.

Definition 3.4.12. Let γ1, γ2 ∈ Σ be such that sig(γi) = ciσi with ci ∈ R, σi ∈ M(Σ)
for i = 1, 2. Assume that lcm(σ1, σ2) is defined and, for i = 1, 2, let ai, bi ∈ [X]⟨Y ⟩ be
such that lcm(σ1, σ2) = aiσibi. Also, let r, s be Bézout coefficients of gcd(c1, c2). The
sig-Combination of γ1 and γ2 is sig-Comb(γ1, γ2) := ra1γ1b1 + sa2γ2b2.

A set H ⊆ Syz(I [Σ]) is sig-complete if any sig-Combination of elements in H is top reducible
by H.

Example 3.4.13. Consider the mixed algebra A = Z[s, t]⟨x, y⟩ and the free A-bimodule
Σ = (A⊗Z[s,t] A)(E) on E = {ε1, ε2}.

For σ1 = stxyε1y and σ2 = t2yε1yx, we have

lcm(σ1, σ2) = st2xyε1yx.

Assuming that, for i = 1, 2, σi is the signature monomial of

γ1 = 2stxyε1y + txε2, γ2 = 3t2yε1yx− sε1,

the sig-Combination of γ1 and γ2 is

sig-Comb(γ1, γ2) = 2tγ1x+ (−1)sxγ2 = st2xyε1yx+ 2t2xε2x+ s2xε1.

To end this section, we introduce a concept needed later.

Definition 3.4.14. Let f [α] ∈ I [Σ] and G[Σ] ⊆ I [Σ]. We say that f [α] is super reducible
by G[Σ] if there exist g[β] ∈ G[Σ] and t ∈ T (A), b ∈ ⟨Y ⟩ such that lm(f) = lm(tgb) and
sig(α) = sig(tβb).

Note that super reducibility need not imply sig-reducibility as the former only requires
equality of the leading monomials, without considering the leading coefficients. However, if
a set of reducers is complete, a super reducible element is also sig-reducible. This is the
result of Proposition 3.4.15 below, which is an adaptation of [FV21, Prop. 2.17].
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Proposition 3.4.15. Let f [α] ∈ I [Σ] and G[Σ] ⊆ I [Σ] be complete and a labelled Gröbner
basis up to signature sig(α). If f [α] is super reducible by G[Σ], then it is also top sig-reducible
by G[Σ].

Proof. We essentially follow the proof of [FV21, Prop. 2.17]. Super reducibility implies
the existence of g[β1]

1 ∈ G[Σ] and t1 ∈ T (A), b1 ∈ ⟨Y ⟩ such that lm(f) = lm(t1g1b1) and
sig(α) = sig(t1β1b1). If, in fact, lt(f) = lt(t1g1b1), then f [α] is top sig-reducible by g

[β1]
1 .

Otherwise, with h[δ] = f [α] − t1g[β1]
1 b1, we have lm(h) = lm(f) and sig(δ) ≺ sig(α). By

assumption, h[δ] is top sig-reducible by G[Σ]. Let g[β2]
2 be such a reducer with t2 ∈ T (A),

b2 ∈ ⟨Y ⟩ such that lt(h) = lt(t2g2b2) and sig(δ) ⪰ sig(t2β2b2). Consequently, we have

lt(f) = lt(t1g1b1) + lt(t2g2b2) and sig(α) ≻ sig(δ) ⪰ sig(t2β2b2).

By Lemma 3.4.10, there exists g[β3]
3 = G-Pol(a) for some a ∈ amb(g[β1]

1 , g
[β2]
2 ) and t3 ∈

T (A), b3 ∈ ⟨Y ⟩ such that lt(t3g3b3) = lt(f) and sig(t3β3b3) ≃ sig(t1β1b1) = sig(α). Since
G[Σ] is complete, g[β3]

3 is top sig-reducible by G[Σ], and any reducer of g[β3]
3 can be used to

top sig-reduce f [α].

Cover criterion

In the following, we adapt the cover criterion (Theorem 3.3.11) to the mixed algebra. To
this end, we first generalise the notion of an ambiguity being covered (Definition 3.3.9).

Definition 3.4.16. Let G[Σ] ⊆ I [Σ], H ⊆ Syz(I [Σ]), and f [α], g[β] ∈ I [Σ] with f, g ̸= 0. An
ambiguity a ∈ amb(f [α], g[β]) is covered by (G[Σ], H) if there exist h[δ] ∈ G[Σ], γ ∈ H, and
t, t′ ∈ T (A), b, b′ ∈ ⟨Y ⟩ such that the following conditions hold:

• lm(a) ≻ lm(thb);

• sig(a) = sig(tδb) + sig(t′γb′);

Remark 3.4.17. In Definition 3.4.16, either of t and t′ can also be 0. If t = 0, then
lm(thb) = 0 and the first condition is trivially fulfilled.
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The property of being covered defined above differs in one main point from Definition 3.3.9
for labelled polynomials over coefficient fields: We now need to consider linear combinations
to form the signature. Also, now equality of signatures is required whereas in the free case
similarity was sufficient. This requirement comes from the fact that we deal with coefficient
rings now and is also necessary in the commutative case, see [FV21, Def. 2.18].

The following theorem is a generalisation of Theorem 3.3.11 and an adaptation of [FV21,
Thm. 3.1]. We note that, while all implications of Theorem 3.3.11 could be generalised, in
the following we only state the relevant characterisation.

Theorem 3.4.18. Let σ ∈ T (Σ), G[Σ] ⊆ I [Σ], and H ⊆ Syz(I [Σ]) be such that the following
conditions hold:

• for all g[β] ∈ G[Σ] : g ̸= 0;

• for all εi ≺ σ, there exists βi ∈ H ∪ {β | g[β] ∈ G[Σ]} with sig(βi) = εi;

• G[Σ] is complete and H is sig-complete;

If all regular ambiguities a of G[Σ] with sig(a) ≺ σ are covered by (G[Σ], H), then G[Σ] is a
labelled Gröbner basis of I [Σ] up to signature σ and H is a Gröbner basis of Syz(I [Σ]) up
to signature σ.

Remark 3.4.19. Comparing Theorem 3.4.18 with the corresponding Theorem 3.3.11 in
the free setting, we see that in the second hypothesis of the theorem, we now have to require
equality of signatures whereas in Theorem 3.3.11 similarity was sufficient.

Proof of Theorem 3.4.18. Assume, for contradiction, that the theorem is wrong. Then
there exists f [α] ∈ I [Σ] with sig(α) ≺ σ such that either f ̸= 0 and f [α] is not sig-reducible
by G[Σ] or f = 0 and α is not reducible by H. Pick such f [α] with minimal signature. Note
that this means that G[Σ] is a labelled Gröbner basis up to signature sig(α).

Let g[β1]
1 ∈ G[Σ], γ1 ∈ H and t1, t

′
1 ∈ T (A), b1, b

′
1 ∈ ⟨Y ⟩ such that

sig(α) = sig(t1β1b1) + sig(t′1γ1b
′
1). (3.7)
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By assumption, such a decomposition exists (in fact, with either t1 = 0 or t′1 = 0 but we
do not require this for (3.7)). We select these elements so that lm(t1g1b1) is minimal and
claim that t1g[β1]

1 b1 is not regular top sig-reducible by G[Σ].

To prove this claim, suppose that t1g[β1]
1 b1 is regular top sig-reducible by g[β2]

2 . Then there
exist t2 ∈ T (A), b2 ∈ ⟨Y ⟩ such that lt(t1g1b1) = lt(t2g2b2) and sig(t1β1b1) ≻ sig(t2β2b2). By
Lemma 3.4.5, there exists a regular ambiguity a ∈ amb(g[β1]

1 , g
[β2]
2 ) and t3 ∈ T (A), b3 ∈ ⟨Y ⟩

such that
t3lm(a)b3 = lm(tigibi) and t3sig(a)b3 = sig(t1β1b1). (3.8)

Since sig(a) ⪯ sig(t1β1b1) ≺ σ, the ambiguity a is covered by (G[Σ], H). So there exist
h[δ] ∈ G[Σ], γ ∈ H and t, t′ ∈ T (A), b, b′ ∈ ⟨Y ⟩ such that lm(a) ≻ lm(thb) and sig(a) =
sig(tδb) + sig(t′γb′). Combining this with (3.7) and (3.8) yields

lm(t3thbb3) ≺ t3lm(a)b3 = lm(t1g1b1),

sig(α) = sig(t3tδbb3) + sig(t3t′γb′b3) + sig(t′1γ1b
′
1).

Let π = sig-Comb(γ1, γ), which is well-defined and contained in H because H is
sig-complete. By definition, sig(π) divides the sum sig(t3t′γb′b3) + sig(t′1γ1b

′
1). There-

fore, the pair (h[δ], π) ∈ G[Σ] ×H yields a decomposition of sig(α) with smaller leading
monomial than lm(t1g1b1); a contradiction to the minimality of lm(t1g1b1).

Thus, t1g[β1]
1 b1 is not regular top sig-reducible. Now, we distinguish between two cases

depending on whether f = 0 or not.

Case 1 First, we consider the case f ̸= 0. Observe that lm(f) ̸= lm(t1g1b1) as other-
wise f [α] − t′10[γ1]b′

1 would be super reducible by g
[β1]
1 , and thus, by Proposition 3.4.15,

top sig-reducible by G[Σ]. But then also f [α] would be top sig-reducible – a con-
tradiction. Now, let f ′[α′] = f [α] − t1g

[β1]
1 b1 − t′10[γ1]b′

1. Then sig(α′) ≺ sig(α) and
lt(f ′) = max{lt(f), lt(t1g1b1)} ≠ 0. By minimality of sig(α), f ′[α′] is top sig-reducible
by G[Σ]. But this implies that f [α] or t1g[β1]

1 b1 is regular top sig-reducible by G[Σ], which is
a contradiction.

Case 2 Now, we consider the case f = 0. To this end, let f ′[α′] be like before, and note
that lt(f ′) = −lt(t1g1b1). If f ′ ̸= 0, then f ′[α′] being top sig-reducible implies that t1g[β1]

1 b1
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is regular top sig-reducible by G[Σ], which is a contradiction. Thus, f ′ = −t1g1b1 = 0, and
by assumption on G[Σ], we can conclude t1 = 0, showing that α is reducible by γ1 ∈ H.

Like in the free case (see Corollary 3.3.13), Theorem 3.4.18 can be extended to characterise
full labelled Gröbner bases.

Corollary 3.4.20. Let G[Σ] ⊆ I [Σ] and H ⊆ Syz(I [Σ]) be such that the following conditions
hold:

• for all g[β] ∈ G[Σ] : g ̸= 0;

• for all εi, there exists βi ∈ H ∪ {β | g[β] ∈ G[Σ]} with sig(βi) = εi;

• G[Σ] is complete and H is sig-complete;

If all regular ambiguities of G[Σ] are covered by (G[Σ], H), then G[Σ] is a labelled Gröbner
basis of I [Σ] and H is a Gröbner basis of Syz(I [Σ]).

Algorithm

Equipped with Theorem 3.4.18, we can describe with Algorithm 6 an algorithm for
enumerating labelled Gröbner bases and Gröbner bases of syzygy modules in the mixed
algebra. This algorithm combines key elements of Kandri-Rody and Kapur’s algorithm for
commutative Gröbner bases over Z with signatures [FV21] and Algorithm 2 for computing
labelled Gröbner bases in free algebras over fields. The difference between the free algebra
and the mixed algebra is apparent in the fact that now, in addition to S-polynomials, also
G-polynomials have to be computed. Additionally, the computation of ambiguities and the
reductions are done using the definitions from the mixed algebra.

Like the previous Gröbner algorithms, also Algorithm 6 runs on a loop, processing elements
from a queue. However, now, instead of ambiguities, the queue contains directly the S- and
G-polynomials. This is due to the fact that S- and G-polynomials have to be treated
differently. At each step, the algorithm selects a polynomial using a fair selection strategy,
and, if not redundant, reduces it and forms new polynomials from it, adding them to the
queue. Just like Algorithm 2, also this algorithm ensures that, for every regular ambiguity
of G[Σ], an element is eventually added which covers it.
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Algorithm 6: Labelled Gröbner basis algorithm
Input: (f1, . . . , fr) ∈ Ar
Output (if the algorithm terminates):

• G[Σ] a labelled Gröbner basis of the labelled module I [Σ] generated by f1, . . . , fr;
• H ⊆ Syz(I [Σ]) a Gröbner basis of I [Σ];

1 G[Σ] ← ∅;
2 H ← ∅;
3 poly←

{︂
(f [ε1]

1 , N), . . . , (f [εr]
r , N)

}︂
;

4 while poly ̸= ∅ :
5 select an element (f [α], type) from poly using a fair strategy and remove it;
6 if type is not S(a) or a is not covered by (G[Σ], H) :
7 f ′[α′] ← result of regular sig-reducing f [α] by G[Σ];
8 if f ′ = 0 :
9 H ← H ∪ {α′}, and make H sig-complete;

10 else:
11 G[Σ] ← G[Σ] ∪ {f ′[α′]};
12 for g[β] ∈ G[Σ] and a ∈ amb(f ′[α′], g[β]) :
13 add (S-Pol(a),S(a)) to poly if a is regular;
14 add (G-Pol(a)),G(a)) to poly;

15 return G[Σ], H

As in the classical case, S- and G-polynomials are added for different purposes: S-polynomials
create new leading monomials and G-polynomials create new leading coefficients for existing
leading monomials. The cover criterion concerns the existence of leading monomials in the
basis, and can be used to skip over S-polynomials that correspond to ambiguities which are
already covered. The situation is different for G-polynomials: even if the corresponding
ambiguity is covered, it is necessary to process and add the G-polynomial to complete the
set G[Σ].

This requires keeping track of the construction of each labelled polynomial in the algorithm.
For this purpose, the main queue poly contains pairs (f [α], type), where type is either
the symbol N indicating that f is one of the input polynomials, or the symbol S(a),
respectively G(a), indicating that f [α] is the S-polynomial, respectively the G-polynomial,
of the ambiguity a.

147



3 Noncommutative signature Gröbner bases

We note that Algorithm 6 is stated using labelled polynomials, carrying their entire module
representation. However, like in the free case, all relevant properties only require considering
the signature of the module representation, and the algorithm can be adapted to work
with signature polynomials instead of labelled polynomials. In that case, the full module
representations can be recovered a posteriori using the techniques from Section 3.3.3.

For brevity, the presentation of the algorithm is simplified concerning the handling of the
queue of pairs. Unlike in the commutative case or the free case over fields, the inserting
from line 12 to 14 generally involves infinitely many elements. In order for the algorithm
to correctly enumerate a labelled Gröbner basis, it needs to process all possible S- and
G-polynomials, so it cannot enter an infinite loop inside the main loop (necessarily infinite).

Instead, Algorithm 6 should be modified to add a spooling machinery ensuring that all
pairs are processed. We detail a possible implementation of such a mechanism. The
main idea is that the algorithm must ensure that poly is finite at all times. The spooling
mechanism ensures that by only adding a finite number of pairs to poly at each iteration.
The additional mechanism would then run in parallel for all sources of pairs, ensuring that
the pairs are processed in a fair order.

More precisely, we assume that we know a way to enumerate ambiguities, that is, we are
given two functions:

• firstamb taking as input two labelled polynomials f [α] and g[β] and returning an
ambiguity a0 between them;

• nextamb taking as input an ambiguity a of two labelled polynomials f [α] and g[β],
and returning another ambiguity n(a) between them;

with the property that {a0, n(a0), n(n(a0)), . . . } = amb(f [α], g[β]).

The algorithm would maintain an additional variable spool, which is a finite set of
ambiguities and initialised to the empty set before the main loop starting in line 4. The
lines 12 to 14 would be replaced by population of that list:

Algorithm 6a: Add the ambiguities to the spooling
12a for g[β] ∈ G[Σ] :
12b a0 ← firstamb(f ′[α′], g[β]);
12c add a0 to spool;
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The construction of the pairs would be done closer to their actual use, by adding the
following lines at the very end of the main loop, outside the “else”-block and just prior to
selection of the next pair:

Algorithm 6b: Construct the pairs and update spool

14a for a ∈ spool :
14b add (S-Pol(a),S(a)) to poly if a is regular;
14c add (G-Pol(a),G(a)) to poly;

14d spool← {nextamb(a) | a ∈ spool};

This has the effect of adding finitely many new elements to poly, namely at most 2 for
each element of spool, and updating spool to generate new elements the next time the
code is evaluated.

The main property that the machinery must satisfy is that it yields an overall fair selection
strategy, correctly enumerating all ambiguities of pairs of polynomials.

Proposition 3.4.21. In Algorithm 6, with the structure described above, if the selection of
ambiguities in poly in line 5 is done following a fair strategy, for all ambiguities of G[Σ],
the corresponding S- and G-polynomials are eventually selected and processed.

Proof. Let f [α], g[β] ∈ G[Σ] and let a be an ambiguity between them. Since the function
nextamb enumerates all ambiguities of f [α], g[β], eventually the insertion mechanism reaches
the ambiguity a, at which point the corresponding S- and G-polynomials are either inserted
into poly or discarded. Since selection in poly is done following a fair strategy, eventually
both the S- and the G-polynomial of a will be selected and processed.

In the following, we assume that Algorithm 6 is adapted to include the spooling mecha-
nism described above. Then we can show the following correctness result analogous to
Theorem 3.3.16.

Theorem 3.4.22. Algorithm 6 correctly enumerates a labelled Gröbner basis of I [Σ] and a
Gröbner basis of Syz(I [Σ]).
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Proof. We prove that the algorithm enforces the requirements of Theorem 3.4.18. First,
by construction, all elements added to G[Σ] have nonzero polynomial part. All signatures
εi are processed, and result in either an element in H or in G[Σ], depending on whether
f

[εi]
i regular sig-reduces to 0 or not. The bases G[Σ] and H are complete and sig-complete

respectively, because all G-polynomials and all sig-Combinations are added to them.
Finally, the algorithm ensures that all regular ambiguities it considers are covered: either
the ambiguity a is already covered, or an element is added to either G[Σ] or H with signature
sig(a). Either way, this element covers the ambiguity a. Finally, by Proposition 3.4.21, it
processes all ambiguities, covering all of them eventually.

Remark 3.4.23. If the used module order is fair, the functions firstamb and nextamb enu-
merate ambiguities by increasing signature, and if the selection strategy processes elements
by increasing signatures, then, whenever Algorithm 6 considers a labelled polynomial f [α],
the sets G[Σ] and H are a labelled Gröbner basis and a Gröbner basis respectively up to
signature sig(α).

To end this section, we note that Algorithm 6 provides a semi-decision procedure for ideal
membership in the mixed algebra, analogous to Buchberger’s algorithm (Algorithm 1) in
the free algebra over a field.

Lemma 3.4.24. Let f, f1, . . . , fr ∈ A. If f ∈ (f1, . . . , fr), then this fact can be verified in
finite time.

Proof. Using Algorithm 6 and exploiting the fact that any labelled Gröbner basis is also a
Gröbner basis, the proof is analogous to that of Lemma 2.4.61.

Corollary 3.4.25. The ideal membership problem (Problem 2.2.28) in A is semi-decidable.
In particular, the ideal membership problem in R⟨X⟩ is semi-decidable, where R is a
commutative principal ideal domain.

150



3 Noncommutative signature Gröbner bases

3.4.2 Elimination criteria

For simplicity, we presented Algorithm 6 stripped to its main loop, with only the cover
criterion necessary for the loop invariant. But just like Algorithm 2 for the free algebra,
also this algorithm can be equipped with powerful elimination criteria to skip redundant
ambiguities and polynomials. In this section, we list a few of these additional criteria
that can be added to the algorithm. They all work similarly to their counterpart in the
commutative case, ensuring that elements are covered (for S-polynomials) or sig-reducible
(for G-polynomials). First, we focus on G-polynomials.

Corollary 3.4.26. Let f [α], g[β] ∈ G[Σ] be such that f, g ̸= 0 and a ∈ amb(f [α], g[β]). If
G-Pol(a) is top sig-reducible by G[Σ], then it can be discarded.

Proof. It is a direct consequence of Theorem 3.4.18: if G-Pol(a) is top sig-reducible by
G[Σ], it is not required for making G[Σ] complete, and thus, can be discarded.

The criterion allows to avoid all reductions of G-polynomials to zero. In fact, it avoids all
top reductions of G-polynomials entirely. Nevertheless, it still makes sense to tail reduce
G-polynomials in practice. As a special case of Corollary 3.4.26, we see that, if lc(f) | lc(g),
then all their G-polynomials can be discarded as they are all top sig-reducible by f [α].

Corollary 3.4.27. Let f [α], g[β] ∈ G[Σ] be such that f, g ̸= 0 and lc(f) | lc(g). Then all
G-polynomials of f [α] and g[β] can be discarded.

Proof. In this situation, gcd(lc(f), lc(g)) = lc(f), and thus, all G-polynomials of f [α] and
g[β] are top sig-reducible by f [α].

As a consequence of Corollary 3.4.27, we see that all G-polynomials are redundant if we
work over a coefficient field.

We now move to S-polynomials. Like explained in Section 3.3.2, excluding covered ambigu-
ities encapsulates part of the syzygy criterion (Proposition 3.3.19), stating that any regular
ambiguity whose signature is reducible by the signature of a syzygy in H can be discarded,
and the singular criterion (Corollary 3.3.21), which says that, for each signature, at most
one regular ambiguity (the one with minimal leading monomial) has to be considered.

151



3 Noncommutative signature Gröbner bases

Additionally, like in the free case, we can make use of trivial syzygies to detect redundant
elements, yielding the F5 criterion in this setting.

Corollary 3.4.28 (F5 criterion). In Algorithm 6, let a ∈ amb be regular such that there
exist f [α], g[β] ∈ G[Σ] and m ∈ ⟨Y ⟩ with

• sig(αmg) ̸≃ sig(fmβ), and

• sig(a) is divisible by max{sig(αmg), sig(fmβ)}.

Then a is covered by the trivial syzygy αmg − fmβ and S-Pol(a) can be discarded after
adding this trivial syzygy to the set H.

This version of the F5 criterion fully includes Buchberger’s coprime criterion for eliminating
S-polynomials coming from elements with coprime leading terms, see [LMA23, Lem. 22]
for a noncommutative version without signatures. In particular, if f [α], g[β] are such that
lc(f) and lc(g) as well as the commutative parts of lm(f) and lm(g) are coprime, then,
for every regular external ambiguity of these elements, the S-polynomial can be discarded
after adding a suitable trivial syzygy to H.

Corollary 3.4.29. Let f [α], g[β] ∈ G[Σ] with lm(f) = xav and lm(g) = xbw. If
gcd(lc(f), lc(g)) = gcd(xa,xb) = 1, then all S-polynomials coming from regular exter-
nal ambiguities of f [α] and g[β] can be discarded after adding the set of trivial syzygies⋃︁
m∈⟨Y ⟩{αmg − fmβ, βmf − gmα} to the set H.

Proof. By definition of external ambiguities and the assumption on xa,xb, any external
ambiguity a of f [α] and g[β] is of the form a = (xb ⊗mw,xavm ⊗ 1) or a = (xbwm ⊗
1,xa ⊗mv). For the first case, the assumption on the leading coefficients implies

sig(a) = max
{︂

sig(lc(g)xbαmw),−sig(lc(f)xavmβ)
}︂

= max {sig(αmlt(g)),−sig(lt(f)mβ}

= max {sig(αmg),−sig(fmβ)} .

Since a is regular, sig(αmg) ̸≃ sig(fmβ), and thus, Corollary 3.4.28 implies that S-Pol(a)
can be discarded after adding αmg − fmβ to H. The second case follows along the same
lines by adding βmf − gmα to H.
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Remark 3.4.30. Buchberger’s coprime criterion allows to eliminate, with finitely many
checks, an infinite number of S-polynomials. It would be interesting to investigate whether
this behaviour can affect the termination of Algorithm 6. Or more generally, can the
elimination criteria presented in this section be used to eliminate infinitely many S- and
G-polynomials, using only a finite number of operations, and in this way cause the algorithm
to terminate? We have not tried to answer this question yet.

Note that, in contrast to the F5 criterion in the free case (Corollary 3.3.20), we now have
to explicitly add the trivial syzygy used in the criterion to the set H. This is because
Algorithm 2 explicitly adds all trivial syzygies of G[Σ] to the set H at the end of the
algorithm. Algorithm 6 does not have to do this because the information of the trivial
syzygies is now contained in the external ambiguities of the polynomials. Compare this
also with Remark 3.4.6.

We note that, just like in the free case, checking the F5 criterion can be done by constructing
on the fly the finitely many syzygies that can possibly apply. This causes the complexity
of applying Corollary 3.3.20 in general to be quadratic in the size of G[Σ]. In the following
Section 3.4.3, we discuss how to reduce this cost to linear for homogeneous polynomials
and certain module orders.

3.4.3 Application of the mixed algebra: Homogenisation

It is frequently preferable to work with homogeneous polynomials when computing Gröbner
bases, in both the commutative and noncommutative case. Specifically in the context
of signatures, they open the possibility to use more efficient orders for the F5 criterion.
However, often the considered systems consist of inhomogeneous polynomials. In this case,
the process of homogenisation can be used to turn such an inhomogeneous system into a
homogeneous one. This process of homogenisation naturally leads to elements in a mixed
algebra. Thus, in this section, we discuss one important application of the mixed algebra,
namely computations with homogenised polynomials.

The notion of (standard) degree extends in a straightforward way from polynomials
(Example 2.2.35) to mixed polynomials. In particular, given a mixed polynomial

f =
d∑︂
i=1

cix
aiwi ∈ R[X]⟨Y ⟩,
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its degree deg(f) is the maximum degree of the monomials xaiwi appearing in f , that is,
deg(f) = maxi deg(xai) + deg(wi). It is called homogeneous if all its terms have the same
degree. The homogenisation fh of f is the polynomial

fh =
d∑︂
i=1

cih
deg(f)−deg(xaiwi)xaiwi ∈ R[h,X]⟨Y ⟩,

where h is a new homogenisation variable. Note that the homogenisation fh is a homo-
geneous polynomial, and evaluating it at h = 1 yields back f . In that construction, the
homogenisation variable h commutes with all other indeterminates. Hence, in particular, if
f1, . . . , fr are elements in a free algebra R⟨X⟩, then their homogenisations fh1 , . . . , fhr are
mixed polynomials in R[h]⟨X⟩.

When working with inhomogeneous polynomials, applying the F5 criterion is essentially
quadratic in the size of the partially computed signature Gröbner basis. The reason for this
is that one does not know in advance which signature realises the maximum in the second
condition of Corollary 3.3.20. This problem can be partially remedied by considering
module orders which make this comparison easy, such as the position-over-term order ⪯PoT,
first comparing the index ind(σ) := i of a signature σ = aεib before comparing the terms a
and b (see Example 3.1.14). However, to fully utilise the F5 criterion in this case, elements
have to be processed by increasing signatures, which does not constitute a fair selection
strategy in the noncommutative setting if ⪯PoT is used. An alternative can be to decouple
the selection strategy from the module order, but then one cannot expect that all elements
necessary to use the F5 criterion will be present in time for its use.

Another possibility, when dealing with homogeneous polynomials is to use the degree-over-
position-over-term order ⪯DoPoT. This order first considers the degree deg(σ) := deg(afib)
of a signature σ = aεib. In the homogeneous case, we have deg(f) = deg(sig(α)) for all
labelled polynomials f [α] computed during the execution of a signature-based algorithm,
while in the inhomogeneous case, it only holds that deg(f) ≤ deg(sig(α)), with the latter
sometimes being called the sugar degree of f [Gio+91], see also [Ede13, Sec. 4] for a
discussion of the sugar degree in relation to signatures. Recall from Example 3.1.14 that
⪯DoPoT first compares the degree of the signatures, then their indices, and finally the
monomials a and b. This order is fair, and can thus be used as a selection strategy in
Algorithm 6, by always picking the element with smallest signature in the queue poly in
line 5. Moreover, this order makes it possible to verify the conditions of the F5 criterion
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easily, and the incremental calculation ensures that all the required signatures are available
when applying the criterion.

Corollary 3.4.31 (F5 criterion optimised). In Algorithm 6, assume that the input
(f1, . . . , fr) ∈ Ar is homogeneous and that ⪯DoPoT is used as a module order with a
graded monomial order.

Let g[β] ∈ G[Σ]. For all m ∈ ⟨Y ⟩ and j > ind(β), the module terms lt(g)mεj and εjmlt(g)
are signatures of trivial syzygies between g[β] and f [εj ]

j .

If, additionally, elements in Algorithm 6 are processed by increasing signature and all
ambiguities with signature divisible by a signature as above are discarded, then all ambiguities
whose signature is divisible by the signature of a trivial syzygy σ = g2mβ1 − β2mg1, with
ind(β1) ̸= ind(β2), are discarded in this way.

Proof. They are the signature of the trivial syzygies gmεj − βmfj and εjmg − fjmβ

respectively, observing that both members of these trivial syzygies must have the same
degree. Note that deg(g) = deg(sig(β)) as g[β] ∈ G[Σ] and all elements in G[Σ] satisfy this
property. This follows from the fact that this property holds for the basis elements f [εi]

i ,
i = 1, . . . , r, and, since the input is homogeneous, it is also preserved by all operations
done in Algorithm 6 (S/G-polynomial formation, sig-reductions).

For the second part, the signature of the trivial syzygy σ is sig(g2mβ1) if ind(β1) > ind(β2)
and −sig(β2mg1) otherwise. Both cases are handled similarly, so assume that we are in the
first one. Then, the signature of σ is a discarded signature, obtained from g

[β2]
2 . It remains

to prove that sig(β2) ≺ sig(a), to ensure that g[β2]
2 was computed in time for discarding a.

Since sig(a) is divisible by sig(σ) ≻ sig(β2mg1), we have deg(sig(a)) ≥ deg(sig(β2)). With
ind(sig(a)) = ind(β1) > ind(β2), this yields sig(β2) ≺ sig(a).

3.5 Experiments

In this section, we make two comparisons. First, we compare a noncommutative signa-
ture-based algorithm to a classical Gröbner basis algorithm in the free algebra. More
precisely, we compare a signature-based F4 algorithm, which is an adaptation of Algo-
rithm 3 and described in more detail in Section 6.3.2, to the classical noncommutative F4
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algorithm [Xiu12, Sec. 5.4]. We have implemented both algorithms in our software packages
using the same underlying data structures. This makes for a fair comparison, allowing to
actually compare the effect of signatures and not the effect of different implementations. We
give data about the number of S-polynomials computed and reduced as well as about the
number of reductions to zero and the overall computation time when computing (signature)
Gröbner bases for certain benchmark examples.

Secondly, we compare the mixed algebra setting to other (more naive) approaches for com-
puting noncommutative (signature) Gröbner bases involving some commutative variables.
More precisely, we compare Algorithm 6 to the following two approaches:

1. classical Gröbner basis computations in the free algebra where commutator relations
are added explicitly to the generators of an ideal;

2. signature Gröbner basis computations in the free algebra where commutator relations
are added explicitly to the generators of an ideal but are given a trivial signature 0
so that sig-reductions by these relations are always possible;

For all classical Gröbner basis computations, we use our SageMath package operator_gb

and, for the signature-based computations in the free algebra, we use our package
signature_gb. The two packages are described in more detail in Section 6.1 and 6.3
respectively. For the signature-based computations in the mixed-algebra, we use our
prototype implementation of Algorithm 6 over coefficient fields for SageMath, including
the criteria for S-polynomial elimination discussed in Section 3.4.2 (G-polynomials are
redundant over fields).

All computations are performed over the coefficient field Q and a degree-lexicographic
monomial order is used in combination with ⪯DoPoT for the signature-based computations.

For the first comparison, we consider the benchmark examples listed in Table 3.1. The first
three examples are homogeneous and taken from [LL09]. As done in [LL09], we compute
truncated (signature) Gröbner bases of these homogeneous ideals up to certain degree
bounds. The designated degree bounds are indicated by the number after the “-” in the
name of each example in Table 3.2. For example, lp1-12 means that we compute a Gröbner
basis of the example lp1 up to degree 12. Additionally, we also consider two inhomogeneous
ideals derived from finite generalised triangular groups taken from [RS02, Thm. 2.12] as
also done in [Xiu12]. Both of these ideals have finite (signature) Gröbner bases.
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Example Generators of the ideal
braid3 yxy − zyz, xyx− zxy, zxz − yzx, x3 + y3 + z3 + xyz

lp1 z4 + yxyx− xy2x− 3zyxz, x3yxy − xyx, zyx− xyz + zxz
lv2 xy + yz, x2 + xy − yx− y2

tri1 x3 − 1, y2 − 1, (yxyxyx2yx2)2 − 1
tri3 x3 − 1, y3 − 1, (yxyx2)2 − 1

Table 3.1: Benchmark examples for the comparison between signature-based computations and
classical Gröbner basis computations.

Table 3.2 compares the number of S-polynomials computed and reduced and the number
of reductions to zero that occur while computing (truncated) (signature) Gröbner bases for
the examples in Table 3.1. We also list the computation times (in seconds). As evidenced by
the results, the signature-based algorithm can provide a drastic advantage over conventional
Gröbner basis computations, requiring significantly fewer S-polynomials and reductions to
zero. Notably, for the homogeneous examples, the signature-based algorithm consistently
surpasses the standard method across all metrics, yielding a speed-up of up to 40 times.
For two of the considered examples (lp1 and lv2), there are even no zero reductions
at all. However, for the inhomogeneous examples, the scenario is reversed, with the
signature-based approach needing more S-polynomials and a greater number of reductions
to zero. Nevertheless, it is noteworthy that, for all examples, the proportion of reductions
to zero is consistently lower in the signature-based algorithm, indicating that this algorithm
spends proportionally less time on these redundant computations. While this behaviour is
intriguing, we have not investigated it in more detail yet.

For the second comparison concerning the mixed algebra, we report in Table 3.3 on the
number of S-polynomials reduced and the number of zero reductions that appear during
the computation of (signature) Gröbner bases for the following benchmark examples. We
do not list computation times here, as our mixed algebra implementation uses substantially
more naive data structures and routines than the other implementations, not allowing for
a fair comparison. Nevertheless, we note that, despite this, the mixed algebra approach
still remains the most efficient for certain examples. For instance, in the case of heis-9,
the mixed algebra approach yields a computation time of 2.3 seconds, while the classical
and signature-based approaches in the free algebra require 118 seconds and more than 10
minutes, respectively.
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Example classical Gröbner basis signature-based algorithm
S-poly red. to 0 time S-poly red. to 0 time

braid3-10 844 496 2.6 422 7 0.3
braid3-11 1896 1215 66.6 1005 70 1.6

lp1-12 204 136 9.9 97 0 2.2
lp1-13 307 213 121.6 144 0 12.2
lv2-30 8850 8038 26.8 814 0 1.1
lv2-40 21 146 19 664 176.5 1484 0 4.5
tri1 261 199 0.2 573 399 0.7
tri3 197 150 0.1 327 241 0.1

Table 3.2: Number of S-polynomials and reductions to zero during the computation of (truncated)
(signature) Gröbner bases for different benchmark examples as well as computation
times (in sec).

We consider the benchmark examples listed below. Note that all considered ideals are
homogeneous.

• The example ufn1h is taken from [LL09] and concerns the ideal

ufn1h =
(︂
a2 − ah, b2 − bh, c2 − ch, d2 − dh, aba− abh,

bab− abh, aca− ach, cac− ach, ada− adh, dad− adh,

bcb− bch, cbc− bch, bdb− bdh, dbd− bdh, cdc− cdh, dcd− cdh
)︂

in Q[h]⟨a, b, c, d⟩.

• The example ih is taken from [LMA23, Ex. 31] and is related to Iwahori-Hecke
algebras [Hum90], which are deformations of the group algebra of a Coxeter group.
For example, the Iwahori-Hecke algebra of type A3, is finitely presented as the
quotient of Z[q, q−1]⟨x, y, z⟩ by the ideal(︂
x2 + x− qx− q, y2 + y − qy − q, z2 + z − qz − q, zx− xz, yxy − xyx, zyz − yzy

)︂
.
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Example classical Gröbner basis naive signature basis Algorithm 6
S-poly red. to 0 S-poly red. to 0 S-poly red. to 0

ufn1h-8 740 604 9075 716 270 120
ufn1h-9 1218 1022 28 027 4785 455 243

ih-8 456 414 8179 116 35 8
ih-9 520 475 22 302 212 37 9

heis-8 3917 2871 15 521 87 22 4
heis-9 11 555 8520 53 781 222 48 14

Table 3.3: Comparison of different approaches for computing (signature) Gröbner bases in the
mixed algebra.

Here, we consider the homogenisation of that ideal in Q[q, q−1, h]⟨x, y, z⟩, that is,

ih =
(︂
x2 + hx− qx− hq, y2 + hy − qy − hq, z2 + hz − qz − hq,

zx− xz, yxy − xyx, zyz − yzy, h2 − qq−1
)︂
.

• The example heis is related to the discrete Heisenberg group ⟨x, y, z | z =
xyx−1y−1, xz = zx, yz = zy⟩. We consider the homogenisation of the ideal de-
scribing these relations in Q[z, z−1, h]⟨x, x−1, y, y−1⟩, that is,

heis =
(︂
h3z − xyx−1y−1, h2 − zz−1, h2 − xx−1, h2 − x−1x, h2 − yy−1, h2 − y−1y

)︂
.

As before, we compute truncated (signature) Gröbner bases up to fixed degrees for each of
these homogeneous ideals, with the used degree bounds indicated by the number after the
“–” in Table 3.3.

As Table 3.3 shows, Algorithm 6 has to consider significantly fewer S-polynomials. It is
also worth noting that this approach yields substantially smaller outputs. For example,
the basis computed for heis-9 in the mixed algebra consists of 34 elements, compared
to 3056 elements for the classical approach in the free algebra and more than 50 000 for
the naive signature-based algorithm. The main reason for this behaviour is that, in the
classical approaches, the commutator relations become oriented reduction rules, which
makes them less flexible. This causes a lot of computations that are avoided in the mixed
algebra. Additionally, the naive signature-based computation suffers from the fact that the
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commutator relations are only “visible” on the polynomial level but not on the signature
level. Hence, the elimination criteria cannot be exploited fully because they miss this
crucial information. In contrast to this, in the mixed algebra setting, the information about
the commutative variables is also directly propagated to the signatures.
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4 Theoretical framework for verifying
operator statements

Linear operators are found in various areas of mathematics, appearing as ring elements (as
in C∗-algebras), matrices, and more generally, as vector space and module homomorphisms.
Also many statements in homological algebra, typically expressed in the language of abelian
categories, describe properties of linear operators. In this chapter, we develop a framework
to efficiently prove the validity of first-order statements about operator identities phrased
in any of these settings by verifying ideal membership of noncommutative polynomials in a
free algebra. All results of this chapter also appear in our preprint [HRR22b].

Translating operator identities into noncommutative polynomials provides several compu-
tational advantages. Naturally, polynomial computations respect linearity. Furthermore,
as our framework shows, restrictions imposed by domains and codomains of operators can
be ignored when performing polynomial arithmetic. Finally, using the theory of noncom-
mutative Gröbner bases, one can exploit efficient computer algebra implementations and
heuristics for polynomial computations, in particular for verifying ideal membership. These
routines can also compute cofactor representations, which serve as certificates for ideal
membership that can be verified easily and independently.

Noncommutative polynomials have been used previously to model and analyse operator
identities. Starting from the pioneering work [HW94; HSW98], where polynomial techniques
are used to simplify matrix identities in linear systems theory, over [HS99], where similar
methods are used to discover operator identities and to solve matrix equations, until [SL20;
Sch21], where proving operator identities via polynomial computations and related questions
are addressed. Recently, also a framework was developed that allows to infer the validity of a
statement about operators from ideal membership of noncommutative polynomials [RRH21].
This framework can treat propositional statements where several identities (the assumptions)
imply another identity (the claim).
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4 Theoretical framework for verifying operator statements

Our approach extends this framework, which was the motivation for this work and builds
the foundation for our results, in several ways. First of all, we allow more general first-order
statements that can include quantifiers, function symbols, and all boolean connectives.
Secondly, while [RRH21] only gives a sufficient algebraic condition for an operator statement
to hold, we provide with our main result (Theorem 4.4.1) an equivalence between universal
truth of operator statements and ideal membership of noncommutative polynomials. This
allows us to state with Procedure 8 a semi-decision procedure for verifying the validity
of operator statements based on polynomial computations, showing that our approach is
complete in that sense.

In our framework, operator statements are treated as statements about morphisms in
preadditive semicategories (Definition 2.1.1). These structures provide a natural and very
general environment for our application, prescribing only linearity as a structural constraint.
In particular, semicategories encompass all the aforementioned settings (rings, matrices,
homomorphisms, abelian categories).

To model statements in semicategories, we use many-sorted first-order logic. It extends
classical first-order logic by assigning a sort to each symbol. These sorts allow to model
objects from different universes and restrict which expressions can be formed. In our
context, they are used to represent domains and codomains of operators. We slightly
adapt the syntax of many-sorted first-order logic (see Section 2.5) to our application in
Section 4.1. More precisely, in our setting, the logic consists of ordinary first-order formulas,
with equality as the only predicate symbol. This allows us, in particular, to express the
axioms of preadditive semicategories. We can then specify universal truth of operator
statements via the logical notion of semantic consequences of these axioms.

Gödel’s famous completeness theorem [Göd30] for first-order logic states that semantic
consequences can be validated by formal computations. A formal computation is a purely
syntactic procedure performed on the formulas using a deductive system, like the sequent
calculus presented in Section 2.5.3. Such deductive systems have to treat linearity axioms
separately and ensure that all formed expressions respect the restrictions imposed by the
sorts.

In Section 4.3, we explain how a formal computation can be replaced by a computation with
noncommutative polynomials. In contrast to classical deductive systems, these polynomial
computations naturally include linearity and, as will be shown, restrictions induced by
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sorts can be neglected. When translating formulas into polynomial statements, quantifiers
and function symbols have to be treated separately. To this end, we first recall two
important concepts from the field of first-order logic and automated theorem proving,
namely Herbrand’s theorem [Her30] and Ackermann’s reduction [Ack54] in Section 4.2. For
modern textbook expositions of these concepts in the unsorted case, we refer to [EFT21,
Sec. XI.1] and [KS16, Sec. 3.3.1] respectively. These procedures allow to reduce arbitrary
formulas to arithmetic operator statements, containing no quantifiers and only arithmetic
function symbols.

To characterise validity of arithmetic operator statements, we introduce the process of
idealisation (Section 4.3), which assigns to every such formula a predicate about polynomial
ideal membership. We then show in Section 4.4 that this idealisation is true if and
only if the corresponding formula is a semantic consequence of the axioms of preadditive
semicategories. In this way, universal truth of operator statements is reduced to ideal
membership of noncommutative polynomials.

Recall that ideal membership of noncommutative polynomials in the free algebra is only
semi-decidable. More precisely, verifying ideal membership in this setting is always possible
using, for example, Gröbner bases, but disproving it is not possible in general. Since also
first-order logic is only semi-decidable, we cannot hope to obtain a terminating algorithm
for deciding validity of first-order operator statements. Nevertheless, our results allow to
present a semi-decision procedure (Procedure 8) that terminates if and only if an operator
statement is universally true. Our procedure is an adaptation of Gilmore’s algorithm [Gil60]
interleaved with ideal membership verifications.

In Section 4.5.1, we discuss computational aspects that are relevant for treating large,
nontrivial examples, and in Section 4.6, we illustrate our methods on an introductory
example about the existence of Moore-Penrose inverses in categories with involution.

4.1 Modelling operator statements using many-sorted logic

In this section, we adapt the general concept of many-sorted logic discussed in Section 2.5
to our setting of linear operators. In particular, we use variables and constant symbols to
represent linear operators, and we exploit the concept of sorts to represent the domains and
codomains of these operators. To this end, we fix an enumerable set Ob = {v1, v2, . . . } of
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object symbols, and we consider the pairs (u, v) ∈ Ob×Ob as sorts, that is, we specialise
Sort = Ob × Ob. Furthermore, for each sort (u, v), we identify a distinguished zero
constant symbol 0u,v ∈ Con. We collect them in the set Zero = {0u,v | u, v ∈ Ob}.
Similarly, we also distinguish certain special function symbols and consider the set of
arithmetic function symbols Arith = ⋃︁

u,v,w∈Ob{−u,v, +u,v, ·u,v,w} ⊆ Fun.

Recall that a signature lists and describes the non-logical symbols of a logic that are
relevant in a particular context. For our setting, we consider signatures of the form
Σ = (O ×O,C, F, σ), where

1. O ⊆ Ob is a set of object symbols;

2. C ⊆ Con such that 0u,v ∈ C for all u, v ∈ O;

3. F ⊆ Fun such that −u,v, +u,v, ·u,v,w ∈ F for all u, v, w ∈ O;

4. the sort function σ satisfies the following conditions:

a) σ(0u,v) = (u, v) for all 0u,v ∈ C;

b) σ(−u,v) = (u, v)→ (u, v) for all −u,v ∈ F ;

c) σ(+u,v) = (u, v)× (u, v)→ (u, v) for all +u,v ∈ F ;

d) σ(·u,v,w) = (v, w)× (u, v)→ (u,w) for all ·u,v,w ∈ F ;

We give some remarks on how signatures now specialise compared to the general Defini-
tion 2.5.1.

• As also noted before Definition 2.5.1, in our setting, signatures do not contain any
predicate symbols. The only predicate that we will work with is equality ≈, which
will be interpreted as identity.

• The additional conditions on the sets C and F of relevant constant and function
symbols ensure that they contain at least the zero constants and the arithmetic
function symbols.
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• The additional conditions on the sort function σ ensure that the dedicated zero
constants and the arithmetic function symbols have the sorts one would expect,
mirroring the operations in preadditive semicategories (see Definition 2.1.1). Note
that −u,v is a unary function symbol that represents additive inversion. We used the
notation from Remark 2.5.2 to represent these sorts.

In the following, we simply write Σ = (O,C, F, σ) for a signature Σ = (O × O,C, F, σ)
satisfying the conditions above. Using this special kind of signature, we can define operator
statements. To this end, we fix a signature Σ = (O,C, F, σ) for the rest of this section.

Definition 4.1.1. Any formula φ ∈ Form(Σ) is called an operator statement.

As a special class of operator statements, we can formulate the axioms of preadditive
semicategories. We denote the set of these axioms by A and to define it we introduce the
auxiliary sets At,u,v,w, with t, u, v, w ∈ O, containing the sentences listed below. To make
the sorts of the variables used better visible, we write x(u,v) in the prefix if x is a variable of
sort (u, v). Furthermore, to simplify the notation, we use the same symbols −, +, and · for
all arithmetic function symbols −u,v, +u,v, and ·u,v,w. We also use the usual infix notation
for + and ·, and we assume the natural precedence of these operations.

At,u,v,w =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀x(v,w), y(u,v), z(t,u) : x · (y · z) ≈ (x · y) · z,

∀x(u,v), y(u,v), z(u,v) : x+ (y + z) ≈ (x+ y) + z,

∀x(u,v) : x+ 0u,v ≈ x,

∀x(u,v) : x+ (−x) ≈ 0u,v,

∀x(u,v), y(u,v) : x+ y ≈ y + x,

∀x(v,w), y(u,v), z(u,v) : x · (y + z) ≈ x · y + x · z,

∀x(v,w), y(v,w), z(u,v) : (x+ y) · z ≈ x · z + y · z

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Note that the sorts of the used arithmetic function symbols are determined implicitly by
the sorts of the variables. For example, adding the sorts of the function symbols explicitly
to the last axiom listed above yields

∀x(v,w), y(v,w), z(u,v) : (x+v,w y) ·u,v,w z ≈ x ·u,v,w z +u,w y ·u,v,w z.
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Definition 4.1.2. Let Σ = (O,C, F, σ) be a signature and At,u,v,w be as above. The set A
of axioms of preadditive semicategories in signature Σ is given by

A :=
⋃︂

t,u,v,w∈O
At,u,v,w.

Note that A is finite if and only if O is. If Σ is clear from the context, we refer to A simply
as the set of axioms of preadditive semicategories and omit the dependency on Σ.

We make some remarks about the nature of models I = (A, a) of the axioms A in signature
Σ = (O,C, F, σ). The structure A = (Au,v)u,v∈O can be considered as a preadditive
semicategory C with objects Ob(C) = O and morphism sets Mor(u, v) = Au,v. The
arithmetic operations in C, that is, composition of morphisms, addition, and additive
inversion, are given by the interpretations of the arithmetic function symbols. Furthermore,
the axioms A ensure that each set Au,v is indeed an abelian group with neutral element given
by the interpretation of the constant symbol 0u,v and that the composition of morphisms
is bilinear.

We are interested in the first-order theory axiomatised by the set A, that is, all statements
that follow from the axioms of preadditive semicategories. Since the axioms A only
prescribe basic linearity assumptions, we can consider any such statement as a universally
true operator statement. Formally, we arrive at the following definition.

Definition 4.1.3. An operator statement φ ∈ Form(Σ) is universally true if A |= φ.

Based on Theorem 2.5.14 and the sequent calculus LK= presented in Section 2.5.3, the
universal truth of an operator statement φ can be proven by a formal computation deriving
A ⊢ φ. In the following sections, we describe how such a formal computation can be
replaced by a computation with noncommutative polynomials. Arithmetic function symbols
have a natural translation into the polynomial setting. To be able to also handle other
function symbols and quantifiers, we recall two important concepts in the following, namely
Herbrand’s theorem [Her30] and Ackermann’s reduction [Ack54].
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4.2 Tools from first-order logic

4.2.1 Herbrand’s theorem

We state a simplified version of the original theorem which asserts that unsatisfiability of
a certain class of formulas can be reduced to (propositional) unsatisfiability of a ground
sentence. As a consequence, we see that certain semantic consequences can be verified by
a formal computation involving only ground instances of the original formulas. This allows
to systematically eliminate quantifiers. For a modern textbook exposition of Herbrand’s
theorem in the unsorted case, see, for example, [EFT21, Sec. XI.1].

Before we proceed to state Herbrand’s theorem, we first recall some normal forms of
formulas as well as the notion of Herbrand expansion. In the following, we fix a signature
Σ = (O,C, F, σ).

A sentence of the form φ = Q1x1 . . . Qnxn : φ∗ with φ∗ quantifier-free and Qi ∈ {∃,∀} is
in prenex normal form with prefix Q1x1 . . . Qnxn. If the prefix consists only of existential
(universal) quantifiers, that is, Qi = ∃ (Qi = ∀) for all i, then φ is in Herbrand normal
form (Skolem normal form).

We note that any formula φ can be transformed into prenex normal form by applying the
following rewrite rules to φ until a normal form is reached:

¬Qx : ψ ⇝ Q̄x : ¬ψ

(Qx : ψ1) ∗ ψ2 ⇝ Qy : (ψ1[x ↦→ y] ∗ ψ2) for ∗ ∈ {∧,∨}

(Qx : ψ1)→ ψ2 ⇝ Q̄y : (ψ1[x ↦→ y]→ ψ2)

ψ1 ∗ (Qx : ψ2) ⇝ Qy : (ψ1 ∗ ψ2[x ↦→ y]) for ∗ ∈ {∧,∨,→}

Here, y is a new variable with σ(y) = σ(x) and Q̄ denotes the quantifier dual to Q, that is,
∃̄ = ∀ and ∀̄ = ∃. A formula is logically equivalent to the prenex normal form produced by
these rewrite rules.

The Herbrand expansion H(φ) of a sentence φ = Q1x1 . . . Qnxn : φ∗ in prenex normal form
is the set of all ground instances of φ, that is, if n = 0, then H(φ) := {φ}, and otherwise

H(φ) := {φ∗[x1 ↦→ t1, . . . , xn ↦→ tn] | ti ∈ Ground(Σ), σ(ti) = σ(xi)} .
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Remark 4.2.1. The Herbrand expansion depends on the signature Σ, and in particular,
on the sort function σ. Different signatures and sort functions lead to different expansions.

Note that H(φ) is either a singleton (in case φ is ground), or infinite. This follows from
the presence of the arithmetic function symbols and the zero constant symbols in all our
signatures, which can be nested arbitrarily deep. All formulas in H(φ) are ground, meaning
that they do not contain any variables. We extend the Herbrand expansion also to sets of
sentences Φ ⊆ Sent(Σ) in prenex normal form, by setting H(Φ) := ⋃︁

φ∈ΦH(φ). For any
countable set Φ, also H(Φ) is countable. This follows from the fact that Ground(Σ) is
countable.

Theorem 4.2.2 (Herbrand’s theorem). Let φ ∈ Sent(Σ) be in Skolem normal form.
Then φ is unsatisfiable if and only if there exist φ1, . . . , φl ∈ H(φ) such that φ1 ∧ · · · ∧ φl
is unsatisfiable.

Proof. Follows from [Nel+10, Thm. 30], where the statement is proven for order-sorted
logic. Classical (unordered) many-sorted logic can be considered as a special case of
order-sorted logic.

Below we state a corollary of Theorem 4.2.2, providing a form of Herbrand’s theorem
tailored towards our application. This form is a typical formulation of Herbrand’s theorem
in ordinary first-order logic, see, for example, [EFT21, Thm. XI.1.4], but we were not able
to find it for many-sorted logic in the literature. Although the proof carries over in a
straightforward way from the unsorted case, we still include it here for completeness.

Corollary 4.2.3. Let Φ ⊆ Sent(Σ) be a set of sentences in Skolem normal form and let
φ ∈ Sent(Σ) be in Herbrand normal form. The following are equivalent:

1. Φ |= φ;

2. there exist ψ1, . . . , ψk ∈ H(Φ), φ1, . . . , φl ∈ H(φ) such that ψ1∧· · ·∧ψk ⊢ φ1∨· · ·∨φl;

Proof. By Proposition 2.5.12, Φ |= φ is equivalent to π1 ∧ · · · ∧ πr ∧ ¬φ being unsatisfiable
for some π1, . . . , πr ∈ Φ. By assumption, each πi is of the form πi = ∀xi : π∗

i where xi

is a sequence of variables and π∗
i is quantifier-free. Analogously, φ can be written as
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φ = ∃y : φ∗ where y is a sequence of variables and φ∗ is quantifier-free. Thus, a prenex
normal form of π1 ∧ · · · ∧ πr ∧ ¬φ is given by

α := ∀z :
r⋀︂
i=1

π∗
i ∧ ¬φ∗,

for a certain sequence of variables z. Note that α is in Skolem normal form. Consequently,
by Theorem 4.2.2, α being unsatisfiable is equivalent to the existence of ground instances
α1, . . . , αl ∈ H(α) such that α1 ∧ · · · ∧ αl is unsatisfiable. We note that each αj can be
written as αj = ⋀︁r

i=1 ψi,j ∧ ¬φj with ψi,j ∈ H(πi) ⊆ H(Φ) and φj ∈ H(φ). So, condition 1
is equivalent to ⋀︁lj=1

⋀︁r
i=1 ψi,j ∧

⋀︁l
j=1 ¬φj being unsatisfiable. By Proposition 2.5.12 and

Theorem 2.5.14, the latter is equivalent to condition 2.

The axioms A of preadditive semicategories form a set of sentences in Skolem normal form.
Hence, Corollary 4.2.3 can be used to reduce semantic consequences A |= φ to syntactic
consequences of ground sentences. However, it might seem that the version of Herbrand’s
theorem stated above has limited applicability since it requires φ to be in Herbrand normal
form. Fortunately, for any set Φ ⊆ Sent(Σ) of axioms, every formula can be transformed
into a Φ-equivalid sentence in Herbrand normal form.

Starting from an arbitrary formula φ, first any variables not in the scope of a quantifier
are bound by a universal quantifier, that is, if x = x1, . . . , xn are not in the scope of a
quantifier, then φ is transformed into the sentence ∀x : φ. The latter formula is called
the universal closure of φ. By the semantics of the universal quantifier, φ and ∀x : φ are
Φ-equivalid.

Next, ∀x : φ is transformed into prenex normal form. After this process, the resulting
formula is almost in Herbrand normal form. However, the prefix of a formula in prenex
normal form can still contain universal quantifiers. The goal of Herbrandisation is to
remove these universal quantifiers in such a way that validity is preserved. More precisely,
given a formula φ in prenex normal form, applying the following rules exhaustively is called
Herbrandisation.

∀y : ψ ⇝ ψ[y ↦→ c]

∃x1, . . . , xn∀y : ψ ⇝ ∃x1, . . . , xn : ψ[y ↦→ f(x1, . . . , xn)]
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In these rules, c is a new constant symbol with sort σ(c) = σ(y) and f is a new function
symbol with sort σ(f) = σ(x1)×· · ·×σ(xn)→ σ(y). Note that, whenever a Herbrandisation
rule is applied, the signature Σ = (O,C, F, σ) has to be extended, yielding a new signature.
In case of applying the first rule, c has to be added to C, and for the second rule, f has to
be added to F . In both cases, σ has to be extended as well.

It is clear that Herbrandisation transforms well-formed formulas φ into well-formed formulas
in Herbrand normal form. Additionally, the result of this transformation is also Φ-equivalid
to φ. We refer to [Wal87, Ch. 11], where the dual concept of Skolemisation is discussed,
for further details.

Combining the steps described above, we obtain the following result. We omit its proof as
it is completely dual to the one presented in [Wal87, Ch. 11] for Skolemisation.

Proposition 4.2.4. Let Φ ⊆ Sent(Σ) be a set of sentences. Every formula φ ∈ Form(Σ)
can be transformed into a Φ-equivalid sentence in Herbrand normal form.

4.2.2 Ackermann’s reduction

When translating formulas into polynomial statements, it is natural to interpret the
arithmetic function symbols as the arithmetic operations on polynomials. However, other
function symbols – such as those introduced by Herbrandisation – cannot be translated
directly. To treat such function symbols, we utilise a technique from the theory of
uninterpreted functions with equality called Ackermann’s reduction.

The goal of Ackermann’s reduction is to remove function symbols from a formula in such a
way that validity is preserved. The reduction requires replacing function symbols by new
constant symbols and adding a set of constraints to enforce functional consistency, which
encodes that two function instantiations are equal if instantiated with equal arguments.

Ackermann’s reduction is described formally in Algorithm 7. We present this procedure
fairly detailed since we could not find a suitable reference for the setting of many-sorted
first-order logic. For a discussion in the unsorted case, we refer to [KS16, Sec. 3.3.1].
Although the proofs carry over in a straightforward way to our setting, we decided to still
add them here for the convenience of the reader.
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Algorithm 7 is presented for the elimination of a single function symbol. By repeated
application, all unwanted function symbols can be removed from a given formula. Note
that this reduction introduces new constants, which – analogous to the Herbrandisation –
requires to extend the signature.

Algorithm 7: Ackermann’s reduction
Input: Quantifier-free formula φ with m different instances of function symbol f of

sort σ(f) = (u1, v1)× · · · × (un, vn)→ (u, v)
Output: Quantifier-free formula φAck without instances of f s.t. φ is valid iff φAck is

1 Assign indices to the m instances of f . Denote by fi the instance of f with index i and
by t(i)1 , . . . , t

(i)
n the arguments of fi.

2 Let T be the function that maps every instance fi(t(i)1 , . . . , t
(i)
n ) to a new constant

symbol ci with sort σ(ci) = (u, v) and that leaves all other terms unchanged. In case
of nested appearances of f , the function T is only applied to the outermost instance.

3 φflat ← T (φ);
4 Let φFC denote the following formula

m−1⋀︂
i=1

m⋀︂
j=i+1

(︂
T (t(i)1 ) ≈ T (t(j)1 ) ∧ · · · ∧ T (t(i)n ) ≈ T (t(j)n )

)︂
→ ci ≈ cj ;

5 φAck ←
(︂
φFC → φflat

)︂
;

6 return φAck;

Proposition 4.2.5. Algorithm 7 is correct.

Proof. The resulting formula is clearly a quantifier-free formula without instances of f .
It remains to show that φ is valid if and only if φAck is, but this follows from the more
general Proposition 4.2.7 below by setting Φ = ∅.

Example 4.2.6. Consider the formula

φ = (x ̸≈ y) ∧ f(x) ≈ f(z) ∧ (x ̸≈ f(x) ∨ f(z) ̸≈ f(f(y))).

with variables x, y, z of sort (u, v) for some u, v ∈ Ob and function symbol f with σ(f) =
(u, v)→ (u, v). We apply Algorithm 7 to remove f from φ.
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After assigning indices to the instances of f (say, from left to right and outside-in), we
compute φflat and φFC accordingly:

φflat = (x ̸≈ y) ∧ c1 ≈ c2 ∧ (x ̸≈ c1 ∨ c2 ̸≈ c3),

φFC = (x ≈ z → c1 ≈ c2) ∧ (x ≈ c4 → c1 ≈ c3)

∧ (x ≈ y → c1 ≈ c4) ∧ (z ≈ c4 → c2 ≈ c3)

∧ (z ≈ y → c2 ≈ c4) ∧ (c4 ≈ y → c3 ≈ c4),

where c1, c2, c3, c4 are new constant symbols of sort (u, v) replacing f(x), f(z), f(f(y)), f(y)
respectively. Then φ is valid if and only if φAck = φFC → φflat is, and in fact, one can
show that φAck is not valid, implying that neither is φ.

In our application, we are interested in semantic consequences Φ |= φ. The following
result asserts that Ackermann’s reduction also preserves this property for quantifier-free
formulas φ if the removed function symbol does not appear in Φ.

Proposition 4.2.7. Let φ ∈ Form(Σ) be a quantifier-free formula containing a function
symbol f . Let Φ ⊆ Form(Σ) be a set of formulas not containing f . Then φ is Φ-equivalid
to φAck when f is removed.

Proof. We prove Φ ̸|= φ if and only if Φ ̸|= φAck. To this end, we consider all interpretations
within the signature that contains both f and the new constant symbols ci.

For one implication, assume that Φ ̸|= φ. Let I = (A, a) be a model of Φ such that
I(φ) = ⊥. Consider the interpretation I ′ = (A′, a) where A′ is obtained from A by setting
cAi = I(fi(t(i)1 , . . . , t

(i)
n )), for all i, and leaving everything else unchanged. Since cAi are

newly introduced constant symbols, they do not appear in Φ. As the interpretations
of all other terms remain unchanged, I and I ′ agree on all terms in Φ, and therefore,
I ′(Φ) = I(Φ) = ⊤. Furthermore, I ′(φflat) = I(φ) = ⊥ and I ′(φFC) = ⊤. Consequently
I(φAck) = ⊥, showing that φAck is not a semantic consequence of Φ.

For the other implication, assume that Φ ̸|= φAck. Let I ′ = (A′, a′) be a model of Φ such
that I ′(φAck) = ⊥. Then, in particular, I ′(φFC) = ⊤ and I ′(φflat) = ⊥. Now, consider
the interpretation I = (A, a′) where A is obtained from A′ by replacing the function fA

′

by the function fA that agrees with fA
′ except for fA(I ′(τ (i)

1 ), . . . , I ′(τ (i)
n )) = I ′(ci), for
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all i, where τ (i)
k = T (t(i)k ). Note that this function is well-defined since I ′ is a model

of φFC. Since the symbol f does not appear in Φ, the interpretations of all terms in Φ
remain unchanged, and thus, I(Φ) = I ′(Φ) = ⊤. Furthermore, I(φ) = I ′(φflat) = ⊥, and
consequently Φ ̸|= φ.

For the special case of the axioms A of preadditive semicategories, we obtain the following
corollary of Proposition 4.2.7.

Corollary 4.2.8. A quantifier-free operator statement φ is universally true if and only
if φAck is, when a non-arithmetic function symbol is removed from φ.

4.3 Idealisation

Idealisation is a process that allows to characterise universal truth of certain operator
statements via ideal membership in the free algebra Z⟨X⟩. To define this concept, we first
specify a certain class of operator statements, so-called arithmetic operator statements.

Definition 4.3.1. Let Σ be a signature. An operator statement φ ∈ Form(Σ) is called
arithmetic if it is quantifier-free and all function symbols appearing in φ are arithmetic
function symbols.

Example 4.3.2. Consider a signature Σ = (O,C, F, σ) with O = {u, v} and non-arithmetic
function symbols f, g ∈ F such that

σ(f) = (u, v)→ (u, v) σ(g) = (v, u)× (u, v)→ (u, u).

Furthermore, let x, y ∈ Var with σ(x) = (u, v) and σ(y) = (v, u).

The quantifier-free operator statement x ·y ·x+f(x) ≈ x∨y ·x ≈ g(y, x) is not arithmetic as
it contains the function symbols f and g. An example of an arithmetic operator statement
would be x · y · x ≈ x ∧ y · x · y ̸≈ y.
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All terms appearing in an arithmetic operator statement are essentially polynomial expres-
sions in some basic symbols (the variables and constant symbols). Thus, it is straightforward
to translate terms appearing in such formulas into noncommutative polynomials, simply by
translating variables and constant symbols into indeterminates and the arithmetic function
symbols into the arithmetic operations in Z⟨X⟩. Note that, since any formula is a finite
string of symbols, it is clear that the polynomials obtained in this way consist of finitely
many indeterminates. We formally describe how this is done in the following section.

4.3.1 From terms to polynomials

Fix a signature Σ = (O,C, F, σ) and let φ ∈ Form(Σ) be an arithmetic operator statement.
We associate to every variable and nonzero constant symbol appearing in φ an indeterminate,
that is, we consider the set

Xφ = {x ∈ Var ∪ (C \ Zero) | x appears in φ}

of indeterminates. Note that we do not assign indeterminates to the distinguished zero
constants 0u,v. With this, we define a translation function Tφ, that maps every term in φ

to a polynomial in Z⟨Xφ⟩, as follows:

Tφ(0u,v) = 0

Tφ(x) = x if x ∈ Var ∪Con

Tφ(−t) = − Tφ(t)

Tφ(s+ t) = Tφ(s) + Tφ(t)

Tφ(s · t) = Tφ(s) · Tφ(t)

Remark 4.3.3. While the zero constant symbols 0u,v are translated into the additive
identity 0 ∈ Z⟨Xφ⟩, constant symbols representing identity morphisms cannot be translated
into the multiplicative identity 1 in the free algebra as this would constitute a many-to-one
mapping and a loss of information. We note that this is not an issue when mapping all
zero operators to the zero polynomial, as the zero polynomial does not affect any polynomial
computations. Instead, identity operators have to be treated like any other nonzero constant
symbol.
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In order to simplify the notation, we identify a term t appearing in φ with its image Tφ(t)
under the translation map. Furthermore, if s ≈ t or s ̸≈ t is a literal in φ, we write s− t
for the polynomial Tφ(s)− Tφ(t).

Example 4.3.4. Consider a signature Σ = (O,C, F, σ) with O = {u, v} and σ such that

σ(a) = (u, v), σ(b) = (v, u), σ(c) = (u, v), σ(d) = (v, u),

where a, b, c, d ∈ Var.

Let φ ∈ Form(Σ) be the following arithmetic operator statement:

φ = (a · b · a+ c ≈ 0u,v + a ∧ b · a · b ̸≈ −b) =⇒ a · b+ c · d ≈ 0v,v.

Using the indeterminates Xφ = {a, b, c, d}, the three literals appearing in φ are translated
into the following polynomials Z⟨a, b, c, d⟩:

aba+ c− a, bab+ b, ab+ cd.

4.3.2 From formulas to ideal membership

Next, we describe the translation of arithmetic operator statements into ideal theoretic
statements. In what follows, we consider ∧ and ∨ as associative and commutative operations,
that is, φ ∧ ψ = ψ ∧ φ and φ ∧ (ψ ∧ ρ) = (φ ∧ ψ) ∧ ρ, and analogously for ∨. We recall
that every quantifier-free formula φ can be transformed into a logically equivalent formula
of the form

m⋀︂
i=1

⎛⎝ ni⋁︂
j=1

si,j ̸≈ ti,j ∨
n′

i⋁︂
k=1

pi,k ≈ qi,k

⎞⎠ , (4.1)

with terms si,j , ti,j , pi,k, qi,k. In the above formula, either of the two disjunctions can also
be empty, that is, it is possible that either ni = 0 or n′

i = 0, but not both.

We recall that a formula of the form (4.1) is called in conjunctive normal form (CNF). It
is a conjunction of clauses, where a clause is a disjunction of literals. A formula can have
several CNFs.
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One way to obtain a CNF of a quantifier-free formula φ is to apply to φ exhaustively each
of the following sets of rewrite rules [RN10, Sec. 7.5.2], in the given order:

1. Eliminate implications:
ψ1 → ψ2 ⇝ ¬ψ1 ∨ ψ2 (4.2)

2. Move ¬ inwards (i.e., compute a negation normal form):

¬¬ψ ⇝ ψ ¬(ψ1 ∧ ψ2) ⇝ ¬ψ1 ∨ ¬ψ2 ¬(ψ1 ∨ ψ2) ⇝ ¬ψ1 ∧ ¬ψ2

(4.3)

3. Distribute ∨ over ∧:

ψ ∨ (ψ1 ∧ ψ2) ⇝ (ψ ∨ ψ1) ∧ (ψ ∨ ψ2) (4.4)

We note that the above rules apply modulo associativity and commutativity of ∧,∨. This
process yields a unique result, which is a CNF of φ. We denote it by CNF(φ). Also note
that this transformation preserves the semantics of φ.

Lemma 4.3.5. Any quantifier-free formula φ is logically equivalent to CNF(φ).

Based on the conjunctive normal form, we define the idealisation. We first discuss the
special case of arithmetic clauses.

Definition 4.3.6. Let C = ⋁︁n
j=1 sj ̸≈ tj ∨

⋁︁n′
k=1 pk ≈ qk ∈ Form(Σ) be an arithmetic

clause. The idealisation I(C) of C is the following predicate considered as a statement in
the free algebra Z⟨XC⟩:

I(C) :≡ there exists 1 ≤ k ≤ n′ such that pk − qk ∈ (s1 − t1, . . . , sn − tn). (4.5)

To motivate this definition, write C in the equivalent form ⋀︁
j sj ≈ tj →

⋁︁
k pk ≈ qk. This

shows that C is a semantic consequence of A if and only if at least one pk ≈ qk can be
derived from all sj ≈ tj and from the linearity axioms encoded in A. This fact is described
by I(C). Thus, this predicate being true is equivalent to C being universally true.
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To extend this definition to arbitrary arithmetic operator statements φ, we consider the
normal form CNF(φ) and use the fact that a conjunction of clauses is satisfied if and only
if each clause is satisfied individually. Based on this, the idealisation of φ is given by
conjunctively combining the idealisations of all clauses C in CNF(φ).

Definition 4.3.7. Let φ ∈ Form(Σ) be an arithmetic operator statement. The idealisation
I(φ) of φ is the predicate

I(φ) :≡
⋀︂

C clause
of CNF(φ)

I(C).

In the succeeding section, we will prove that the idealisation of φ is true if and only if φ is
universally true. To this end, we state the following lemma, which relates the semantics of
the basic logical connectives ∧ and ∨ to the notion of idealisation.

Lemma 4.3.8. Let φ,ψ ∈ Form(Σ) be arithmetic operator statements. Then the following
hold:

1. I(φ) = ⊤ implies I(φ ∨ ψ) = ⊤;

2. I(φ) = ⊤ and I(ψ) = ⊤ implies I(φ ∧ ψ) = ⊤;

Proof. 1. Let CNF(φ) = ⋀︁
iCi and CNF(ψ) = ⋀︁

j Dj with clauses Ci, Dj . Each clause
of CNF(φ ∨ ψ) is of the form Ci ∨Dj . By assumption I(Ci) = ⊤ for all i. Then the
statement follows from the fact that the ideal corresponding to I(Ci) is a subideal of
the one corresponding to I(Ci ∨Dj) and the set of candidate members for I(Ci) is a
subset of those for I(Ci ∨Dj).

2. By assumption, the idealisation of each clause of CNF(φ) and CNF(ψ) is true. Then
the statement follows from the fact that each clause of CNF(φ ∧ ψ) is a clause from
CNF(φ) or CNF(ψ).
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4.4 Characterising universal truth via ideal membership

In this section, we relate the semantic notion of universal truth of an arithmetic operator
statement φ to the ideal theoretic statement I(φ) = ⊤. The main result is the following
theorem. Recall that we have fixed a signature Σ = (O,C, F, σ).

Theorem 4.4.1. An arithmetic operator statement φ ∈ Form(Σ) is universally true if
and only if I(φ) = ⊤.

Proof. The “if”-part follows from Lemma 4.4.5 below and the “only if”-part from Lemma 4.4.8.

Remark 4.4.2. We make some remarks about Theorem 4.4.1.

1. Theorem 4.4.1 reduces universal truth to the verification of finitely many ideal member-
ships in Z⟨Xφ⟩. Since ideal membership in Z⟨Xφ⟩ is semi-decidable (Corollary 3.4.25)
this immediately yields a semi-decision procedure for verifying universal truth of arith-
metic operator statements. In Section 4.5, we generalise this procedure to all operator
statements.

2. The idealisation I(φ) is independent of the signature Σ. The corresponding polynomial
computations are the same for all signatures Σ in which φ can be formulated. In
particular, they are independent of the sorts appearing in φ. Consequently, Theo-
rem 4.4.1 tells us that a single computation with polynomials shows the universal
truth of φ in all signatures in which φ can be formulated.

3. The idealisation I(φ) is defined with respect to a specific CNF of φ. Theorem 4.4.1
implies that I(φ) is in fact independent of the concrete CNF used. Thus, any CNF
of φ can be used to compute I(φ). This can provide computational advantages.

Theorem 4.4.1 is a generalisation of [RRH21, Thm. 32]. We state a corollary of this result
below that will play a crucial role in proving the sufficiency part of Theorem 4.4.1. The
language of [RRH21] differs from the language of this work in many points. Consequently,
the following result, which we formulate in language of this work, looks very different to
the original in [RRH21]. To facilitate the comparison between the two versions, we state
the main differences in Remark 4.4.4.
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Corollary 4.4.3. Let C = s1 ̸≈ t1 ∨ · · · ∨ sn ̸≈ tn ∨ p ≈ q ∈ Form(Σ) be an arithmetic
clause. If I(C) = ⊤, then C is universally true.

Proof. Follows from [RRH21, Thm. 32]. We note that [RRH21, Thm. 32] is phrased for
preadditive categories but by examining the proof it becomes clear that it also holds for
preadditive semicategories.

Remark 4.4.4.

1. In this work, domains and codomains of operators are encoded in form of sorts via
the sort function σ. In contrast to this, [RRH21] uses a directed multigraph, also
known as quiver, for this. A quiver is a natural choice for representing operators
between different spaces, however, it is unsuited for representing functions that use
those operators as arguments. In the language of this work, quivers are good for
representing the sorts of variables and constant symbols but not for representing the
sorts of function symbols. We note that [RRH21] does not consider function symbols
other than the arithmetic function symbols, whose sorts are predetermined anyway.

2. The syntactic objects of interest in [RRH21] are compatible polynomials. Being
compatible means that the polynomials respect the restrictions imposed by the domains
and codomains of the operators they model. In the terminology of this work, one can
say that compatible polynomials are precisely those elements s− t that originate from
translating formulas s ≈ t.

3. Another difference between [RRH21] and this work is how a semantic meaning is
assigned to syntactic objects. Here we use the concept of interpretations for this,
while [RRH21] uses representations of a quiver. It turns out that the latter can be
considered as a special case of the former.

4. A closer adaptation of [RRH21, Thm. 32] would be given if the clause C in Corol-
lary 4.4.3 was replaced by the logically equivalent formula (s1 ≈ t1 ∧ · · · ∧ sn ≈ tn)→
p ≈ q. We decided for the formulation above as it makes the subsequent proofs easier.

The remainder of this section is dedicated to proving Theorem 4.4.1. More precisely,
Lemma 4.4.5 proves the sufficiency part of Theorem 4.4.1 by reducing the case of arbitrary
arithmetic operator statements to the case of clauses and using Corollary 4.4.3. For the
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other implication, we use that fact that the sequent calculus LK= is correct and complete,
meaning that A |= φ if and only if A ⊢ φ. In particular, we consider the idealisation of
certain sequents and show that all relevant sequent rules of LK= preserve the property of
these idealisations being true. This is done in Lemma 4.4.6. In order to handle the presence
of the axioms A in sequents, we prove Lemma 4.4.7, which captures one of the main
advantages of our approach – the axioms A can be neglected when performing idealisations.
Finally, we combine Lemma 4.4.6 and 4.4.7 with Herbrand’s theorem to prove the necessity
part of Theorem 4.4.1 in Lemma 4.4.8.

Lemma 4.4.5. Let φ ∈ Form(Σ) be an arithmetic operator statement. If I(φ) = ⊤,
then φ is universally true.

Proof. Recall that φ being universally true means that A |= φ.

First, we consider the case where φ is a clause C = ⋁︁n
j=1 sj ̸≈ tj ∨

⋁︁n′
k=1 pk ≈ qk. By

definition of the idealisation, I(C) = ⊤ if and only if there exists 1 ≤ k ≤ n′ such that
pk − qk ∈ (s1 − t1, . . . , sn − tn). Without loss of generality, assume that k = 1. Let
D = ⋁︁n

j=1 sj ̸≈ tj ∨ p1 ≈ q1 and note that I(D) = ⊤. So, by Corollary 4.4.3, A |= D but
then also A |= D ∨

⋁︁n′
k=2 pk ≈ qk, and the result follows.

For arbitrary φ, let CNF(φ) = ⋀︁m
i=1Ci with clauses Ci. Then I(φ) = ⊤ implies I(Ci) = ⊤

for all i = 1, . . . ,m. By the previous discussion, A |= Ci for all i = 1, . . . ,m. Now, the
semantics of ∧ implies A |= ⋀︁m

i=1Ci, and the result follows from Lemma 4.3.5.

Let Γ,∆ ⊆ Form(Σ) be finite multisets of arithmetic operator statements. In the following,
we define an idealisation of sequents Γ ⊢ ∆. More precisely, we denote

I (Γ ⊢ ∆) := I

⎛⎝⋁︂
γ∈Γ
¬γ ∨

⋁︂
δ∈∆

δ

⎞⎠ .
We say that an axiom sequent rule Γ ⊢ ∆ preserves validity if I(Γ ⊢ ∆) = ⊤. Similarly,
we say that a sequent rule of the form Γ′ ⊢ ∆′

Γ ⊢ ∆ preserves validity if I(Γ′ ⊢ ∆′) = ⊤ implies

I(Γ ⊢ ∆) = ⊤. Finally, a sequent rule of the form Γ1 ⊢ ∆1 Γ2 ⊢ ∆2
Γ ⊢ ∆

preserves
validity if I(Γ1 ⊢ ∆1) = ⊤ and I(Γ2 ⊢ ∆2) = ⊤ implies I(Γ ⊢ ∆) = ⊤.
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Lemma 4.4.6. All sequent rules of the sequent calculus LK= (Section 2.5.3) not involving
quantifiers preserve validity when applied to arithmetic operator statements.

Proof. All sequent rules in LK= contain multisets Γ and ∆ which are comprised of all
formulas that are irrelevant for the particular rule. To take care of these formulas, we
denote in the following Φ = ⋁︁

γ∈Γ ¬γ ∨
⋁︁
δ∈∆ δ.

Axioms.

For (Ax), we have to show that I(Φ ∨ φ) = ⊤ with φ = s ̸≈ t ∨ s ≈ t. The idealisation
of φ corresponds to the polynomial assertion s− t ∈ (s− t), which is clearly true. Thus,
I(φ) = ⊤, and the result follows from the first part of Lemma 4.3.8.

For (Ref), we have to show that I(Φ ∨ t ≈ t) = ⊤. Note that I(t ≈ t) = ⊤ because it
corresponds to the predicate t− t = 0 ∈ (∅) = {0}. Then the result follows from the first
part of Lemma 4.3.8.

Structural rules.

Preserving validity for the rules (W ⊢) and (⊢W) follows from the first part of Lemma 4.3.8.
The other two rules (C ⊢) and (⊢ C) only remove duplicates of formulas. This leaves the
ideals and the sets of candidate members generated during the idealisation unchanged, and
thus also these rules preserve validity.

Propositional rules.

For the ¬-rules, preserving validity translates into the trivial statements “I(Φ ∨ φ) = ⊤
implies I(Φ ∨ φ) = ⊤” and “I(Φ ∨ ¬φ) = ⊤ implies I(Φ ∨ ¬φ) = ⊤”.

For (∨ ⊢), we denote Ψ = Φ ∨ ¬(φ ∨ ψ), Φ1 = Φ ∨ ¬φ and Φ2 = Φ ∨ ¬ψ. We have to
show that I(Ψ) = ⊤ assuming I(Φ1) = ⊤ and I(Φ2) = ⊤. Note that applying the rewrite
rules (4.2) and (4.3) for the CNF computation to Ψ yields

Φ′ ∨ (φ′ ∧ ψ′), (4.6)

where Φ′ is a negation normal form of Φ and φ′, ψ′ are negation normal forms of ¬φ and
¬ψ respectively. Analogously, applying (4.2) and (4.3) to Φ1 ∧ Φ2 yields

(Φ′ ∨ φ′) ∧ (Φ′ ∨ ψ′). (4.7)
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Applying now the distributivity rule (4.4) to (4.6) gives (4.7), showing that CNF(Ψ) =
CNF(Φ1 ∧ Φ2). Thus also I(Ψ) = I(Φ1 ∧ Φ2), and the result follows from the second part
of Lemma 4.3.8. For (⊢ ∨), we obtain the trivial statement that I(Φ ∨ φ ∨ ψ) = ⊤ implies
I(Φ ∨ φ ∨ ψ) = ⊤.

The proofs for ∧ are dual to the proofs for ∨.

Using the fact that CNF(φ→ ψ) = CNF(¬φ ∨ ψ) the proofs for → are analogous to the
proofs for ∨.

Equational rule.

Denote Ψ = Φ ∨ ¬φ[x ↦→ t] ∨ t ̸≈ t′ and Ψ′ = Φ ∨ ¬φ[x ↦→ t′] ∨ t ̸≈ t′. We have to
show that I(Ψ′) = ⊤ implies I(Ψ) = ⊤. Note that, for each clause C in CNF(Ψ), there
is a corresponding clause C ′ in CNF(Ψ′) which differs from C only by the fact that all
occurrences of t that stem from x are replaced by t′. Now, fix an arbitrary clause C in
CNF(Ψ) and the corresponding clause C ′ in CNF(Ψ′). By definition of the idealisation, it
suffices to show that I(C ′) = ⊤ implies I(C) = ⊤ to prove that I(Ψ′) = ⊤ implies I(Ψ) = ⊤.

By definition of the CNF-transformation, both clauses C and C ′ contain the literal t ̸≈ t′.
Thus, if we denote the ideal obtained during the idealisation of C by J and that of C ′ by
J ′, then, by definition of the idealisation, the polynomial t− t′ is a generator of both J

and J ′. Furthermore, since all formulas are assumed to be arithmetic operator statements,
every literal a ≈ b or a ̸≈ b in C involving the term t gets translated into a polynomial
a(t) − b(t) depending on t. Analogously, every literal in C ′ involving the term t′ gets
translated into a polynomial a(t′) − b(t′) depending on t′. Now, since t − t′ ∈ J, J ′, we
have that, for any polynomial f , the element f(t) lies in any of these ideals if and only if
f(t′) does. Therefore, a(t)− b(t) ∈ J if and only if a(t′)− b(t′) ∈ J , and analogously for J ′.
This shows that, in fact, J = J ′, and implies that I(C) = ⊤ if and only if I(C ′) = ⊤.

The following lemma captures a main advantage of our approach. It asserts that instantia-
tions of the axioms A can be neglected when performing the idealisation.

Lemma 4.4.7. Let φ ∈ Form(Σ) be an arithmetic operator statement. Then I(¬α ∨ φ) =
I(φ) for all ground instances α ∈ H(A).
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Proof. Note that ¬α = s ̸≈ t for some ground terms s, t ∈ Ground(Σ) and that

CNF(¬α ∨ φ) = CNF(s ̸≈ t ∨ φ) =
⋀︂
i

(s ̸≈ t ∨ Ci),

where CNF(φ) = ⋀︁
iCi. The ideal generated during the idealisation of each clause s ̸≈ t∨Ci

is the ideal obtained from Ci plus the additional generator s− t. The statement now follows
from the fact that s− t = 0 since the formulas in A only describe basic linearity properties
that hold in any ring.

Lemma 4.4.8. Let φ ∈ Form(Σ) be an arithmetic operator statement. If φ is universally
true, then I(φ) = ⊤.

Proof. Recall that φ being universally true means that A |= φ. Since φ is a quantifier-free,
it is in Herbrand normal form. Using Herbrandisation and replacing all (free) variables
in φ by new constant symbols, we can, without loss of generality, assume that φ is in fact
a ground sentence. Note that this preserves universal truth. The axioms A form a set of
sentences in Skolem normal form. Consequently, Corollary 4.2.3 yields the existence of
α1, . . . , αk ∈ H(A) such that

α1 ∧ · · · ∧ αk ⊢ φ. (4.8)

Here we used the fact that φ does not contain any variables, and therefore H(φ) = {φ}.
Since all formulas in (4.8) are quantifier-free, there exists a formal proof in the sequent
calculus LK= that does not use any of the quantification rules. As, by Lemma 4.4.6, all
other rules preserve validity, we have that ⊤ = I(α1∧· · ·∧αk ⊢ φ) = I(¬α1∨· · ·∨¬αn∨φ).
Then repeated application of Lemma 4.4.7 yields the desired result.

4.5 Semi-decision procedure

Using Herbrand’s theorem and Ackermann’s reduction (Section 4.2) we can easily reduce
the case of verifying that an arbitrary operator statement φ is universally true to the
previously discussed case of arithmetic operator statements. The following steps give an
overview on how this can be done. They can be considered as an adaptation of Gilmore’s
algorithm [Gil60].
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1. Bring φ into Herbrand normal form, denoted by φH .

2. Let φ1, φ2, . . . be an enumeration of H(φH).

3. Let n = 1.

4. Form the formula ψn = ⋁︁n
i=1 φi.

5. Remove all non-arithmetic function symbols from ψn using Ackermann’s reduction.
Denote the obtained formula by ψAck

n (note that ψAck
n is an arithmetic operator

statement).

6. If I(ψAck
n ) = ⊤, then φ is universally true. Otherwise, increase n by 1 and go to

step 4.

Since first-order logic is only semi-decidable, we cannot expect to obtain an algorithm
that terminates on any input. The best we can hope for is a semi-decision procedure that
terminates if and only if a formula φ is indeed universally true. However, the steps above,
as phrased now, still have a subtle flaw that stops them from even being a semi-decision
procedure.

The conditional check in step 6 requires to decide certain ideal memberships. While
verifying ideal membership of noncommutative polynomials is always possible in finite
time, disproving it is generally not. Consequently, verifying that the condition in step 6 is
false is generally not possible in finite time. In cases where this is required, the procedure
cannot terminate – even if φ is indeed universally true.

To overcome this flaw and to obtain a true semi-decision procedure, we have to interleave
the computations done for different values of n. Procedure 8 shows one way how this can
be done. It essentially follows the steps described above, except that it only performs
finitely many operations to check if I(ψAck

n ) = ⊤ for each n.

Remark 4.5.1. We make some remarks about Procedure 8.

1. The procedure treats the case where the Herbrand normal form of the input formula
is a ground sentence separately. In this case, the computation can be simplified since
the Herbrand expansion is a singleton. Then ψAck

n = φAck
1 = (φH)Ack for all n since

φH is the only element in H(φH).
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Procedure 8: Semi-decision procedure for verifying universal truth
Input: a signature Σ and an operator statement φ ∈ Form(Σ)
Output: ⊤ if and only if φ is universally true; otherwise infinite loop

1 φH ← Herbrand normal form of φ;
2 φ1, φ2, . . .← an enumeration of H(φH);
3 ψ1 ← φ1;
4 ψAck

1 ← Ackermann’s reduction of ψ1 removing all non-arith. function symbols;
5 for n← 1, 2, . . . :
6 for k ← 1, . . . , n :
7 if I(ψAck

k ) = ⊤ can be verified with n operations of an ideal membership
semi-decision procedure :

8 return ⊤;

9 if φH is a ground sentence : // in this case H(φH) = {φH} = {φ1}
10 ψAck

n+1 ← ψAck
n ;

11 else:
12 ψn+1 ← ψn ∨ φn+1;
13 ψAck

n+1 ← Ackermann’s reduction of ψn+1 removing all non-arith. function
symbols;

2. Line 7 contains the term operation of a procedure. Thereby we mean any (high- or
low-level) set of instructions of the procedure that can be executed in finite time.

3. If φ is not universally true, then the procedure runs into an infinite loop. However,
it can be modified to also terminate in some cases when φ is not universally true, see
the discussion below the proof of Theorem 4.5.2.

Theorem 4.5.2. Procedure 8 terminates and outputs ⊤ if and only if φ is universally
true.

Proof. Recall that φ being universally true means that A |= φ. Also, note that A is a set
of sentences in Skolem normal form. Thus, by Proposition 4.2.4 and Corollary 4.2.3, A |= φ

if and only if A |= ψN for some large enough N ∈ N. Also, note that ψN is a quantifier-free
operator statement. Hence, Corollary 4.2.8 yields that A |= φ is equivalent to A |= ψAck

N .
Finally, since ψAck

N is an arithmetic operator statement, Theorem 4.4.1 implies that A |= φ

is equivalent to I(ψAck
N ) = ⊤. In other words, A |= φ is equivalent to the condition in line 7

being satisfied at some point. This shows that, if the algorithm terminates, then A |= φ.
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The other implication follows from Corollary 3.4.25 and the fact that the computations for
each n can be executed in a finite amount of time.

To end this section, we give a partial answer to the question “When can we prove that φ
is not universally true?” or in other words “When does φ not follow from the axioms of
preadditive semicategories?”. We assume, without loss of generality, that φ is in Herbrand
normal form. First, we note that if H(φ) is infinite, then it is not possible to deduce
that φ is not universally true using our approach as this would require to argue over all
(infinitely many) finite subsets of H(φ). If H(φ) is not infinite, then H(φ) = {φ}. In
this case, proving that φ is not universally true boils down to verifying that I(φAck) = ⊥,
which is the case if and only if certain ideal memberships do not hold. Although generally
impossible, there are cases in which ideal membership can be disproven (for example, when
the ideal is homogeneous or admits a finite Gröbner basis). In these situations, based on
Theorem 4.4.1, we can prove that φ is not universally true.

4.5.1 Computational aspects

The performance of Procedure 8 strongly depends on the order in which the elements in the
Herbrand expansion are enumerated. In the following, we present a few basic techniques to
find the right instances needed for a verification that an operator statement φ is universally
true that turned out to be useful in practice. Some of these techniques deviate quite
strongly from how Procedure 8 is phrased, but they can have a drastic impact on the
efficiency of the procedure.

In practical applications, the formula φ under consideration is typically an implication of
the form φ = ⋀︁

i αi → γ, where αi represent different assumptions and γ forms a claimed
property. In the following, we assume that φ is of this form.

Universal identities are sentences of the form ∀x : s(x) ≈ t(x) where s, t are terms depending
on the variables x = x1, . . . , xn. Such formulas in the assumptions often describe very
basic properties (such as linearity/multiplicativity of a function, commutativity of certain
operators, etc.). Formally, each application of such an assumption in a proof requires a
new instantiation of the formula φ. This increases the size of the resulting formula, making
further computations more involved. To avoid this problem, we can remove the assumption
∀x : s(x) ≈ t(x) from φ and treat it implicitly by considering a universal rewrite rule
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s ↦→ t that maps every instantiation s(t1, . . . , tn) to t(t1, . . . , tn). This rewrite rule is then
applied exhaustively to all formulas that occur during the computation.

Furthermore, when φ contains a unary non-arithmetic function symbol f , practical experi-
ence has shown that it can be beneficial to extend assumptions of the form

⋀︂
i

si ≈ ti →
⋁︂
j

pj ≈ qj

to ⋀︂
i

si ≈ ti →
⋁︂
j

(pj ≈ qj ∧ f(pj) ≈ f(qj)),

where f is applied to all terms of the correct sort. In particular, plain identities p ≈ q

can be extended to p ≈ q ∧ f(p) ≈ f(q). This process is clearly sound and often helps to
automatically generate the right function instantiations.

Next, we discuss the presence of existential identities, that is, sentences of the form
∃x : p(x) ≈ q(x), in the claim γ. Such formulas can describe, for instance, the existence of
a solution to an equation and finding suitable instantiations for them is usually a hard
task. Often, however, good candidates for solutions can be found automatically if enough
“good” instantiations of the assumptions can be obtained somehow. In such cases, we can
form the polynomial ideal (s1 − t1, . . . , sm − tm) consisting of all instantiated assumptions
si ≈ ti and search for an instantiation of p− q in this ideal. In Section 5.3, we describe
several techniques that allow to search for polynomials of a specific form in ideals.

Once suitable instantiations have been found, they are combined disjunctively into one
formula and Ackermann’s reduction is performed to remove non-arithmetic function symbols.
When forming the idealisation of the resulting arithmetic operator statement φ, the formula
has to be transformed into CNF. This transformation can lead to an exponential increase
in size and to exponentially many ideal membership verifications during the idealisation.
Classically in automated theorem proving, this exponential blow-up is avoided by a so-called
Tseitin transformation, see, for example, [KS16, Sec. 1.3], which transforms a formula into
a new formula in CNF by introducing new variables, causing only a linear increase in size.
While this process preserves satisfiability, it need not preserve validity, the notion we are
interested in. Instead of trying to adapt the Tseitin transformation to our setting, we
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I(γ) = ?

I(¬α1 ∨ γ) = ⊤ I(¬β1 ∨ γ) = ?

I(¬α1 ∨ ¬α2 ∨ γ)
= ⊤

I(¬α1 ∨ ¬β2 ∨ γ)
= ⊤

I(¬β1 ∨ ¬α2 ∨ γ)
= ⊤

I(¬β1 ∨ ¬β2 ∨ γ)
= ⊤

. . . . . . . . . . . . . . . . . . . . . . . .

Figure 4.1: Illustration on how to incrementally compute the idealisation of
((α1 ∨ β1) ∧ (α2 ∨ β2) ∧ (α3 ∨ β3))→ γ. Grey coloured computations are avoided. The
question mark “?” indicates that the idealisation could not be verified to be true
within some fixed time frame.

instead explain an approach based on an incremental computation of the idealisation. It
follows from the following observation. If φ = (α ∨ β)→ γ, then

I(φ) = I(¬α ∨ γ) ∧ I(¬β ∨ γ).

In such situations, it can make sense to compute the idealisation incrementally. First,
we form I(γ) and if I(γ) = ⊤, then also I(φ) = ⊤ (by Lemma 4.3.8), and we are done.
Only if I(γ) = ⊤ cannot be verified fast enough (that is, within some fixed time frame),
we compute I(¬α ∨ γ) and I(¬β ∨ γ). The main advantage of this idea is that it can be
applied recursively in case of several assumptions (see Figure 4.1 for an example). This is
because ⋀︁i αi → γ and (α1 → (α2 → · · · → (αm → γ) . . . )) are logically equivalent, and
thus, lead to the same idealisation. While, in the worst case, this technique still requires
exponentially many ideal membership tests, it, in practice, usually allows to drastically
reduce the number of polynomial computations.

No matter whether the optimisation discussed above is used or not, the crucial step of
Procedure 8 requires the verification of finitely many ideal memberships. We note that this
polynomial computation is independent of the sorts of the involved terms, providing a clear
advantage over other verification approaches (such as sequent calculi) that require additional
checks to ensure that the sort restrictions are respected at every step. Additionally, ideal
membership f ∈ (f1, . . . , fr) can be certified easily by providing a cofactor representation

188



4 Theoretical framework for verifying operator statements

of f with respect to the generators f1, . . . , fr. Recall that such a cofactor representation
can be computed with the help of Gröbner bases and serves as a proof that can be checked
easily and independently of how it was obtained.

4.6 Fully worked example

As an example to illustrate the workings of the framework, we consider a classical statement
from [PR81] about the existence of Moore-Penrose inverses in categories with involution.

Let C be a category with involution. A morphism X : U → V in C is ∗-cancellable if
X∗XP = X∗XQ implies XP = XQ and RXX∗ = SXX∗ implies RX = SX for all
morphisms P,Q,R, S. Moreover, X is regular if there is A : V → U with XAX = X,
and X has a Moore-Penrose inverse if there is X† : V → U satisfying

XX†X = X, X†XX† = X†, (XX†)∗ = XX†, (X†X)∗ = X†X.

A morphism need not have a Moore-Penrose inverse. The following part of [PR81, Lem. 3]
provides a sufficient condition for its existence.

Lemma 4.6.1. Let X : U → V be a morphism in a preadditive category with involution.
If X is ∗-cancellable and both X∗X and XX∗ are regular, then X has a Moore-Penrose
inverse.

In the following, we describe how to prove Lemma 4.6.1 using the framework introduced in
this chapter and Procedure 8.

Step 1: Choosing a signature As a first step, we have to choose a suitable signature. To
this end, we fix u, v ∈ Ob and consider Σ = (O,C, F, σ) with

1. O = {u, v};

2. C = {iu, iv, 0u,u, 0u,v, 0v,u, 0v,v};

3. F = {∗u,u, ∗
u,v,

∗
v,u,

∗
v,v} ∪ {−α,β,+α,β, ·α,β,γ | α, β, γ ∈ O};

4. σ satisfies σ(iu) = (u, u), σ(iv) = (v, v), and σ(∗
α,β) = (α, β)→ (β, α) for α, β ∈ O;
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u v
y

x

x†

iu
p

q
a

iv
r

s
b

Figure 4.2: Sorts of the variables and constant symbols needed to translate Lemma 4.6.1.

Besides the required zero constant and arithmetic function symbols, the signature contains
constant symbols iu, iv for the identity morphisms IU , IV and function symbols ∗

u,u,
∗
u,v,

∗
v,u,

∗
v,v

representing the involution. To simplify the notation, we will denote these function symbols
all by the same symbol ∗ in the following. Finally, we require σ to assign the expected
sorts to these constant and function symbols.

Step 2: Translating the statement After fixing a signature, we can translate the
statement about morphisms into an operator statement. To keep the notation uncluttered,
we omit the sorts of the variables and constant symbols in the formula. Instead, we visualise
the sorts via the directed multigraph in Figure 4.2, where each symbol s with σ(s) = (α, β)
is represented by an edge with label s from vertex α to β. In the following, we write st for
s · t to keep the expressions shorter. With this, Lemma 4.6.1 can be translated into the
formula

φ = ∀x, a, b ∃p, q, r, s, y, x† : φId ∧ φReg ∧ φCancel → φMP,

where

φId = yiu ≈ y ∧ ivy ≈ y

φReg = x∗xax∗x ≈ x∗x ∧ xx∗bxx∗ ≈ xx∗

φCancel = (x∗xp ≈ x∗xq → xp ≈ xq) ∧ (rxx∗ ≈ sxx∗ → rx ≈ sx)

φMP = xx†x ≈ x ∧ x†xx† ≈ x† ∧ (xx†)∗ ≈ xx† ∧ (x†x)∗ ≈ x†x.

The formula consists of three assumptions φId, φReg, φCancel, capturing basic properties of
the identity morphisms, the regularity of X∗X and XX∗, and the ∗-cancellability of X
respectively. We have not encoded all properties of the identity morphisms in φId but only
those that will turn out relevant for the proof. The same also holds for the ∗-cancellability
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assumption φCancel. We do this to keep the formulas shorter and better readable. Of
course, usually one does not know a priori which properties are relevant before finding a
proof, and thus, one would encode all properties. The claimed property, the existence of
a Moore-Penrose inverse of X, is translated into φMP. Formally, the assumptions should
also include the axioms for the involution function symbols. Since these axioms are all
very basic universal identities, we, as described in Section 4.5.1, omit them and instead
consider the universal rewrite rules (st)∗ ↦→ t∗s∗, (t∗)∗ ↦→ t that we use to simplify all
occurring terms. Additionally, we apply another technique mentioned in Section 4.5.1 and
add to every assumption the corresponding adjoint statement, that is, we replace φId, φReg,
φCancel by

φ∗
Id = φId ∧ (yiu)∗ ≈ y∗ ∧ (ivy)∗ ≈ y∗

φ∗
Reg = φReg ∧ (x∗xax∗x)∗ ≈ (x∗x)∗ ∧ (xx∗bxx∗)∗ ≈ (xx∗)∗

φ∗
Cancel = (x∗xp ≈ x∗xq → (xp ≈ xq ∧ (xp)∗ ≈ (xq)∗))

∧ (rxx∗ ≈ sxx∗ → (rx ≈ sx ∧ (rx)∗ ≈ (sx)∗)) .

Step 3: Applying Procedure 8 Since φ is already a sentence in prenex normal form, we
can immediately start with the Herbrandisation to remove the universal quantifier. In
this process, we replace the variables x, a, b by new constant symbols, which we denote
for simplicity also by x, a, b. By a slight abuse of notation, we keep the same notations
φ∗

Id, φ
∗
Reg, φ

∗
Cancel, and φMP for the thereby obtained formulas. This yields the Herbrand

normal form
φH = ∃p, q, r, s, y, x† : φ∗

Id ∧ φ∗
Reg ∧ φ∗

Cancel → φMP.

Then we consider an enumeration φ1, φ2, . . . of the Herbrand expansion H(φH) where

φ1 = φH [p ↦→ ax∗x, q ↦→ iu, r ↦→ xx∗b, s ↦→ iv, y ↦→ x, x† ↦→ x∗bxax∗]

and set ψ1 = φ1.

Remark 4.6.2. Without any prior knowledge, one would most likely choose a very different
enumeration of H(φH), maybe instantiating all variables first only with constants and then
successively use more complex terms. In order to avoid unnecessary computations, we
use an enumeration that starts with the correct instantiations. In this particular example,
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the instantiations of the assumptions can be guessed relatively easily from the available
information, in particular, from φReg. The instantiation x∗bxax∗ of x† can then be found
automatically. Using, for example, the technique explained in Section 1.3, one can set
x† to a dummy variable d and compute a Gröbner basis of the ideal generated by all
identities appearing in φ1 with respect to an elimination order for d. This Gröbner basis
then contains an element of the form d − x∗bxax∗, indicating that x† ↦→ x∗bxax∗ is the
correct instantiation.

Now Ackermann’s reduction is used to remove the function symbol ∗ from ψ1. After
applying the rewrite rules (st)∗ ↦→ t∗s∗, (t∗)∗ ↦→ t exhaustively, the only instances of this
function symbol are x∗, a∗, b∗, i∗u, i

∗
v. We replace these terms by new constants, which we

denote by the same symbols. This yields a new formula ψflat
1 . Furthermore, we add the

functional consistency constraints

ψFC
1 = (a ≈ iu → a∗ ≈ i∗u) ∧ (b ≈ iv → b∗ ≈ i∗v).

Note that other consistency constraints cannot be formed due to the restrictions imposed
by the sorts of the symbols. The resulting formula is ψAck

1 = ψFC
1 → ψflat

1 .

Directly computing the idealisation of ψAck
1 would require 256 ideal membership tests. To

reduce the number of polynomial computations, we apply the optimisation discussed in
Section 4.5.1 and compute I(ψAck

1 ) incrementally. Every implication α→ β corresponds to
a disjunction ¬α∨ β. So we remove all implications from the assumptions (including ψFC

1 ),
that is, we remove ψFC

1 and the instantiation of φ∗
Cancel from ψAck

1 . Then we form the CNF
of the simplified formula, which yields only 4 clauses. Since they all share a common core
corresponding to φ∗

Id ∧ φ∗
Reg, we denote

Ccore = xiu ̸≈ x ∨ ivx ̸≈ x ∨ i∗ux
∗ ̸≈ x∗ ∨ x∗i∗v ̸≈ x∗

∨ x∗xax∗x ̸≈ x∗x ∨ xx∗bxx∗ ̸≈ xx∗ ∨ x∗xa∗x∗x ̸≈ x∗x ∨ xx∗b∗xx∗ ̸≈ xx∗.
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With this, the 4 clauses are

C1 = Ccore ∨ xx∗bxax∗x ≈ x,

C2 = Ccore ∨ x∗bxax∗xx∗bxax∗ ≈ x∗bxax∗,

C3 = Ccore ∨ xa∗x∗b∗xx∗ ≈ xx∗bxax∗,

C4 = Ccore ∨ x∗xa∗x∗b∗ ≈ x∗bxax∗x.

As can be seen, we have one clause corresponding to each of the 4 identities in φMP.

None of the idealisations of C1, . . . , C4 is true. So we include the first implication

x∗xax∗x ≈ x∗xiu → (xax∗x ≈ xiu ∧ x∗xa∗x∗ ≈ i∗ux∗) (4.9)

from the instantiation of φ∗
Cancel and consider

C ′
i = Ci ∨ x∗xax∗x ≈ x∗xiu and C ′′

i = Ci ∨ xax∗x ̸≈ xiu ∨ x∗xa∗x∗ ̸≈ i∗ux∗

for i = 1, . . . , 4. Note that (4.9) is the first implication of φ∗
Cancel with p and q substituted

by ax∗x and iu respectively.

A polynomial computation shows that I(C ′
i) = ⊤ but I(C ′′

i ) = ⊥ for all i. We note that,
in this situation, we can indeed verify that the idealisations I(C ′′

i ) are false as all ideals
involved have finite Gröbner bases. So we continue with the 4 clauses C ′′

1 , . . . , C
′′
4 and keep

adding in the remaining implications. After integrating the second implication

xx∗bxx∗ ≈ ivxx∗ → (xx∗bx ≈ ivx ∧ x∗b∗xx∗ ≈ x∗i∗v)

from φ∗
Cancel, all remaining idealisations become true. For example, the following represen-

tation certifies that I(C ′′
1 ∨ xx∗bx ̸≈ ivx ∨ x∗b∗xx∗ ̸≈ x∗i∗v) = ⊤:

xx∗bxax∗x− x = xx∗b(xax∗x− xiu) + xx∗b(xiu − x) + (xx∗bx− ivx) + (ivx− x).

This shows that the idealisations of all clauses of ψAck
1 are true, thus also I(ψAck

1 ) = ⊤.
This finishes the proof of Lemma 4.6.1. In total, this approach required only 20 ideal
membership tests compared to 256 if we had translated ψAck

1 directly. We note that
all required polynomial computations are rather simple and lead to ideal membership
certificates of similar size and complexity as the one shown above.
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5 Practical aspects of applying the
framework

The semi-decision procedure for verifying universal truth (Procedure 8) and the concepts
required to state it (Herbrandisation, Ackermann’s reduction, idealisation,. . . ) are presented
in the previous chapter in a very general setting, allowing to treat arbitrary operator
statements. This makes the theory very powerful, however, as witnessed by the illustrative
example in Section 4.6, also a bit cumbersome to apply in practice. In this chapter, we
discuss different aspects relevant for applying the framework in practice, showing that,
for most examples, the actual computations can be simplified a lot compared to the
presentation in the previous chapter.

In particular, we first give a practical summary of the framework in Section 5.1, focusing
on the simple, yet in practice most relevant, case of existential quasi-identities. This
drastically reduces the complexity of the presentation compared to the general case of
arbitrary first-order formulas. A self-contained description of the framework for the larger
class of ∀∃-statements is given in our work [BHR23, Sec. 5].

In Section 5.2, we then present how several common properties of matrices and linear
operators can be expressed in terms of identities, and thus, treated within the framework.
In particular, we discuss how to encode matrices with real entries, how to treat identity
operators, and how to handle injectivity and surjectivity of operators. Leveraging the latter,
we can also express the property of matrices having full row or column rank. Finally, we
discuss the translation of range inclusions of linear operators into identities using Douglas’
lemma [Dou66]. Each of these properties is accompanied by examples and insights into
the practical application of our software package operator_gb (see also Section 6.1). This
section is published in our work [BHR23].
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An important aspect concerning the effectiveness of Procedure 8 is the order in which the
elements in the Herbrand expansion are enumerated. Naively enumerating all possible
expressions quickly becomes infeasible. Therefore, practical implementations of the proce-
dure require techniques for identifying suitable candidate expressions. Translated to the
setting of polynomials, this leads to a desire for methods that allow to search for elements
of a particular form in a given ideal. In Section 5.3, we discuss well-known and present
novel algorithmic techniques based on noncommutative Gröbner basis computations to do
this and illustrate them by examples. In particular, we discuss classical ideal intersection
techniques [Nor98; Mor16] and we present a new algorithm to compute generators of the
intersection of a two-sided ideal with a right ideal. Furthermore, we discuss how an ideal
can be intersected with a subalgebra of the free algebra. We also generalise a method to
compute monomials in a commutative ideal [SST13; Mil16], leading to new algorithms that
allow to compute homogeneous polynomials in a two-sided ideal and monomials in a right
ideal. This section mostly appears in our work [HRR22a], with some minor aspects like
Section 5.3.2 being presented here for the first time.

To end this chapter, we discuss how our algebraic perspective to proving operator statements
can be leveraged to obtain short proofs. As our framework reduces the universal truth of
operator statements to the verification of ideal membership, cofactor representations that
certify the latter can be considered as a proof of the former. In Section 5.4, we discuss the
problem of finding cofactor representations with a minimal number of terms. The results
of this section also appear in our preprint [HV23a].

5.1 Practical summary

In the following, we describe the theory developed in Chapter 4 from a practical point of
view, focusing on existential quasi-identities. Additionally, we limit our scope to arithmetic
function symbols (addition, negation, and multiplication), excluding more general function
symbols. Other (especially unary) function symbols can often be handled ad hoc, as
described, for example, in Remark 1.2.1 for the adjoint operator or in Section 5.2.1 for
the matrix transpose and entry-wise complex conjugation. We note that this restricted
approach allows for a drastically simpler presentation, rendering it more accessible and
efficiently implementable. Moreover, in practice, most statements can be effectively cast
into this specific format.
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To model statements about linear operators, or more generally about morphisms in
preadditive semicategories, we consider a subset of many-sorted first-order logic. More
precisely, we fix an enumerable set of object symbols Ob = {v1, v2, . . . } and call a pair
(u, v) ∈ Ob × Ob a sort. We also fix an enumerable set of variables {x1, x2, . . . } as
well as, for each sort (u, v), a zero constant 0u,v. Furthermore, we fix a sort function σ

mapping each variable x to a sort σ(x) ∈ Ob × Ob and each zero constant 0u,v to
σ(0u,v) = (u, v). Intuitively, variables correspond to basic operators and the zero constants
model distinguished zero operators. The images of these symbols under the sort function σ
represent their domains and codomains.

Using these basic symbols, we can construct terms, and building upon that, operator
statements. Note that the following definition also extends the sort function from variables
and constants to terms.

Definition 5.1.1. A term is any expression that can be built up inductively using the
following rules:

1. each variable x is a term of sort σ(x);

2. each zero constant 0u,v is a term of sort (u, v);

3. if t is a term, then −t is a term of sort σ(−t) := σ(t);

4. if s, t are terms of sort σ(s) = σ(t), then s+ t is a term of sort σ(s+ t) := σ(s);

5. if s, t are terms of sort σ(s) = (v, w), σ(t) = (u, v), then st is a term of sort
σ(st) := (u,w);

Terms are simply all noncommutative polynomial expressions that can be formed from
the variables and the zero constants under the restrictions imposed by the sort function.
They correspond to all operators that can be formed from the basic operators with the
arithmetic operations of addition, negation, and composition.

Definition 5.1.2. An operator statement is a first-order formula that can be built up
inductively using the following rules:

1. if s, t are terms of sort σ(s) = σ(t), then s ≈ t is an operator statement;
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2. if φ is an operator statement, then so is ¬φ;

3. if φ,ψ are operator statements, then so is φ ∗ ψ for ∗ ∈ {∨,∧,→};

4. if φ is an operator statement, then so is Qx : φ for any variable x and Q ∈ {∃,∀};

We abbreviate a block of consecutive equally quantified variables Qx1Qx2 . . . Qxk, with
Q ∈ {∃, ∀}, by Qx1 . . . xk, or simply by Qx. If a term t or an operator statement φ depends
on variables x = x1, . . . , xk, we also write t(x) and φ(x) to emphasise this dependency.

An interpretation I allows to interpret an operator statement φ as a statement about
morphisms in a preadditive semicategory C. It assigns to each object symbol u ∈ Ob an
object I(u) ∈ Ob(C) and to each variable x of sort σ(x) = (u, v) a morphism I(x) : I(u)→
I(v). Each zero constant 0u,v is mapped to the zero morphism in the abelian group
Mor(I(u), I(v)). This ensures that the terms in φ are translated into well-formed morphisms
in C. Then φ can be evaluated to a truth value by interpreting the boolean connectives
and the quantifiers like in classical first-order logic, interpreting ≈ as the identity in C.

Definition 5.1.3. An operator statement φ is universally true if φ evaluates to true under
all possible interpretations in every preadditive semicategory C.

Remark 5.1.4. For a formal definition and more in-depth discussion of interpretations
and universal truth of operator statements, we refer to Sections 2.5.2 and 4.1.

Note that an interpretation of φ depends implicitly on the sort function σ, and thus, so
does the semantic evaluation of φ. An operator statement may be universally true with
respect to one sort function but not with respect to another. For instance, statements that
hold for square matrices may not hold for rectangular matrices. Therefore, we should only
refer to universal truth with respect to a specific sort function. For the sake of brevity, we
assume a fixed sort function σ and disregard this dependency in the following.

Definition 5.1.5. An existential quasi-identity is an operator statement of the form

∀x∃y :
m⋀︂
i=1

si(x) ≈ ti(x)→ p(x,y) ≈ q(x,y).
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Remark 5.1.6. In the definition of existential quasi-identities, we also allow degenerate
cases without universally or existentially quantified variables, that is, where x = ∅ or y = ∅.
However, note that an existential quasi-identity has to be a sentence, meaning that all
variables that appear have to be quantified by a quantifier.

In the following theorem, we show that universal truth of existential quasi-identities can
be easily characterised by ideal membership of noncommutative polynomials. As the proof
will show, this result arises by specialising the semi-decision Procedure 8 for verifying
universal truth to existential quasi-identities. In the following, we identify each term t(x)
as a noncommutative polynomial in Z⟨x⟩ and translate each equality s(x) ≈ t(x) into the
noncommutative polynomial s(x)− t(x) ∈ Z⟨x⟩.

Theorem 5.1.7. An existential quasi-identity

∀x∃y :
m⋀︂
i=1

si(x) ≈ ti(x)→ p(x,y) ≈ q(x,y),

where y = y1, . . . , yk, is universally true if and only if there exist terms z = z1(x), . . . , zk(x)
depending only on x such that σ(zj) = σ(yj), for all j = 1, . . . , k, and such that the ideal
membership

p(x, z)− q(x, z) ∈
(︁
s1(x)− t1(x), . . . , sm(x)− tm(x)

)︁
holds in the free algebra Z⟨x⟩.

Proof. We show that applying Procedure 8 to an existential quasi-identity corresponds
precisely the computation described in the theorem. First, note that the Herbrand normal
form of an existential quasi-identity, is the formula itself, only with the universal quantifier
removed – here we assume, without loss of generality, that the new constant symbols are
given the same names as the variables they replace. Furthermore, the Herbrand expansion
of this normal form is the set of all formulas of the form

m⋀︂
i=1

si(x) ≈ ti(x)→ p(x, z) ≈ q(x, z)

with terms z = z1(x), . . . , zn(x) that depend only on x and satisfy σ(zj) = σ(yj) for all
j = 1, . . . , k. Note that the symbols x now have to be considered as constant symbols,
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as the variables have been replaced during the Herbrandisation, and thus, the formulas
in the Herbrand expansion are indeed ground. Then, Procedure 8 has to verify whether
the idealisation I(φ1 ∨ · · · ∨ φn) is true for some n ∈ N and elements φl in the Herbrand
expansion, l = 1, . . . , n. Note that Ackermann’s reduction is not required because existential
quasi-identities do not contain any non-arithmetic function symbols. If we write each φl =⋀︁m
i=1 si(x) ≈ ti(x)→ p(x, zl) ≈ q(x, zl), then a conjunctive normal form of φ1 ∨ · · · ∨ φn

is given by the single clause

m⋁︂
i=1

si(x) ̸≈ ti(x) ∨
n⋁︂
l=1

p(x, zl) ≈ q(x, zl).

Finally, this idealisation is true if and only if the ideal membership

p(x, zl)− q(x, zl) ∈ (s1(x)− t1(x), . . . , sm(x)− tm(x))

holds for some 1 ≤ l ≤ n.

If an existential quasi-identity φ contains no existentially quantified variables, Theorem 5.1.7
reduces the universal truth of φ to the verification of the single ideal membership

p(x)− q(x) ∈ (s1(x)− t1(x), . . . , sm(x)− tm(x)).

Since the latter problem is semi-decidable, this immediately yields a semi-decision procedure
for universal truth for this kind of statements.

If φ also contains existentially quantified variables, we can proceed as follows: To find
suitable terms z = z1(x), . . . , zk(x) as required by the theorem, we first search for elements
of the form p(x, z)−q(x, z) with arbitrary z in the ideal (s1(x)− t1(x), . . . , sm(x)− tm(x))
and then check a posteriori if any of these elements corresponds to a formula p(x, z) ≈
q(x, z) with terms z as required by the theorem. We note that this is also the technique
we have employed in Section 1.3 to prove the existence of the Moore-Penrose inverse for
matrices. In Section 5.3, we present several methods that allow to search for polynomials
of a specific form in an ideal and illustrate how they can be used to prove existential
quasi-identities.
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5.2 Treating common properties

5.2.1 Real matrices

A property that appears regularly in matrix statements, especially in combination with
the Hermitian adjoint A∗, is that of having matrices over the reals. It can be encoded by
decomposing the Hermitian adjoint A∗ into an entry-wise complex conjugation, denoted
by AC, followed by a transposition, that is, A∗ = (AC)T. With this, a matrix A being
real can be expressed algebraically by the identity A = AC, exploiting the fact that the
conjugate of a real number is the number itself.

To model the complex conjugation and the transposition on the polynomial level, we
proceed analogous to modelling the involution (see Remark 1.2.1). We introduce additional
variables aC and aT for the complex conjugate and the transpose, respectively, of each
basic operator A. Additionally, for every assumption S = T , we have to translate, next to
the corresponding adjoint identity S∗ = T ∗, now also the transposed identity ST = TT as
well as the conjugated identity SC = TC into polynomials. These additional identities first
have to be simplified using the following rules that relate the different function symbols to
each other:

(S + T )α = Sα + Tα, (Tα)β =

⎧⎨⎩T if α = β

T γ if α ̸= β
,

(ST )C = SCTC, (ST )δ = T δSδ,

with α, β, γ, δ ∈ {∗,C,T} such that γ ̸= α, β and δ ̸= C.

As an illustrative example, we consider the statement that the Moore-Penrose inverse B of
a real matrix A is real as well. With the help of our software package operator_gb, it can
be proven as follows. We refer to Section 6.1 for further information on the corresponding
commands.

sage: from operator_gb import *

sage: F.<a, a_tr, a_c, a_adj, b, b_tr, b_c, b_adj> = FreeAlgebra(QQ)
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# the basic assumptions

sage: Pinv_b = add_adj(pinv(a, b, a_adj, b_adj))

# the transposed and conjugated assumptions

sage: Pinv_b_tr = [a_tr*b_tr*a_tr - a_tr, b_tr*a_tr*b_tr - b_tr,

....: a_tr*b_tr - b_c*a_c, b_tr*a_tr - a_c*b_c]

sage: Pinv_b_c = [a_c*b_c*a_c - a_c, b_c*a_c*b_c - b_c]

# assumption that a is real

sage: a_real = [a - a_c, a_tr - a_adj]

sage: assumptions = Pinv_b + Pinv_b_tr + Pinv_b_c + a_real

sage: proof = certify(assumptions, b - b_c)

Computing a (partial) Gröbner basis and reducing the claims...

Done! Ideal membership of all claims could be verified!

5.2.2 Identity operators

Next, we discuss how to handle identity matrices and operators. While zero operators
have a natural translation into the zero polynomial, identity operators cannot be directly
mapped to the multiplicative identity 1 in the free algebra, as this would constitute a
many-to-one mapping and a loss of information. We note that this is not an issue when
mapping all zero operators to the zero polynomial, as the zero polynomial does not affect
any polynomial computations.

Instead, identity operators have to be treated like any other basic operator, which means
introducing a new indeterminate iu for every identity operator IU and explicitly adding
the identities satisfied by IU to the assumptions. In particular, these are the idempotency
of IU , the fact that IU is self-adjoint, and the identities AIU = A and IUB = B for all
basic operators A,B for which these expressions are well-defined.

We illustrate the handling of identity operators in the next section.
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5.2.3 Injectivity, surjectivity, and full matrix ranks

Injectivity and surjectivity of operators appear regularly as properties in statements. They
can be encoded by exploiting the following classical fact.

Lemma 5.2.1. Let U, V be nonempty sets. A function A : U → V is

1. injective if and only if A has a left inverse B : V → U ;

2. surjective if and only if A has a right inverse C : V → U ;

Thus, an assumption of injectivity of an operator A can be encoded via the identity
BA = IU , where B is a new operator that does not satisfy any additional hypotheses
and IU is the identity on U . Analogously, surjectivity of A corresponds to the identity
AC = IV . For proving injectivity or surjectivity of an operator in our setting, we have to
show the existence of a left or right inverse by finding an explicit expression for such an
operator.

As a special case of the discussion above, we also obtain a way to encode the property of a
matrix having full row or column rank. This follows from the fact that a matrix A has full
row rank if and only if the associated linear function is surjective, which, by Lemma 5.2.1,
is the case if and only if A has a right inverse. Dually, A has full column rank if and only
if A has a left inverse.

To illustrate the handling of full rank assumptions as well as of identity matrices, we
consider the statement: If A = BC is a full rank decomposition of a matrix A, that
is, B has full column rank and C has full row rank, then A† = C†B†. Using our software
operator_gb, it can be proven as follows.

sage: from operator_gb import *

sage: F.<a, b, c, i, u, v, x, y, z, a_adj, b_adj, c_adj, i_adj,

....: u_adj, v_adj, x_adj, y_adj, z_adj> = FreeAlgebra(QQ)

sage: Pinv_a = pinv(a, x, a_adj, x_adj)

sage: Pinv_b = pinv(b, y, b_adj, y_adj)
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sage: Pinv_c = pinv(c, z, c_adj, z_adj)

# full ranks encoded via one-sided inverses

sage: rank_decomp = [a - b*c, u*b - i, c*v - i]

# encode identity i

sage: id = [i*i - i, i - i_adj, b*i - b, i*y - y, i*c - c,

....: z*i - z, i*u - u, v*i - v]

sage: assumptions = add_adj(Pinv_a + Pinv_b + Pinv_c +

....: rank_decomp + id)

sage: claim = x - z*y

sage: proof = certify(assumptions, claim)

Computing a (partial) Groebner basis and reducing the claims...

Starting iteration 5...

Done! Ideal membership of all claims could be verified!

Remark 5.2.2. We note that the certify routine (more precisely, the Gröbner basis
computation underlying this command) is an iterative procedure. By default, the package
informs about the computational progress of this procedure by printing an update message
Starting iteration n... every fifth iteration, see also Section 6.1.

5.2.4 Range inclusions

Another common class of properties are conditions on ranges and kernels, like the inclusion
of ranges R(A) ⊆ R(B) of operators A,B. In case of linear operators over a field, such
a range inclusion can be translated into the existence of a factorisation A = BX for
some operator X. We note that, in Hilbert and Banach spaces, this is the well-known
factorisation property in Douglas’ lemma [Dou66].

Thus, also facts like R(A†) = R(A∗) can be treated within the framework by finding
explicit factorisations of A† and A∗ in terms of the other. Using our software package
operator_gb, such factorisations can be found easily. We refer to Section 6.1 for the
implemented methods to do this and for the corresponding commands, and to the following
Section 5.3 for an explanation of these techniques.
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sage: from operator_gb import *

sage: F.<a, a_adj, a_dag, a_dag_adj> = FreeAlgebra(QQ)

sage: Pinv_a = add_adj(pinv(a, a_dag, a_adj, a_dag_adj))

sage: I = NCIdeal(Pinv_a)

# R(A^\dag) \subseteq R(A^*)

sage: I.find_equivalent_expression(a_dag, prefix=a_adj,

....: heuristic=’naive’)

[a_dag - a_adj*a_dag_adj*a_dag]

# R(A^*) \subseteq R(A^\dag)

sage: I.find_equivalent_expression(a_adj, prefix=a_dag,

....: heuristic=’naive’)

[a_adj - a_dag*a*a_adj]

5.3 Heuristics for computing elements of certain form

In this section, we present classical as well as novel algorithms for finding elements of a
particular form in a given ideal in the free algebra by exploiting Gröbner basis techniques.
The ability to do this is one of the crucial steps in the semi-decision Procedure 8 for
verifying universal truth, as well as in the simplified Theorem 5.1.7 for treating existential
quasi-identities. Our techniques are also accompanied by illustrative examples.

The general methodology for all techniques presented in this section is the same: Starting
from an ideal in which we want to search for specific polynomials, we first specify a certain
subideal (for example, by ideal intersections), which has to contain all polynomials of the
desired form. Then we enumerate generators of this subideal and search for a polynomial
of the desired form. Note that, in general, there is no guarantee that we can find such a
polynomial among the generators of the subideal. However, in practice, this was the case
for almost all algebraic proofs of operator statements we considered so far.
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In particular, the first Section 5.3.1 is devoted to exploiting ideal intersections for finding
elements of which only certain factors in a factorisation are known. We discuss well-known
ideal intersection techniques [Nor98; Mor16] and we present a new algorithm to compute
generators of the intersection of a two-sided ideal with a right ideal. We also characterise
when a two-sided ideal is finitely generated as a right ideal. Then, in Section 5.3.2, we
describe how a result from [Nor98] can be used to compute elements in the intersection
of an ideal with a subalgebra of the free algebra. Following upon that, we present an
algorithm for computing homogeneous polynomials in noncommutative ideals and discuss
how it can be used to find positive factorisations of linear operators. This method is a
generalisation of the techniques presented in [SST13; Mil16] for computing monomials in a
commutative polynomial ideal. Finally, in Section 5.3.4, we show how an adaptation of
this procedure also allows to find monomials in right ideals.

We note that the methods presented in this chapter are not exhaustive. There also exist
other techniques that allow to compute elements of certain form in noncommutative
polynomial ideals. For example, variable elimination [Sch21, Sec. 4.2] or employing an
ansatz [Clu+18] are simple yet effective methods commonly used in practice. Additionally,
many problems can be reformulated as factorisation problems in a suitable quotient of the
free algebra. In [BHL17], it was shown that this quotient is a finite factorisation domain if
it admits a finite dimensional filtration and a terminating algorithm was given that allows
to compute all such factorisations in the affirmative case. Unfortunately, however, in the
context of problems related to operator statements, we usually do not have access to such
a finite dimensional filtration (in fact, most of the time we do not even know whether it
exists) as this would require a description of a complete Gröbner basis.

To simplify the considered setting, we work in the free algebra K⟨X⟩ over a field K for the
rest of this section.

5.3.1 Ideal intersections

Ideal intersections provide a useful tool for finding elements of certain forms in an ideal
I ⊴ K⟨X⟩. For example, they allow to systematically search for elements of the form
lar ∈ I with known a ∈ K⟨X⟩ but unknown l, r ∈ K⟨X⟩ by intersecting I with the
ideal (a). More specifically, by intersecting I with the right ideal (a)ρ, we can compute
polynomials of the form ar ∈ I, which allows to search for elements with a known prefix.
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As an example where ideal intersections can help to prove an operator statement, we
consider the following characterisation of the solvability of the operator equation AY B = C

in Hilbert spaces from [AG10, Prop 3.3]. In the following, P † denotes the Moore-Penrose
inverse of a bounded linear operator P and P ∗ denotes the adjoint operator. Furthermore,
R(P ) denotes the range of P .

Theorem 5.3.1. Let A : H4 → H2, B : H1 → H3, C : H1 → H2 be bounded linear operators
on complex Hilbert spaces. There exists a bounded linear operator Y : H3 → H4 such that
AY B = C if and only if R(C) ⊆ R(A) and R((A†C)∗) ⊆ R(B∗).

We discuss how to prove the sufficiency of the range inclusions in the theorem above
by applying Theorem 5.1.7. First, all properties appearing in the statement have to be
phrased in terms of identities. Using Douglas’ lemma (see Section 5.2.4), the postulated
range inclusions can be translated into the existence of operators P,Q such that C = AP

and (A†C)∗ = B∗Q. The existence of the Moore-Penrose inverse A† is encoded in terms
of identities by adding the four Penrose identities for A† to our assumptions. With this,
Theorem 5.3.1 can be translated into the existential quasi-identity

ψ := ∀x∃y : (φ→ ayb ≈ c) ,

where x abbreviates a sequence of 12 variables representing A,A†, B,C, P,Q and their
respective adjoint operators, and φ is a conjunction of the defining identities of A†,
the two identities for the range inclusions, and the corresponding adjoint statements.
By Theorem 5.1.7, proving ψ to be universally true corresponds to verifying that the
polynomial ayb− c, for a suitable choice of y, is contained in the ideal generated by the
polynomials F corresponding to the identities in φ. The sorts of the involved symbols are
depicted in Figure 5.1. Each symbol s of sort (α, β) is represented by an edge with label s
from vertex α to β.

Thus, finding a solution Y of AY B = C corresponds to finding a suitable polynomial
ayb− c ∈ (F ), where a, b, c are known but y is an unknown polynomial. To find such an
element, we intersect (F ) with the right ideal (a, c)ρ and enumerate generators of this
intersection. Among these generators, we then search for a polynomial of the form ar − c
with the additional requirement that the free part r has to end with the variable b. If
we can find such a polynomial and show that it is compatible with the sorts depicted in
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Figure 5.1, then this shows that ψ is universally true, thus proving the sufficiency part of
Theorem 5.3.1. This approach is carried out successfully in Example 5.3.17 at the end of
this section.

In the following, we discuss how generating sets of several different kinds of ideal intersections
can be computed. Recall that I, J, . . . denote two-sided ideals, while Iρ, Jρ, . . . denote
right ideals.

In the case of commutative polynomials, two ideals I, J ⊆ K[X] can be intersected by
computing the elimination ideal tI+(1− t)J ∩K[X], where t denotes a new tag variable. It
is well-known that the same also works for intersecting one-sided ideals in the free algebra
(see, for example, [Mor16, Rem. 48.8.6]).

Theorem 5.3.2. Let Iρ = (f1, . . . , fr)ρ, Jρ = (g1, . . . , gs)ρ ⊴r K⟨X⟩ be two right ideals.
Furthermore, let t /∈ X be a new indeterminate. Consider the right ideal

Hρ =
(︁
tfi, (1− t)gj | 1 ≤ i ≤ r, 1 ≤ j ≤ s

)︁
ρ
.

Then Iρ ∩ Jρ = Hρ ∩K⟨X⟩.

Consequently, making use of the elimination property of right Gröbner bases (Proposi-
tion 2.4.68), a right Gröbner basis of Iρ ∩Jρ can be obtained by computing a right Gröbner
basis G of Hρ with respect to an elimination order for t and selecting all polynomials in G
not involving the variable t. Proposition 2.4.71 and Lemma 2.4.72 ensure that the Gröbner
basis computed in this way is always finite.

In [Nor98, Thm. 2], it was shown that the elimination property of Gröbner bases also allows
to compute the intersection of two-sided ideals provided that we introduce the commutator
relations txk − xkt, for all k = 1, . . . , n, between the new tag variable t and the elements
of X.

Theorem 5.3.3. Let I = (f1, . . . , fr), J = (g1, . . . , gs) ⊴ K⟨X⟩ be two ideals. Furthermore,
let t /∈ X be a new indeterminate. Consider the ideal

H =
(︁
tfi, (1− t)gj , txk − xkt | 1 ≤ i ≤ r, 1 ≤ j ≤ s, 1 ≤ k ≤ n

)︁
.

Then I ∩ J = H ∩K⟨X⟩.
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Hence, as for right ideals, a Gröbner basis of the intersection can be obtained by intersecting
a Gröbner basis G of H, computed with respect to an elimination order for t, with K⟨X⟩.
However, in contrast to the one-sided case, we cannot expect this Gröbner basis to be finite
in general.

Next, we consider the third and for our application most relevant type of ideal intersection
– the intersection of a two-sided ideal I with a right ideal Jρ. The basic idea to compute
the intersection I ∩ Jρ is to consider I as a right ideal and to intersect two right ideals. As
Theorem 5.3.2 provides an algorithmic way to compute the intersection of two right ideals,
it remains to discuss how to obtain a right generating set of an ideal I. The following
proposition is a specialisation of a result in [Gre00] for path algebras and tells us how the
reduced Gröbner basis of an ideal I can be used to obtain a right Gröbner basis of I. In
particular, this provides a way to obtain a right generating set of a two-sided ideal.

Proposition 5.3.4. Let I ⊴ K⟨X⟩ and let G be its reduced Gröbner basis. The set

ρ(I) := {wg | w ∈ ⟨X⟩, g ∈ G,

p is irreducible w.r.t.→G for any proper prefix p of lm(wg)}

is a right Gröbner basis of I. Furthermore, lm(f) is irreducible with respect to →ρ,ρ(I)\{f}

for all f ∈ ρ(I).

Proof. Follows from [Gre00, Prop 7.1] since K⟨X⟩ can be viewed as a path algebra with
only one vertex.

Remark 5.3.5. Equivalently, ρ(I) can be written as

ρ(I) = {wg | w ∈ ⟨X⟩irr,I, g ∈ G, p ∈ ⟨X⟩irr,I for any proper prefix p of lm(wg)} , (5.1)

where G is the reduced Gröbner basis of I and ⟨X⟩irr,I := ⟨X⟩ \ lm(I) is the set of all
irreducible words with respect to →G.

It follows from the uniqueness of the reduced Gröbner basis (Proposition 2.4.41), that, for
a fixed monomial order, the set ρ(I) only depends on I. In the following, we discuss under
which conditions a two-sided ideal I is finitely generated as a right ideal. The following
result tells us that this is the case if and only if the set ρ(I) is finite.
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Proposition 5.3.6. For I ⊴ K⟨X⟩, the following are equivalent:

1. I is finitely generated as a right ideal;

2. I has a finite right Gröbner basis;

3. the set ρ(I) is finite;

Proof. The implications 3 =⇒ 2 =⇒ 1 are clear, and 1 =⇒ 2 follows from Propo-
sition 2.4.71 and Lemma 2.4.72. For 2 =⇒ 3, assume, for contradiction, that I has a
finite right Gröbner basis, say H = {h1, . . . , hm}, but that ρ(I) is infinite. Since ρ(I) is
a right Gröbner basis of I, there exist gi ∈ ρ(I) such that lm(gi) is a prefix of lm(hi) for
all i = 1, . . . ,m. Now let g ∈ ρ(I) \ {g1, . . . , gm} be arbitrary but fixed. Such an element
exists since ρ(I) is infinite. Because H is a right Gröbner basis of I and ρ(I) ⊆ I, there
exists 1 ≤ i ≤ m such that lm(hi) is a prefix of lm(g). But then lm(gi) is also a prefix of
lm(g), and since g ̸= gi, this is a contradiction to the assertion of Proposition 5.3.4 that
lm(f) is irreducible with respect to →ρ,ρ(I)\{f} for all f ∈ ρ(I).

The set ρ(I) depends on the monomial order with respect to which the reduced Gröbner
basis of I is computed. However, Proposition 5.3.6 implies that the finiteness of ρ(I) is
independent of the monomial order.

We will now investigate under which conditions the set ρ(I) is finite. Clearly, if the reduced
Gröbner basis G of I is infinite, then so must be ρ(I), or equivalently, the finiteness of ρ(I)
implies the finiteness of G. The converse, however, need not hold. The finiteness of G alone
is only sufficient to guarantee that also ρ(I) is finite if I is the trivial ideal I = {0}. In this
case, G = ∅ = ρ(I). We will see that, in all other cases, we need the additional requirement
that also ⟨X⟩irr,I is finite. To this end, we recall the definition of a zero-dimensional ideal.

Definition 5.3.7. An ideal I ⊴ K⟨X⟩ is zero-dimensional if the quotient ring K⟨X⟩/I is
finite dimensional as a K-vector space.

The following result follows immediately from Theorem 2.4.45.

Corollary 5.3.8. An ideal I ⊴ K⟨X⟩ is zero-dimensional if and only if ⟨X⟩irr,I is finite.
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A nice property of zero-dimensional ideals is that they admit finite Gröbner bases with
respect to any monomial order, see [Mor87, Prop. 5.1].

Lemma 5.3.9. The reduced Gröbner basis of a zero-dimensional ideal is finite with respect
to any monomial order.

Moreover, being zero-dimensional is also a sufficient condition for an ideal to have a finite
right Gröbner basis.

Lemma 5.3.10. The set ρ(I) is finite for any zero-dimensional ideal I ⊴ K⟨X⟩.

Proof. It follows from Lemma 5.3.9 that the reduced Gröbner basis of I is finite. Then the
finiteness of ρ(I) follows directly from the representation (5.1) and the fact that ⟨X⟩irr,I is
finite by Corollary 5.3.8.

Surprisingly, for a nontrivial ideal, the property of being zero-dimensional is also a necessary
condition for it to have a finite right Gröbner basis. This fact is captured by the following
lemma.

Lemma 5.3.11. Let I ⊴ K⟨X⟩ be a nontrivial ideal. If I has a finite right Gröbner basis,
then I is zero-dimensional.

Proof. Let G be a finite right Gröbner basis of I and denote N = max{|lm(g)| | g ∈ G}.
Let w ∈ ⟨X⟩ such that |w| ≥ N and choose g ∈ G arbitrary. Then wg ∈ I, and therefore,
since G is a right Gröbner basis, there exists g′ ∈ G such that lm(g′) is a prefix of lm(wg).
By the way w was chosen, lm(g′) is already a prefix of w, showing that w /∈ ⟨X⟩irr,I. Since
w was arbitrary of length at least N , this shows that ⟨X⟩irr,I can contain only finitely many
elements. Hence, I is zero-dimensional by Corollary 5.3.8.

Combining Proposition 5.3.6 with Lemma 5.3.10 and Lemma 5.3.11, we arrive at the
following result.

Theorem 5.3.12. For I ⊴ K⟨X⟩, the following are equivalent:

1. I is finitely generated as a right ideal;
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2. I has a finite right Gröbner basis;

3. the set ρ(I) is finite;

4. I is zero-dimensional or the trivial ideal;

However, the condition of I being zero-dimensional is very strong and in practical applica-
tions rarely fulfilled. Typically, the reduced Gröbner basis of I is not even finite. In such
cases, there is no chance to obtain a finite right generating set. Consequently, in practice,
we have to content ourselves with finite approximations of ρ(I) and can therefore only work
with a right subideal Iρ ⊊ I. A priori, it is usually not clear how to choose such a finite
approximation. In our practical applications, we have so far simply selected all elements in
ρ(I) up to a certain degree bound. Thus far, this has worked very well, allowing us to find
the correct polynomials.

Moreover, when working with polynomials originating from operator statements, we can
choose the subideal Iρ so that it still contains all polynomials that are of interest to us
and such that Iρ is more likely to have a finite right generating set. This follows from the
fact that, for proving operator statements, we are only interested in polynomials in I that
correspond to actual operator identities, that is, in polynomials whose terms are compatible
with the sorts of the used signature. We formalise this idea via the following definition,
which is based on the notions introduced in Sections 4.1 and 4.3.

Definition 5.3.13. Let Σ = (O,C, F, σ) be a signature and let X ⊆ Var ∪ (C \ Zero).
A polynomial f ∈ K⟨X⟩ is compatible with the signature Σ if there exists an arithmetic
operator statement φ = s ≈ t ∈ Form(Σ) such that f = Tφ(s)−Tφ(t), using the translation
function Tφ described in Section 4.3.1.

Example 5.3.14. Consider a signature Σ = (O,C, F, σ) with O = {u, v}, c ∈ C, and σ

such that

σ(a) = (u, v), σ(b) = (v, u), σ(c) = (u, v),

where a, b ∈ Var. Let K be any field. The polynomial a+ b ∈ K⟨a, b, c⟩ is not compatible
with the signature Σ because no arithmetic operator statement can lead to this polynomial.
The reason is that the variables a and b have different sorts, and thus, the expression a+ b
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is not a well-formed term in the signature Σ. An example of a compatible polynomial
is aba + c − a, which arises, for example, as the translation of the arithmetic operator
statement a · b · a+ c ≈ a ∈ Form(Σ).

If the objective is to find polynomials in I that are compatible with a given signature Σ,
then ρ(I) can be replaced by

ρΣ(I) = {f ∈ ρ(I) | f compatible with Σ} .

The following corollary from [RRH21, Thm. 16] ensures under very mild assumptions on
the generators of I that, when working with ρΣ(I) instead of ρ(I), we can still form all
compatible polynomials in I.

Corollary 5.3.15. Let Σ be a signature and let f1, . . . , fr, f ∈ K⟨X⟩ be compatible with Σ.
Furthermore, let I = (f1, . . . , fr). Then,

f ∈ I ⇐⇒ f ∈ (ρΣ(I))ρ .

Proof. Note that our notion of compatibility with a signature is equivalent to the notion
of compatibility with a labelled quiver [RRH21, Def. 6]. With this, the result follows
from [RRH21, Thm. 16].

Remark 5.3.16. It has been observed that the noncommutative version of Buchberger’s
algorithm preserves compatibility of polynomials with a signature [HSW98; Che+20; SL20].
This means that, if all polynomials that are given as input to this algorithm are compatible
with a signature, then so are all polynomials in the output. We note that this behaviour
carries over to one-sided ideal intersections. More precisely, if all generators of two right
ideals Iρ and Jρ are compatible with a signature, then so are all polynomials in a Gröbner
basis of Iρ ∩ Jρ when Buchberger’s algorithm is used in combination with Theorem 5.3.2.
In case of two-sided ideal intersections, however, this is no longer true. A Gröbner basis
of the intersection I ∩ J of two ideals I and J with compatible generators computed with
Buchberger’s algorithm might contain incompatible polynomials. The reason for this is the
introduction of the commutator relations txk − xkt during the computation of I ∩ J .
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H2 H4 H3 H1
a

a∗

a†

(a†)∗

b

b∗

c

c∗

p

p∗

q

q∗

Figure 5.1: Sorts of the variables encoding Theorem 5.3.1.

Typically, the set ρΣ(I) is a lot smaller than ρ(I). To illustrate this point, we finish the
proof of Theorem 5.3.1.

Example 5.3.17. Recall that we had translated the assumptions of Theorem 5.3.1 into a
set F of noncommutative polynomials. This set consists of the following elements:

aa†a− a, a∗(a†)∗a∗ − a∗, (a†)∗a∗ − aa†,

a†aa† − a†, (a†)∗a∗(a†)∗ − (a†)∗, a∗(a†)∗ − a†a,

c− ap, c∗ − p∗a∗, c∗(a†)∗ − b∗q, a†c− q∗b,

where the first two lines correspond to the existence of the Moore-Penrose inverse A† (plus
the respective adjoint statements) and the last line corresponds to the range inclusions
R(C) ⊆ R(A) and R((A†C)∗) ⊆ R(B∗) (plus the respective adjoint statements). The sorts
of the involved symbols are depicted in Figure 5.1, using the symbols Hi to represent the
spaces Hi, i = 1, . . . , 4.

The existence of a solution Y of AY B = C corresponds to finding a compatible polynomial
ayb− c ∈ (F ), where a, b, c are known but y is unknown. Using one-sided ideal intersection
as discussed in this section, we can now find such a polynomial. To this end, we intersect
I = (F ) with the right ideal (a, c)ρ. Working over K = Q with a degree lexicographic
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order, the reduced Gröbner basis of I consists of 17 polynomials. In this example, ρ(I)
as well as ρΣ(I) seem to be infinite, where Σ is the signature used to encode the theorem.
However, it turns out that it suffices to consider the finite approximation ρ(5)

Σ (I) ⊆ ρΣ(I) of
compatible polynomials of degree at most 5 to find a suitable polynomial in the intersection.
We note that |ρ(5)

Σ (I)| = 68 while computing all elements in ρ(I) up to degree 5 would
yield 383 elements. Then the reduced Gröbner basis of (ρ(5)

Σ (I))ρ ∩ (a, c)ρ contains the
compatible polynomial aq∗b− c. Since the relevant ideal membership aq∗b− c ∈ I also holds
in Z⟨X,X∗⟩, this proves Theorem 5.3.1 and shows that Q∗ is a solution of AY B = C.

5.3.2 Intersection with subalgebra

The second technique that we consider is the intersection of an ideal with a finitely generated
subalgebra of K⟨X⟩. To this end, we recall the following result from [Nor98], which is a
combination of [Nor98, Thm. 3] and the remarks at the end of [Nor98, Sec. 4].

Theorem 5.3.18. Let I ⊴ K⟨X⟩ be an ideal generated by F ⊆ K⟨X⟩. Furthermore, let
Y = {y1, . . . , ym} be a new set of indeterminates, and let φ̄ : K⟨Y ⟩ → K⟨X⟩/I be the
K-algebra homomorphism defined by φ̄(yi) = [hi] for some hi ∈ K⟨X⟩, i = 1, . . . ,m.
Consider the ideal generated by

H = F ∪ {yi − hi | 1 ≤ i ≤ m} ⊆ K⟨X,Y ⟩.

Then ker(φ̄) = (H) ∩K⟨Y ⟩.

Thus, by exploiting the elimination property of Gröbner bases (Theorem 2.4.43), we can
obtain a Gröbner basis of the kernel of K-algebra homomorphisms. This result allows us
to also study K-subalgebras, and in particular, to intersect ideals with such subalgebras.
If K⟨H⟩ is the K-subalgebra of K⟨X⟩ generated by H = {h1, . . . , hm} ⊆ K⟨X⟩, that is,

K⟨H⟩ := {f(h1, . . . , hm) | f ∈ K⟨y1, . . . , ym⟩} ,

then K⟨H⟩ can be considered as the image of the homomorphism φ : K⟨Y ⟩ → K⟨X⟩
defined by φ(yi) = hi for i = 1, . . . ,m. The following corollary tells us how to compute the
intersection of K⟨H⟩ with an ideal I ⊴ K⟨X⟩.
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Corollary 5.3.19. Let H = {h1, . . . , hm} ⊆ K⟨X⟩ and I ⊴ K⟨X⟩. Consider the K-algebra
homomorphism

φ̄ : K⟨Y ⟩ → K⟨X⟩/I, yi ↦→ [hi].

Then,
I ∩K⟨H⟩ = {f(h1, . . . , fm) | f ∈ ker(φ̄)} .

Proof. We denote F = {f(h1, . . . , fm) | f ∈ ker(φ̄)}.

To show the first inclusion I ∩ K⟨H⟩ ⊆ F , let g ∈ I ∩ K⟨H⟩. Since g ∈ K⟨H⟩, there
exists f ∈ K⟨Y ⟩ such that f(h1, . . . , hm) = g. Then φ̄(f) = [g] = [0], since g ∈ I. Thus,
f ∈ ker(φ̄), and consequently, g = f(h1, . . . , hm) ∈ F .

For the other inclusion I ∩K⟨H⟩ ⊇ F , let g ∈ F . By definition, there exists f ∈ ker(φ̄)
such that f(h1, . . . , hm) = g, showing that g ∈ K⟨H⟩. To finish to proof, we note that
g ∈ I since [g] = φ̄(f) = [0].

5.3.3 Homogeneous part of an ideal

The previous sections have shown that intersection techniques can provide useful tools for
computing elements of special form in an ideal. However, not all properties of operators
ultimately lead to statements about polynomials that can be solved by ideal intersections.
One example of such a property is determining whether a given operator is positive. Recall
that a linear operator P is called positive if there exists another linear operator Q such
that P factors as P = Q∗Q. A concrete statement, where one has to determine the
positivity of a given operator, is the following part of [AG10, Thm. 4.3].

Theorem 5.3.20. Let A : H3 → H2, B : H1 → H3, C : H1 → H2 be bounded linear
operators on complex Hilbert spaces such that R(B) ⊆ R(A∗). If there exists a bounded,
positive linear operator X : H3 → H3 such that AXB = C, then B∗A†C is positive.

Proving this statement using Theorem 5.1.7 leads to the following problem. Given the
ideal (F ) generated by the assumptions F of the theorem, find a polynomial of the form
p− q∗q ∈ (F ), where p is known but the polynomial q, and therefore also q∗, are unknown.
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Here, q∗ denotes the image of q under the involutive antiautomorphism ∗ that sends each
variable xi to an adjoint variable x∗

i , and each x∗
i back to xi. Ideal intersections are

not useful here since the second term q∗q is completely unknown. If q is a monomial, a
polynomial of the desired form can be found by computing the homogeneous part of the
ideal I.

In this section, we describe how the homogeneous part of an ideal can be computed. Our
result is a generalisation of [Mil16], which describes how the set of all monomials contained
in a commutative ideal can be computed. We note that a variant of the approach described
in [Mil16] can also be found in [SST13, Alg. 4.4.2].

Recall from Example 2.2.36 that a matrix A ∈ Rn×m with rows a1, . . . ,an ∈ Rm defines a
grading of the free algebra on X = {x1, . . . , xn} by the monoid (Rm,+) specified by the
degree function degA mapping each word w = xi1 . . . xid to degA(w) = ∑︁d

j=1 aij . Given
such a grading of K⟨X⟩ and an ideal I ⊴ K⟨X⟩, we can now ask what are the polynomials
in I that are homogeneous with respect to degA. More precisely, we want to consider
the ideal generated by all these polynomials. Analogous to the commutative case (see,
for example, [KR05, Tut. 50]), we call this ideal the homogeneous part of I with respect
to degA.

Definition 5.3.21. Let I ⊴ K⟨X⟩ and A ∈ Rn×m. The homogeneous part of I with
respect to degA is the ideal

homA(I) = (f ∈ I | f is homogeneous w.r.t. degA) .

The next lemma follows immediately from the definition above.

Lemma 5.3.22. Let I ⊴ K⟨X⟩ and A ∈ Rn×m. Then homA(I) is the largest homogeneous
ideal with respect to degA contained in I.

In the following, we describe how a Gröbner basis of homA(I) can be computed. In our
approach, we have to restrict ourselves to the case that A has only integer entries, that is,
A ∈ Zn×m. Note that this is equivalent to having A ∈ Qn×m as, for any nonzero c ∈ Q,
the matrix cA induces the same decomposition of K⟨X⟩ as A.
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For the following, some notation is needed. First, for two sets Y and Z, we denote by
[Y, Z] = {yz − zy | y ∈ Y, z ∈ Z} the set of commutator relations between Y and Z. Then,
with two new sets of indeterminates T = {t1, . . . , tm} and T−1 = {t−1

1 , . . . , t−1
m }, we let

J ⊆ K⟨X,T, T−1⟩ be the ideal generated by

[X ∪ T ∪ T−1, T ∪ T−1] ∪ {1− tjt−1
j | j = 1, . . . ,m}.

Furthermore, we let A = K⟨X,T, T−1⟩/J . The equivalence class of an element f ∈
K⟨X,T, T−1⟩ in A is [f ]. Note that, in A, the elements [tj ] and [t−1

j ] commute with each
other and with everything else. Furthermore, they are also invertible.

Remark 5.3.23. The quotient algebra A could be defined equivalently as the following
quotient of a mixed algebra (Definition 3.1.2):

A = K[T, T−1]⟨X⟩⧸(1− tjt−1
j | j = 1, . . . ,m).

We can think of the equivalence classes of monomials in the variables T ∪ T−1 as commu-
tative monomials. Hence, there is a bijection τ between exponent vectors and suitable
representatives of these equivalence classes. More precisely, for a = (a1, . . . , am) ∈ Zm we
define

τ(a) = s
|a1|
1 . . . s|am|

m ∈ ⟨T, T−1⟩, where sj =

⎧⎨⎩tj if aj ≥ 0

t−1
j otherwise

.

Example 5.3.24. For a = (3,−2, 0, 1) ∈ Z4, we have τ(a) = t31(t−1
2 )2t4.

The map τ turns a vector of integers into a monomial in ⟨T, T−1⟩. The following lemma
captures an important property of this map in A. It follows from the fact that the
equivalence classes [tj ] commute with each other and with their designated inverses.

Lemma 5.3.25. For a, b ∈ Zm, we have [τ(a + b)] = [τ(a)] · [τ(b)].
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For a matrix A ∈ Zn×m with rows a1, . . . ,an, we can use the map τ to define the K-algebra
homomorphism

φA : K⟨X⟩ → K⟨X,T, T−1⟩, xi ↦→ xiτ(ai).

Furthermore, we let φA : K⟨X⟩ → A be the composition of φA with the canonical projection
that sends each element in K⟨X,T, T−1⟩ to its equivalence class in A. Applying φA to
a polynomial f maps each monomial w ∈ supp(f) to [wwt], where wt = τ(degA(w)) ∈
⟨T, T−1⟩ is a monomial in the variables T ∪ T−1 encoding degA(w). Finally, we need the
extension of an ideal by φA.

Definition 5.3.26. Let I ⊴ K⟨X⟩ be an ideal with generating set F . The extension of I
along the homomorphism φA is the ideal

IφA = (φA(f) | f ∈ F ) ⊴ A.

The following result ensures that the extension is independent of the concrete generating
set, and thus, well-defined.

Lemma 5.3.27. For F,G ⊆ K⟨X⟩ such that (F ) = (G), we have

(φA(f) | f ∈ F ) = (φA(g) | g ∈ G) .

Proof. Denote IF = (φA(f) | f ∈ F ) and IG = (φA(g) | g ∈ G). We show φA(f) ∈ IG for
all f ∈ F , which implies that IF ⊆ IG. The other inclusion will follow symmetrically.
Let f ∈ F . By assumption, f is a linear combination of the elements in G, that is,
f = ∑︁d

i=1 pigiqi with pi, qi ∈ K⟨X⟩ and gi ∈ G. With this, we get

φA(f) =
d∑︂
i=1

φA(pi)φA(gi)φA(qi) ∈ IG,

using the fact that φA is a K-algebra homomorphism.
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We can finally state the main result of this section.

Theorem 5.3.28. For I ⊴ K⟨X⟩ and A ∈ Zn×m, we have

homA(I) = IφA ∩K⟨X⟩ :=
⋃︂

[f ] ∈ IφA

[f ] ∩K⟨X⟩.

Proof. We note that it follows from the definition of IφA that f ∈ I implies φA(f) ∈ IφA .
Now, to prove the inclusion homA(I) ⊆ IφA ∩K⟨X⟩, let f ∈ homA(I). Without loss of
generality, we can assume that f is homogeneous. Let a = degA(f) ∈ Zm. Note that,
since f is homogeneous, every term in f has degree a. Due to this fact, in A, we have
[τ(a)f ] = [φA(f)] = φA(f) ∈ IφA . To see that this implies that also [f ] ∈ IφA , we use
Lemma 5.3.25 and compute

[f ] = [τ(0)] · [f ] = [τ(−a)] · [τ(a)] · [f ] = [τ(−a)] · [τ(a)f ] ∈ IφA .

For the other inclusion IφA ∩K⟨X⟩ ⊆ homA(I), we show that IφA ∩K⟨X⟩ ⊆ I and that
IφA ∩K⟨X⟩ is a homogeneous ideal. Then the claim follows from Lemma 5.3.22. For the
first part, let f ∈ IφA ∩K⟨X⟩. Then f can be written as

f =
d∑︂
i=1

piφA(fi)qi +
e∑︂
i=1

uigivi,

with fi ∈ I, gi ∈ [X ∪ T ∪ T−1, T ∪ T−1] ∪ {1 − tjt−1
j | j = 1, . . . ,m} and pi, qi, ui, vi ∈

K⟨X,T, T−1⟩. Note that the left-hand side of this identity does not depend on the
indeterminates in T and T−1. Hence, by setting tj = t−1

j = 1 for all j = 1, . . . ,m, we
obtain f = ∑︁d

i=1 p̃ifiq̃i with p̃i, q̃i ∈ K⟨X⟩. This shows that f ∈ I.

Finally, to show that IφA ∩K⟨X⟩ is a homogeneous ideal, we extend the Zm-grading of
K⟨X⟩ defined by A to a Zm-grading of K⟨X,T, T−1⟩ by setting

degA(xi) = ai, degA(tj) = −ej , degA(t−1
j ) = ej ,

where ai denotes the ith row of A and ej the jth unit vector of Zm for i = 1, . . . , n,
j = 1, . . . ,m. The ideal J is homogeneous with respect to this grading. Consequently, this
induces a well-defined grading on A with respect to which the ideal IφA is homogeneous,
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because φA(f) has degree 0 for every f ∈ K⟨X⟩. To see that also the intersection
IφA ∩K⟨X⟩ is homogeneous, let f ∈ IφA ∩K⟨X⟩. Write f = h1 + . . . hd with homogeneous
components hi ∈ K⟨X⟩, i = 1, . . . , d and note that the homogeneous components of [f ]
are [h1], . . . , [hd]. Thus, since IφA is homogeneous, we have [hi] ∈ IφA for i = 1, . . . , d. As
the hi do not depend on T or T−1, they are also contained in IφA ∩K⟨X⟩. This shows
that the intersection is also a homogeneous ideal.

To turn Theorem 5.3.28 into an effective procedure, we can make use of the fact that there
is a bijection between ideals in K⟨X,T, T−1⟩/J and ideals in K⟨X,T, T−1⟩ containing J .
Using this, we can obtain a Gröbner basis of homA(I) as described in Algorithm 9.

Algorithm 9: Gröbner basis enumeration of homogeneous part
Input: f1, . . . , fr ∈ K⟨X⟩ generating I = (f1, . . . , fr), a matrix A ∈ Zn×m

Output (if the algorithm terminates): G ⊆ I a Gröbner basis of homA(I)
1 T ← {t1, . . . , tm}, T−1 ← {t−1

1 , . . . , t−1
m };

2 J ← the ideal in K⟨X,T, T−1⟩ generated by

[X ∪ T ∪ T−1, T ∪ T−1] ∪ {1− tjt−1
j | j = 1, . . . ,m};

3 H ← (φA(f1), . . . , φA(fr)) ⊆ K⟨X,T, T−1⟩;
4 enumerate a Gröbner basis g0, g1, . . . of H + J w.r.t. an elimination order for T ∪ T−1;
5 G← {gn | n ∈ N, gn ∈ K⟨X⟩};
6 return G;

Remark 5.3.29. If A ∈ Nn×m, then the ideal J can be replaced by

J ′ =
(︂
[X ∪ T, T ] ∪ {1− tjt−1

j | j = 1, . . . ,m}
)︂
.

Note that, in this case, we do not have any commutator relations involving the variables in
T−1. This is because, if A ∈ Nn×m, the generators of IφA do not contain any indeterminates
from T−1. Thus, to cancel any indeterminates from T from these generators, it is enough
to move them to the right, exploiting the fact that these variables still commute with each
other and with all x ∈ X, and then cancel them using the relations 1− tjt−1

j , j = 1, . . . ,m.

We fix X = {x1, . . . , xn} and X∗ = {x∗
1, . . . , x

∗
n}. To end this section, we discuss how

computing the homogeneous part of an ideal I ⊆ K⟨X,X∗⟩ allows to find elements of
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the form p − q∗q ∈ I, where p ∈ K⟨X,X∗⟩ is given and q is unknown. In case that q
is a monomial, we can choose a grading of K⟨X,X∗⟩ that makes elements of the form
p− q∗q homogeneous. Taking the matrix A such that degA(xi) = ei and degA(x∗

i ) = −ei,
for i = 1, . . . , n, where ei denotes the ith unit vector of Zn, yields degA(q∗q) = 0 for all
q ∈ ⟨X,X∗⟩. Now, if there exists an element of the form p− q∗q ∈ I, and if we introduce a
new variable v with degA(v) = 0 and set I ′ = I+(v−p), then the homogeneous polynomial
v− q∗q of degree 0 lies in I ′. By enumerating generators of homA(I ′) we can systematically
search for this element. We note that we can increase our chances of finding a suitable
element by computing a Gröbner basis of homA(I ′) with respect to an elimination order
for {v}. Because then, provided that I contains an element of the form p − q∗q, this
Gröbner basis must contain an element with leading monomial v. In the following, we
apply this procedure to prove Theorem 5.3.20.

Example 5.3.30. To prove Theorem 5.3.20 by a computation with polynomials, we have to
translate all properties of the operators first into identities and then into noncommutative
polynomials. For the assumptions, the existence of a positive solution X and the range
inclusion translate into the identities AY ∗Y B = C and B = A∗Z, respectively, with new
operators Y,Z. Furthermore, the existence of the Moore-Penrose inverse A† is encoded
by the four defining identities of A†. The sorts of the symbols encoding the domains and
codomains of the operators are depicted in Figure 5.2, using the symbols Hi to represent
the spaces Hi, i = 1, 2, 3.

Translating all these identities and the respective adjoint statements into noncommutative
polynomials, gives a set F ⊆ Q⟨X,X∗⟩ of 10 polynomials with integer coefficients in
12 indeterminates. Proving Theorem 5.3.20 boils down to finding an operator Q such
that B∗A†C = Q∗Q, or in terms of polynomials, to finding a polynomial of the form
b∗a†c − q∗q ∈ (F ), where b∗, a†, c ∈ X ∪X∗ are known but q ∈ Q⟨X,X∗⟩, and therefore
also q∗, are unknown.

Following the procedure outlined above, we consider the ideal I ′ = (F ) + (v − b∗a†c) ⊆
Q⟨X,X∗, v⟩ and enumerate a Gröbner basis of the homogeneous part homA(I ′) with respect
to the degree matrix A ∈ Z13×6 such that degA(v) = 0, degA(xi) = ei, degA(x∗

i ) = −ei

for all xi ∈ X, x∗
i ∈ X∗. We do this computation with respect to an elimination order for

{v}. To speed up the computation, we first compute the reduced Gröbner basis G of I ′ and
then use this generating set as input to enumerate a Gröbner basis of homA(I ′). While
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Figure 5.2: Sorts of the variables encoding Theorem 5.3.20.

|G| = 25, the Gröbner basis of homA(I ′) seems to be infinite. However, after enumerating
273 generators of homA(I ′), one can see that v − b∗y∗yb = v − (yb)∗yb ∈ homA(I ′), which
shows that b∗a†c− (yb)∗yb ∈ (F ). After verifying that this polynomial is compatible with
the signature Σ and that the ideal membership also holds in Z⟨X,X∗⟩, this reveals that
B∗A†C = (Y B)∗Y B is indeed positive, and consequently proves Theorem 5.3.20.

5.3.4 Monomial part of a right ideal

Other elements in an ideal that are often of special interest are monomials. The goal of
this section is to effectively describe the monomial part of a (right) ideal I, that is, the
(right) ideal generated by all monomials contained in I. More precisely, we show how a
simple adaptation of the technique described in the previous section allows to compute all
monomials in a given right ideal. We note that the following definition is analogous to the
commutative case (see, for example, the discussion before [SST13, Alg. 4.4.2]).

Definition 5.3.31. Let I ⊴ K⟨X⟩ be an ideal. The monomial part of I is the ideal
mon(I) = (m ∈ I | m ∈ ⟨X⟩). Analogously, for a right ideal Iρ ⊴r K⟨X⟩, the monomial
part of Iρ is the right ideal mon(Iρ) = (m ∈ Iρ | m ∈ ⟨X⟩)ρ.
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This is clearly a monomial (right) ideal as defined below.

Definition 5.3.32. A (right) ideal I ⊆ K⟨X⟩ is called a monomial (right) ideal if I has a
(right) generating set consisting only of monomials.

A classical characterisation of monomial ideals is given by the following result.

Lemma 5.3.33. A (right) ideal I ⊆ K⟨X⟩ is a monomial (right) ideal if and only if, with
every element f ∈ I, also supp(f) ⊆ I.

The next result follows directly from the definition above.

Lemma 5.3.34. For a (right) ideal I ⊆ K⟨X⟩, mon(I) is the largest monomial (right)
ideal contained in I.

In the following, we describe how an adaptation of the technique from the previous section
allows to compute a right Gröbner basis of mon(Iρ) for a given right ideal Iρ ⊴r K⟨X⟩. As
for the homogeneous part of an ideal, we need some notation. First, we define the ideal

J =
(︂
[X,T ] ∪ {1− tjt−1

j | j = 1, . . . , n}
)︂
⊴ K⟨X,T, T−1⟩, (5.2)

where T = {t1, . . . , tn} and T−1 = {t−1
1 , . . . , t−1

n } are new indeterminates. Then we consider
the quotient algebra B = K⟨X,T, T−1⟩/J . Recall that the equivalence class of an element
f ∈ K⟨X,T, T−1⟩ in B is denoted by [f ]. Note that, in B, the [tj ] commute with all [xi]
but not with each other. The fact that the [tj ] do not commute with each other is the
main and crucial difference compared to the previous section. Furthermore, each [tj ] can
also be cancelled from the right.

Additionally, we define the K-algebra homomorphism

φ : K⟨X⟩ → K⟨X,T, T−1⟩, xi ↦→ xiti. (5.3)

The map φ can be considered as a special case of the map φA defined in the previous
section by setting A to be the n× n identity matrix. As before, φ denotes the composition
of φ with the canonical projection onto B. Applying φ to a polynomial f maps each
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monomial w ∈ supp(f) to the equivalence class [wtw], where tw is a copy of w but in the
variables t1, . . . , tn.

Next, for a right ideal Iρ ⊴r K⟨X⟩ with right generating set F , we consider the extension
of Iρ along the homomorphism φ, which we denote by

Iφρ = (φ(f) | f ∈ F )ρ ⊴r B.

Note that, as in the previous section, this definition is independent of the generating set F ,
and the proof is completely analogous. However, in contrast to before, Iφρ is now a right
ideal. The main result of this section is the following theorem.

Theorem 5.3.35. Let Iρ ⊴r K⟨X⟩ be a right ideal. Furthermore, let Iφρ be the extension
of Iρ along φ. Then,

mon(Iρ) = Iφρ ∩K⟨X⟩ :=
⋃︂

[f ] ∈ Iφ
ρ

[f ] ∩K⟨X⟩.

Before we proceed to prove this theorem, we describe in Algorithm 10 how a right Gröbner
basis of mon(Iρ) can be obtained.

Algorithm 10: Gröbner basis enumeration of monomial part
Input: a right generating set F ⊆ K⟨X⟩ of a right ideal Iρ
Output (if the algorithm terminates): G ⊆ Iρ a right Gröbner basis of mon(Iρ)

1 T ← {t1, . . . , tn}, T−1 ← {t−1
1 , . . . , t−1

n };
2 J ← the ideal in K⟨X,T, T−1, y⟩ generated by

[X,T ] ∪ {1− tjt−1
j | j = 1, . . . , n};

3 H ← (y · φ(f) | f ∈ F ) ⊆ K⟨X,T, T−1, y⟩;
4 enumerate a Gröbner basis g0, g1, . . . of H + J w.r.t. an elimination order for T ∪ T−1;
5 G′ ← {g | yg = gn for some n ∈ N};
6 G← G′ ∩K⟨X⟩;
7 return G;

Remark 5.3.36. Algorithm 10 requires the computation of a right Gröbner basis of the
right ideal Iφρ in the quotient algebra B = K⟨X,T, T−1⟩/J . As described in [Hey01], this
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can be done effectively by introducing a new tag variable y and computing the Gröbner basis
of a two-sided ideal containing J in the free algebra K⟨X,T, T−1, y⟩. This is what is done
in lines 3 – 5 of Algorithm 10. We note that there are also other ways to compute a Gröbner
basis of a one-sided ideal in a quotient algebra (see, for example, [Xiu12, Sec. 6.1.2]),
however the approach described above has the advantage that it can be realised with a
standard two-sided Gröbner basis implementation without any additional adaptations.

The proof of the commutative analogue of Theorem 5.3.35 in [Mil16] relies on the fact that a
certain ideal is homogeneous with respect to a certain matrix grading and that an ideal can
only be homogeneous with respect to this grading if it is a monomial ideal. Unfortunately,
this argument does not immediately carry over to the case of noncommutative polynomials
because no matter which matrix grading we choose, monomials that are permutations of
each other will always have the same degree. For example, the right ideal (x1x2 − x2x1)ρ
is homogeneous with respect to any matrix grading but it is clearly not a monomial ideal.
In order to prove Theorem 5.3.35, we introduce the notion of a separating pseudograding
for a subset S ⊆ R of a ring R.

Definition 5.3.37. Let R be a ring and let (N, ·) be a monoid. Furthermore, let S ⊆ R.
We call a decomposition

R =
⨁︂
α∈N

Sα,

of R into a direct sum of abelian groups a separating (right) N -pseudograding for S if the
following conditions hold:

1. S1Sα ⊆ Sα for all α ∈ N ;

2. |S ∩ Sα| ≤ 1 for all α ∈ N ;

Intuitively speaking, a separating N -pseudograding for S allows us to separate the elements
in S as they all have to lie in different subgroups Sα. As in the case of usual gradings, we
omit the information about the monoid N in a separating N -pseudograding if N is clear
from the context.

The following example shows that the multidegree yields a separating pseudograding for
commutative monomials.
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Example 5.3.38. Let R = K[X] be the usual polynomial ring in X = {x1, . . . , xn}.
Consider the monoid (Nn,+) and let S = [X]. For a = (a1, . . . , an) ∈ Nn, we denote xa =
xa1

1 . . . xan
n ∈ [X]. The grading of R induced by the multidegree deg(xa) = a is a separating

Nn-pseudograding for S. This follows from the fact that, for all a = (a1, . . . , an) ∈ Nn, the
set Sa is given by Sa = {cxa | c ∈ K \ {0}}.

For the following definition and proposition, we fix a ring R and a monoid (N, ·). Given
a separating (N -)pseudograding for a set S ⊆ R, we can define separable homogeneous
elements, or short s-homogeneous elements, and, based on this, separable homogeneous
ideals, or short s-homogeneous ideals.

Definition 5.3.39. Let S ⊆ R and let R = ⨁︁
α∈N Sα be a separating pseudograding for S.

An element r ∈ R is called separable homogeneous, or short s-homogeneous, if r ∈ Sα for
some α ∈ N . If r ̸= 0, then we call α the s-degree of r, denoted by sdeg(r) = α. A (right)
ideal I ⊆ R is called separable homogeneous, or short s-homogeneous, if I is generated by
s-homogeneous elements.

The following proposition is the crucial observation about separating pseudogradings. It
is a weaker version of the property that, with an element r, a homogeneous ideal also
contains all homogeneous components of r. In the following, 1 ∈ N denotes the identity
element of the monoid.

Proposition 5.3.40. Let S ⊆ R and R = ⨁︁
α∈N Sα be a separating pseudograding for S.

Furthermore, let Iρ ⊴r R be an s-homogeneous right ideal generated by s-homogeneous
elements of s-degree 1. If r = c1s1 + · · ·+ cdsd ∈ Iρ with s1, . . . , sd ∈ S pairwise different
and c1, . . . , cd ∈ S1, then c1s1, . . . , cdsd ∈ Iρ.

Proof. Without loss of generality, we can assume that cisi ≠ 0 for all i = 1, . . . , d. We note
that it suffices to show that c1s1 ∈ Iρ, for then also r− c1s1 ∈ Iρ, and the statement follows
by induction. We denote by F ⊆ S1 a right generating set of Iρ consisting of s-homogeneous
elements of s-degree 1. Then, with bf ∈ R and bf,α ∈ Sα such that bf = ∑︁

α∈N bf,α, we
can write r as

r =
∑︂
f∈F

fbf =
∑︂
f∈F

f
∑︂
α∈N

bf,α =
∑︂
f∈F

∑︂
α∈N

fbf,α.
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As all f ∈ S1, it follows from the definition of a separating pseudograding that fbf,α ∈
S1Sα ⊆ Sα. Furthermore, by the definition of a separating pseudograding for S, there exist
pairwise different α1, . . . , αd ∈ N such that S ∩ Sαi = {si} for all i = 1, . . . , d. Then, also
cisi ∈ S1Sαi ⊆ Sαi for all i = 1, . . . , d. Since the subgroups Sαi have trivial intersection
with each other, the nonzero elements c2s2, . . . , cdsd cannot lie in Sα1 . Therefore, by
comparing s-degrees, one can see that c1s1 = ∑︁

f∈F fbf,α1 ∈ Iρ.

Coming back to noncommutative polynomials, our next goal is to define a separating pseu-
dograding for ⟨X⟩ in K⟨X,T, T−1⟩. To this end, we denote by Fn the free group of rank n
generated by γ1, . . . , γn. This allows us to consider the two monoid homomorphisms

λ : ⟨X,T, T−1⟩ → Fn, xi ↦→ γi, ti ↦→ 1, t−1
i ↦→ 1,

µ : ⟨X,T, T−1⟩ → Fn, xi ↦→ 1, ti ↦→ γi, t−1
i ↦→ γ−1

i .

Using λ and µ, we define the map sdeg : ⟨X,T, T−1⟩ → Fn that sends each w ∈ ⟨X,T, T−1⟩
to sdeg(w) := µ(w)−1λ(w) ∈ Fn.

Example 5.3.41. Let X = {x1, x2}, T = {t1, t2}, and T−1 = {t−1
1 , t−1

2 }. For w =
x1t1x2t2 ∈ ⟨X,T, T−1⟩, we have sdeg(w) = (γ1γ2)−1γ1γ2 = 1. Analogously, taking w′ =
t1t

−1
2 x1t

−1
1 x2 ∈ ⟨X,T, T−1⟩, yields sdeg(w′) = (γ1γ

−1
2 γ−1

1 )−1γ1γ2 = γ1γ2γ2.

The following lemma captures some important properties of the map sdeg.

Lemma 5.3.42. Let w,w′ ∈ ⟨X,T, T−1⟩, xi ∈ X, tj ∈ T and t−1
j ∈ T−1. The following

hold:

1. sdeg(wxitjw′) = sdeg(wtjxiw′);

2. sdeg(wtjt−1
j w′) = sdeg(ww′);

3. sdeg(w) = 1 =⇒ sdeg(ww′) = sdeg(w′);

Proof. The properties 1 and 2 follow immediately from the definition. To prove the third
property, we assume sdeg(w) = 1. This yields

sdeg(ww′) = µ(ww′)−1λ(ww′) = µ(w′)−1µ(w)−1λ(w)λ(w′)

= µ(w′)−1 sdeg(w)λ(w′) = µ(w′)−1λ(w′) = sdeg(w′).

227



5 Practical aspects of applying the framework

The map sdeg allows us to decompose K⟨X,T, T−1⟩ into a direct sum of the abelian
subgroups

K⟨X,T, T−1⟩α =

⎧⎨⎩ ∑︂
w∈⟨X,T,T−1⟩

cww

⃓⃓⃓⃓
⃓ cw ∈ K, sdeg(w) = α if cw ̸= 0

⎫⎬⎭ ,
for α ∈ Fn. In particular, the following proposition tells us that this decomposition forms
a separating Fn-pseudograding for ⟨X⟩, and hence, justifies the name sdeg.

Proposition 5.3.43. The abelian subgroups K⟨X,T, T−1⟩α with α ∈ Fn as defined above
form a separating Fn-pseudograding for ⟨X⟩.

Proof. It is clear that the subgroups K⟨X,T, T−1⟩α decompose K⟨X,T, T−1⟩ into a direct
sum. Furthermore, the first condition of Definition 5.3.37 follows immediately from the
third part of Lemma 5.3.42. Finally, we note that sdeg restricted to ⟨X⟩ is injective, that
is, sdeg(w) ̸= sdeg(w′) for all w ≠ w′, w,w′ ∈ ⟨X⟩. This implies the second property of a
separating Fn-pseudograding.

The generators of the ideal J from (5.2) induce an equivalence relation on the monoid
⟨X,T, T−1⟩ under which the map sdeg is invariant, that is, if w,w′ ∈ ⟨X,T, T−1⟩ are such
that w − w′ ∈ J , then sdeg(w) = sdeg(w′). This follows from the first two properties in
Lemma 5.3.42. Hence, we can extend sdeg to the quotient algebra B by setting sdeg([w]) =
sdeg(w) for all w ∈ ⟨X,T, T−1⟩. Consequently, the separating Fn-pseudograding for
⟨X⟩ in K⟨X,T, T−1⟩ can be extended in a straightforward way to give a separating
Fn-pseudograding for ⟨X⟩ = {[x] | x ∈ ⟨X⟩} in B.

Finally, we have all tools available to prove Theorem 5.3.35. We split this proof into two
lemmas.

Lemma 5.3.44. Let Iρ ⊴r K⟨X⟩ be a right ideal. Furthermore, let Iφρ be the extension of
Iρ along φ. Then,

mon(Iρ) ⊆ Iφρ ∩K⟨X⟩ ⊆ Iρ.
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Proof. It follows from the definition of Iφρ that f ∈ Iρ implies φ(f) ∈ Iφρ . Now, to prove
the first inclusion mon(Iρ) ⊆ Iφρ ∩ K⟨X⟩, let w = xi1 . . . xid ∈ mon(Iρ). Then we get
[wti1 . . . tid ] = φ(w) ∈ Iφρ , which implies

[w] = [w] · [ti1 . . . tidt−1
id
. . . t−1

i1
] = [wti1 . . . tid ] · [t−1

id
. . . t−1

i1
] ∈ Iφρ ,

and consequently w ∈ Iφρ ∩K⟨X⟩.

For the second inclusion Iφρ ∩K⟨X⟩ ⊆ Iρ, let f ∈ Iφρ ∩K⟨X⟩. Then f can be written as

f =
d∑︂
i=1

φ(fi)qi +
e∑︂
i=1

givi

with fi ∈ Iρ, gi ∈ [X,T ] ∪ {1− tjt−1
j | j = 1, . . . , n} and qi, vi ∈ K⟨X,T, T−1⟩. Note that

the left-hand side of this identity does not depend on the indeterminates in T and T−1.
Hence, by setting tj = t−1

j = 1 for all j = 1, . . . , n, we obtain f = ∑︁d
i=1 fiq̃i ∈ Iρ with some

q̃i ∈ K⟨X⟩.

Lemma 5.3.45. Let Iρ ⊴r K⟨X⟩ be a right ideal. Furthermore, let Iφρ be the extension
of Iρ along φ. Then Iφρ ∩K⟨X⟩ is a monomial right ideal.

Proof. Let f = c1w1 + · · ·+ cdwd ∈ Iφρ ∩K⟨X⟩ with nonzero c1, . . . , cd ∈ K and pairwise
different w1, . . . , wd ∈ ⟨X⟩. To prove that Iφρ ∩K⟨X⟩ is a monomial right ideal, we show
that w1, . . . , wd ∈ Iφρ ∩K⟨X⟩, which is equivalent to [w1], . . . , [wd] ∈ Iφρ . To show this, we
fix the Fn-pseudograding for ⟨X⟩ in B induced by the map sdeg and note that the image
φ(g) of any nonzero g ∈ K⟨X⟩ under the map φ defined in (5.3) is an s-homogeneous
polynomial of s-degree 1. In particular, this means that Iφρ is an s-homogeneous right ideal
in B generated by s-homogeneous elements of s-degree 1. Since sdeg([ci]) = 1 and [wi] ∈ ⟨X⟩
for all i = 1, . . . , d, Proposition 5.3.40 is applicable and yields that [c1w1], . . . , [cdwd] ∈ Iφρ .
But then clearly also [w1], . . . , [wd] ∈ Iφρ .

The proof of Theorem 5.3.35 now follows from Lemmas 5.3.34, 5.3.44, and 5.3.45.
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Remark 5.3.46. We make some remarks on Theorem 5.3.35.

1. Theorem 5.3.35 can also be adapted to work with left ideals. In this case, the ideal J
with respect to which the quotient is taken, has to be changed to

J ′ =
(︂
[X,T ] ∪ {1− t−1

j tj | j = 1, . . . , n}
)︂
.

Then, in the quotient K⟨X,T, T−1⟩/J ′ each [tj ] can be cancelled from the left instead
of from the right. To then prove the theorem for left ideals, Definition 5.3.37 and the
map sdeg have to be adapted accordingly as well.

2. Unfortunately, this approach does not generalise to two-sided ideals, as witnessed by
the following example.

Example 5.3.47. In this example, we show that the approach described in this section does
not generalise to two-sided ideals in a straightforward way. To this end, we consider the ideal
I = (x1−x2) ⊴ K⟨x1, x2⟩ over an arbitrary field K. It is not hard to see that mon(I) = {0}.
However, if we consider the two-sided ideal Iφ = (φ(x1 − x2)) = ([x1t1 − x2t2]) ⊴ B, then
x1x2 − x2x1 ∈ Iφ ∩K⟨x1, x2⟩ as the following computation shows:

[x1t1 − x2t2] · [x2t
−1
1 ]− [x2] · [x1t1 − x2t2] · [t−1

1 ]

= [x1x2]− [x2x2t2t
−1
1 ]− [x2x1] + [x2x2t2t

−1
1 ]

= [x1x2 − x2x1] ∈ Iφ.

To compute a generating set of mon(I) in case of a two-sided ideal I ⊴ K⟨X⟩, we were so
far only able to prove the following rather restrictive result.

Proposition 5.3.48. Let X,Y be two disjoint sets of indeterminates and let I ⊴ K⟨X,Y ⟩.
Furthermore, let G ⊆ I be a Gröbner basis of I such that lm(g) ∈ ⟨X⟩ and tail(g) ∈ K⟨Y ⟩
for all g ∈ G. Then G ∩K⟨X⟩ is a Gröbner basis of mon(I).

To prove this proposition, we recall the following result about Gröbner bases of monomial
ideals, which follows immediately from Theorem 2.4.37.

Lemma 5.3.49. Any set of monomials M ⊆ ⟨X⟩ is a Gröbner basis of the ideal (M).
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Proof of Proposition 5.3.48. Denote M = G ∩K⟨X⟩. Due to Lemma 5.3.49, it suffices to
show that (M) = mon(I). The inclusion (M) ⊆ mon(I) is clear. For the other inclusion
mon(I) ⊆ (M), let w ∈ mon(I) be a monomial. Since G is a Gröbner basis of I, there
exist g1, . . . , gk ∈ G such that

w →g1 w1 →g2 · · · →gk
wk = 0,

with w1, . . . , wk ∈ K⟨X,Y ⟩. In particular, we have w1 = −atail(g1)b for some a, b ∈ ⟨X⟩.
Since lm(g2) ∈ ⟨X⟩ but tail(g1) ∈ K⟨Y ⟩, the second reduction can only act on a or b but
not on tail(g1). Without loss of generality, assume that the reduction with g2 acts on a,
so that w2 = a′tail(g2)a′′tail(g1)b. Analogously, since lm(g3) ∈ ⟨X⟩, the reduction with g3

cannot act on tail(g1) or tail(g2), and as this also holds for all other reductions, wk must
be of the form

wk = (−1)ka1tail(gi1)a2tail(gi2) . . . aktail(gik)ak+1

for some a1, . . . , ak+1 ∈ ⟨X⟩ and {i1, . . . , ik} = {1, . . . , k}. Note that all parts in any wj

that lie in K⟨X⟩ are subwords of w. Furthermore, since the reductions with all gi can only
act on these parts, we get that lm(gi) divides w for all i = 1, . . . , k. Hence, in particular,
lm(gk) divides w. To finish the proof, we show that gk is in fact a monomial and therefore
contained in M . To see this, we note that wk can only be zero if one of the factors in the
product above is zero, and since none of the aj can be zero, we must have tail(gi) = 0 for
some 1 ≤ i ≤ k. In particular, we know that wk−1 ≠ 0, and therefore tail(gk) = 0. This
means that gk is a monomial, and so gk ∈M , which implies that w ∈ (M).

It remains open how to compute a generating set of mon(I) for an arbitrary (finitely
generated) two-sided ideals in K⟨X⟩.

5.4 Short proofs of ideal membership

Based on the theory developed in Chapter 4, universal truth of operator statements can
be reduced to the verification of ideal membership in a free algebra. The corresponding
cofactor representations that certify these ideal memberships can be considered as a proof
of the operator statement. In general, cofactor representations are not unique and different
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representations can differ drastically in their complexity. We could observe empirically that
representations computed by Gröbner bases are often significantly longer than necessary.

In this section, we discuss the problem of finding sparsest cofactor representations of an
ideal element, that is, representations with a minimal number of terms. We focus on the
situation of noncommutative polynomials, as we are particularly interested in computing
short proofs of operator statements. However, all techniques also apply analogously to
commutative polynomials.

Although ideal membership in the free algebra is only semi-decidable, we show in Sec-
tion 5.4.1 that the problem of computing cofactor representations with the number of
terms bounded by N ∈ N is decidable, yet NP-complete. This yields a first (impractical)
algorithm for computing sparsest cofactor representations (Algorithm 11).

In Section 5.4.2, we then describe how to obtain a practical algorithm for computing sparse
(not necessarily sparsest) representations by making two simplifications:

1. We restrict the search space to a finite dimensional subspace by only considering
cofactor representations with terms smaller than a designated bound.

2. We use the sum of the absolute values of the coefficients, that is, the ℓ1-norm, of a
representation as a complexity measure.

With these simplifications, we translate the problem of finding sparse cofactor represen-
tations into solving a linear programming problem. This leads to Algorithm 13, which
computes, starting from any given cofactor representation, a minimal one with respect to
the conditions 1 and 2.

We also show that the second simplification does in fact impose no restriction for a class
of ideals that appears frequently when translating operator statements. In particular,
we prove that, under certain assumptions satisfied by most examples studied in practice,
Algorithm 13 computes a sparsest representation among all representations satisfying
condition 1. Finally, we demonstrate the effectiveness of Algorithm 13 on several examples
coming from actual operator statements in Section 5.4.3.

In the following, K is a field and X is a finite set of indeterminates. For the rest of this
section, we fix a family of polynomials (f1, . . . , fr) ∈ K⟨X⟩r generating an ideal I, and we
let Σ = (K⟨X⟩ ⊗K K⟨X⟩)(E) be the free K⟨X⟩-bimodule on the set E = {ε1, . . . , εr} (see
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Definition 2.2.45). Also, recall from Section 3.1.3 that · : Σ → I is the K⟨X⟩-bimodule
homomorphism that sends each basis element εi to εi = fi.

5.4.1 Decidability and complexity

Any cofactor representation of an ideal member f ∈ I can be identified with an element α ∈
Σ such that α = f . The weight of such a representation is given by the ℓ0-“norm” ∥α∥0 :=
| supp(α)|. Then, with the set R(f) := {α ∈ Σ | α = f} of (cofactor) representations of f ,
a sparsest (cofactor) representation of f corresponds to a minimal element with respect to
∥·∥0 in R(f). We denote the set of all such minimal elements by R0(f). If f /∈ I, we set
R(f) = R0(f) = ∅.

Remark 5.4.1. As ideal membership in the free algebra is only semi-decidable, we can
also not decide whether R(f) = ∅ or not.

Remark 5.4.2. The function ∥·∥0 is not a norm as it is not homogeneous, but one can
associate to it a metric called Hamming distance.

In the following, we study the decidability and complexity of computing cofactor representa-
tions of bounded weight. To this end, we assume that the coefficient field K is computable,
in the sense that the basic arithmetic operations as well as equality testing are effective.
This means, in particular, that linear systems can be solved effectively using, for example,
Gaussian elimination. With this, we consider the following problem.

Problem 5.4.3 (Sparse cofactor representation).
Input: f, f1, . . . , fr ∈ K⟨X⟩, N ∈ N
Output: a cofactor representation α ∈ R(f) with ∥α∥0 ≤ N if one exists, otherwise False.

We show that Problem 5.4.3 is decidable, and we give an algorithm reducing it to Prob-
lem 5.4.4 below of finding sparse solutions of a linear system, formally also known as
the Min-RVLS (MINimum Relevant Variables in Linear System) problem. This not only
yields an algorithm for computing sparsest cofactor representations if f ∈ I, but it, in
principle, also provides a semi-decision procedure for ideal membership. We focus on the
first application here.
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Problem 5.4.4 (Sparse solution of linear system [Min-RVLS]).
Input: A ∈ Km×n, b ∈ Km, N ∈ {0, . . . , n}
Output: a vector y ∈ Kn with Ay = b and ∥y∥0 ≤ N if one exists, otherwise False.

Problem 5.4.4 arises in many areas [CDS01; CT05; Don06]. It is clearly decidable, for
instance by looping over all N -subsets of {1, . . . , n} for possible sets of nonzero coefficients
of solutions. Furthermore, in many cases, most notably for K = Q, it is known to be
NP-hard, with the corresponding decision problem being NP-complete [GJ79, Problem
MP5].

In order to reduce the sparse cofactor representation problem to linear algebra, we need
to constrain the solutions to a finite dimensional vector space, which requires to bound
the degree of a solution. The degree of elements in R(f) can be arbitrarily large, but
we can bound the degree of minimal representations. A cofactor representation α =∑︁d
i=1 ciaiεjibi ∈ R(f) is minimal if no sub-sum is a syzygy, that is, ∑︁i∈J ciaifjibi ̸= 0 for

all nonempty subsets J ⊆ {1, . . . , d}. To obtain the degree bound, we recall the notion of
(polynomial) rewriting introduced in [RRH21, Def. 2].

Definition 5.4.5. Let f, g ∈ K⟨X⟩ and a, b ∈ ⟨X⟩ such that supp(f) ∩ supp(agb) ̸= ∅.
For every c ∈ K, we say that f can be rewritten to f + cagb ∈ K⟨X⟩ by g.

Furthermore, we say that f can be rewritten to h by G ⊆ K⟨X⟩ if there are h0, . . . , hd ∈
K⟨X⟩, hd = f , h0 = h and g1, . . . , gd ∈ G such that hk can be rewritten to hk−1 by gk for
all k = 1, . . . , d.

Rewriting can be considered as a weaker form of polynomial reduction, not requiring that
a polynomial gets “simplified” by a rewriting step. Nevertheless, f can be rewritten to
zero by {f1, . . . , fr} if and only if f ∈ I, see [RRH21, Lem. 4]. More importantly, we can
show that any minimal representation of f can be obtained by rewriting f to zero by
{f1, . . . , fr} and logging the rewriting steps.

Lemma 5.4.6. Let f ∈ (f1, . . . , fr) and α = ∑︁d
i=1 ciaiεjibi ∈ R(f) be a minimal represen-

tation of f . Furthermore, for k = 0, . . . , d, let hk = ∑︁k
i=1 ciaifjibi. In particular, hd = f

and h0 = 0. Then, possibly after reordering the summands of α, hk can be rewritten to
hk−1 by {f1, . . . , fr} for all k = 1, . . . , d.
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Proof. We perform induction on the weight d of a minimal representation of f . For
d = 0 there is nothing to prove. Assume now that d > 0 and that the result is proven
for polynomials with a minimal representation of weight d− 1. Because α is a minimal
representation, f cannot be 0. Since f = α = ∑︁d

i=1 ciaifjibi, the support of f is contained
in the union of the supports of the aifjibi, and there exists 1 ≤ k ≤ d such that supp(f) ∩
supp(akfjkbk) ̸= ∅. Possibly after reordering the summands of α, we can assume k = d.
So f can be rewritten to hd−1 = f − cdadfjdbd using fjd ∈ {f1, . . . , fr}. Furthermore,
hd−1 = ∑︁d−1

i=1 ciaifjibi has a minimal representation of weight d− 1, because adding one
term results in a minimal representation of weight d for f . So, by induction hypothesis,
this representation of hd−1 is (up to reordering of the summands) a sequence of rewritings
by {f1, . . . , fr}.

Another crucial property of rewriting is that we can bound the degree of the output in
terms of the degree of the input and the degree difference of the rewriter. The degree
difference degdiff(g) of a nonzero g ∈ K⟨X⟩ is degdiff(g) = deg(g) − degmin(g), where
degmin(g) = minw∈supp(g) |w|.

Lemma 5.4.7. Let f, g ∈ K⟨X⟩ and c ∈ K, a, b ∈ ⟨X⟩. If f can be rewritten to
h = f + cagb by g, then max{deg(h),deg(agb)} ≤ deg(f) + degdiff(g).

Proof. By definition, there exists a monomial w in supp(g) such that awb ∈ supp(f), so
|awb| ≤ deg(f), or equivalently |a|+|b| ≤ deg(f)−|w|. Since w ∈ supp(g), |w| ≥ degmin(g),
and all in all,

deg(agb) = |a|+ |b|+ deg(g)

≤deg(f)− degmin(g) + deg(g) = deg(f) + degdiff(g).

As deg(h) ≤ max{deg(f),deg(agb)} and degdiff(g) ≥ 0, we conclude that also deg(h) ≤
deg(f) + degdiff(g).

Combining Lemma 5.4.6 and 5.4.7, we obtain a bound on the degree of minimal cofactor
representations of f of bounded weight. Since any sparsest cofactor representation is, in
particular, minimal, this also yields a bound on the degree of sparsest representations.
In the following, for a nonzero α = ∑︁d

i=1 ciaiεjibi ∈ Σ with nonzero ci ∈ K and pairwise
different aiεjibi, we define its (weighted) degree to be deg(α) = maxi deg(aifjibi).
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Corollary 5.4.8. Let f ∈ (f1, . . . , fr), N ∈ N and α ∈ R(f) be a minimal representation
of f . If ∥α∥0 ≤ N , then deg(α) ≤ deg(f) +N maxi degdiff(fi).

Proof. Write α as α = ∑︁d
i=1 ciaiεjibi with nonzero ci ∈ K and pairwise different aiεjibi.

By definition, deg(α) = maxi deg(aifjibi), and, according to Lemma 5.4.6, each aifjibi is a
rewriter in a rewriting sequence from f to 0. Thus, Lemma 5.4.7 shows inductively that
deg(α) ≤ deg(f) + ∥α∥0 maxi degdiff(fi), and the result follows since ∥α∥0 ≤ N .

As a consequence, we can state an algorithm for computing a cofactor representation of
weight bounded by N ∈ N, reducing to the problem of finding a sparse solution of a linear
system.

Algorithm 11: Sparse cofactor representation
Input: f, f1, . . . , fr ∈ K⟨X⟩, N ∈ N
Output: α ∈ R(f) with ∥α∥0 ≤ N if one exists, otherwise False

1 D ← deg(f) +N maxi degdiff(fi);
2 L← {afib | a, b ∈ ⟨X⟩,deg(afib) ≤ D, i = 1, . . . , r};
3 return a K-linear combination of elements of L equal to f with ≤ N nonzero

summands if one exists, otherwise False;

Corollary 5.4.9. Algorithm 11 terminates and is correct.

Proof. The algorithm reduces the problem to that of finding sparse solutions of a linear
system. This problem is decidable (recall that K is computable), so the algorithm
terminates.

There exists a representation of f of weight ≤ N if and only if there exists a minimal
representation of f of weight ≤ N . By Corollary 5.4.8, such a minimal representation is
given by a K-linear combination of elements of L. So the algorithm is correct.

It is also possible to describe a reduction of Problem 5.4.4 to Problem 5.4.3, which allows
us to characterise the complexity of the problem of finding sparse representations in terms
of the complexity of Problem 5.4.4. For the practically most relevant case of K = Q, we
arrive at the following theorem.
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Theorem 5.4.10. The problem of, given f, f1, . . . , fr ∈ Q⟨X⟩ and N ∈ N (in unary
form), deciding whether there exists a cofactor representation of f of weight at most N , is
NP-complete.

Proof. Over Q, the decision problem associated to Problem 5.4.4 is NP-complete [GJ79,
Problem MP5]. Given an input A, b, N to that problem, introduce one variable xi for
each row of A, interpret each column of A as the polynomial fj = ∑︁

iAi,jxi, and the
right-hand side as the polynomial f = ∑︁

i bixi. There is a one-to-one correspondence
between solutions with N nonzero entries to the linear system and cofactor representations
of f with weight N . So the problem of finding a representation of weight at most N is also
NP-hard.

Furthermore, if there exists a representation of weight ≤ N , then there exists one with
degree ≤ deg(f) +N maxi degdiff(fi), which makes it polynomial size in N and the size of
the input polynomials. The validity of that representation can be verified in polynomial
time. So the problem is NP, and therefore NP-complete.

Remark 5.4.11. The requirement that N be given in unary format is necessary because
unlike Problem 5.4.4, the input of Problem 5.4.3 is not at least of size N . If N is given
in binary format, the decision problem is still NP-hard but no longer NP, because the
degree bound is not polynomial in log(N). Also note that Algorithm 11 does not provide a
polynomial time reduction of Problem 5.4.3 to Problem 5.4.4, even as a function of N .

We note that the last step of Algorithm 11 is infeasible for nontrivial examples. To illustrate
this point, we consider the following simple statement about the Moore-Penrose inverse
taken from [Hog13, Ch. 5.7 Fact 11].

Theorem 5.4.12. Let A be an invertible matrix with inverse B. Then B is the
Moore-Penrose inverse of A.

Proof. Let A† be the Moore-Penrose inverse of A. So, in particular, AA†A = A, and hence
B = BAB = BAA†AB = BAA† = A†.
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Example 5.4.13. Using Theorem 5.1.7, Theorem 5.4.12 can be encoded in terms of the
ideal membership b− a† ∈ (F ) with

F = {ab− 1, ba− 1, aa†a− a, a†aa† − a†, (a†)∗a∗ − aa†, a∗(a†)∗ − a†a}

in the algebra Z⟨a, a∗, a†, (a†)∗, b⟩.

The proof given above is then equivalent to the following cofactor representation of b− a†

certifying the ideal membership:

b− a† = a†(ab− 1)− b(ab− 1)− b(aa†a− a)b+ (ba− 1)a†ab. (5.4)

This cofactor representation consists of 4 terms. To see if there exists a representation with
≤ 3 terms, we can call Algorithm 11 with N = 3. The set L contains polynomials of degree
at most D = 7, and it consists of 88 672 elements. This is too large to test all 3-subsets
exhaustively.

Using the techniques of Section 5.4.2, we will see that a much smaller set of elements is
sufficient, and by applying the results of that section we will be able to verify that (5.4)
is in fact a sparsest representation of b− a†. This shows that the proof given above is a
shortest proof of the theorem.

5.4.2 Computing sparse representations

In this section, we restrict ourselves to the case K = Q. Furthermore, we note that, in the
following, we will rely heavily on terminology, notation, and results from Sections 3.1 – 3.3.

We have seen in the previous section that computing sparsest cofactor representations is
equivalent to the NP-hard problem of finding sparsest solutions of a linear system. Several
methods have been proposed to obtain approximate solutions of the latter [CW92; MZ93;
CDS01] by using other measures as proxies for the sparsity of a solution and by minimising
over them. One of these methods, called Basis Pursuit [CDS01], uses the ℓ1-norm as an
approximation for the sparsity of a solution.

In the following, we follow the Basis Pursuit approach and use the ℓ1-norm ∥α∥1 := ∑︁d
i=1 |ci|

of α = ∑︁d
i=1 ciaiεjibi as a surrogate complexity measure of a cofactor representation. The

advantage of this approach is that an ℓ1-minimal solution of a linear system over Q can be
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found efficiently using linear programming. Additionally, we use the effective description
of the syzygy module provided by signature-based Gröbner basis algorithms to reduce the
size of the linear system that we have to consider.

Based on Corollary 5.4.8, it suffices to consider only cofactor representations up to a degree
bound when computing minimal representations. Here, we, more generally, restrict to
representations with signature less than a designated bound σ ∈M(Σ). To this end, we fix
a monomial order ⪯ on ⟨X⟩ and the module order ⪯Σ on M(Σ), satisfying:

• ⪯ and ⪯Σ are compatible in the sense that, for all a, b ∈ ⟨X⟩ and i = 1, . . . , r, we
have

a ≺ b ⇐⇒ aεi ≺Σ bεi ⇐⇒ εia ≺Σ εib;

• ⪯Σ is fair, meaning that the set {µ′ ∈M(Σ) | µ′ ≺Σ µ} is finite for all µ ∈M(Σ);

In the following, we will denote both orders by the same symbol ⪯. As in Chapter 3,
this shall cause no confusion as module elements will be denoted by Greek letters and
polynomials by Roman letters.

The fairness of the module order ensures that we work in a finite dimensional vector space
when restricting to representations with signature less than a designated bound σ ∈M(Σ).
If the module order is also compatible with the degree, that is, if deg(α) ≤ deg(β) implies
α ⪯ β, this includes all cofactor representations of degree < deg(σ).

So, formally, we seek a minimal element with respect to ∥·∥1 in the set

R(f, σ) := {α ∈ R(f) | sig(α) ≺ σ}

of cofactor representations of f up to signature σ ∈M(Σ). We denote the set of all such
ℓ1-minimal elements by R1(f, σ). Analogously, we let R0(f, σ) be the set of all minimal
elements with respect to ∥·∥0 in R(f, σ).

The results in this section rely on the fact that we have some α ∈ R(f, σ). However, in
general, for σ too small, the set R(f, σ) can be empty, even if R(f) ̸= ∅. To resolve this
issue, we assume that we have a cofactor representation α ∈ R(f) and that σ is chosen
so that σ ≻ sig(α). Note that this assumption, in particular, implies that f ∈ (f1, . . . , fr).
Such α can be obtained, for example, by reducing f to zero using a (partial) (labelled)
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Gröbner basis and keeping track of the reductions. With this in mind, we assume that
R(f, σ) ̸= ∅.

In the following, we describe Algorithm 13, which allows to compute an element in the set
R1(f, σ). To this end, we denote by I [Σ] the labelled module generated by f1, . . . , fr and
by Hσ a Gröbner basis of Syz(I [Σ]) up to signature σ. We note that Hσ can be computed,
for example, using Algorithm 2, or with Algorithm 3 and the reconstruction techniques
discussed in Section 3.3.3. In particular, since the module order is assumed to be fair, this
computation can be done in finite time, see also Remark 3.3.17.

The general idea of Algorithm 13 is still to reduce the problem of computing sparse cofactor
representations to computing certain solutions of a linear system. However, instead of
choosing all polynomials afib to form the linear system like Algorithm 11 does, we use
the information provided by Hσ to trim this set. More precisely, we find a finite set of
module monomials B = {µ1, . . . , µd} ⊆M(Σ) such that Ri(f, σ), i = 0, 1, has nonempty
intersection with the Q-vector space generated by B and then only consider the polynomials
{µ1, . . . , µd} to form the linear system. Furthermore, we now no longer seek a sparsest
solution of the resulting system but an ℓ1-minimal solution, which can be found with linear
programming.

It remains to discuss how to find a suitable basis B and how to translate the problem of
finding ℓ1-minimal solutions of a linear system into a linear programming problem.

Finding a suitable basis B

Algorithm 11 essentially uses the basis B = {aεib | a, b ∈ ⟨X⟩, i = 1, . . . , r, sig(aεib) ≺ σ},
which leads to finite dimensional, yet infeasibly large, linear systems. Using a Gröbner
basis of Syz(I [Σ]) up to signature σ, we can drastically reduce the dimension of the search
space. To describe how this can be done, we first extend the notion of rewriting to module
elements.

Definition 5.4.14. Let α, γ ∈ Σ and a, b ∈ ⟨X⟩ such that supp(α) ∩ supp(aγb) ̸= ∅. For
every c ∈ Q, we say that α can be rewritten to α+ caγb by γ.
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Furthermore, we say that α can be rewritten to β by H ⊆ Σ if there are β0, . . . , βd ∈ Σ,
βd = α, β0 = β and γ1, . . . , γd ∈ H such that βk can be rewritten to βk−1 by γk for all
k = 1, . . . , d.

With this, we can state a module version of Lemma 5.4.6. We note that we state all results
in this section for both the ℓ0-“norm” and the ℓ1-norm to emphasise that they hold for
both complexity measures likewise and that the restriction to ∥·∥1 only comes later for the
linear programming.

Lemma 5.4.15. Let i ∈ {0, 1}. Furthermore, let α ∈ R(f, σ), αi ∈ Ri(f, σ), and let Hσ

be a Gröbner basis of Syz(I [Σ]) up to signature σ. Then α can be rewritten to αi by Hσ.
In particular, this rewriting can be done so that the signature of every rewriter ajγjbj is
less than σ.

To prove Lemma 5.4.15, we make use of the fact that the ℓ0-“norm” and the ℓ1-norm are
linear for elements of disjoint support.

Lemma 5.4.16. For α, β ∈ Σ with supp(α)∩supp(β) = ∅, we have ∥α+β∥i = ∥α∥i+∥β∥i
for i = 0, 1.

Proof of Lemma 5.4.15. The difference α− αi is a syzygy with signature ≺ σ. Since Hσ

is a Gröbner basis of Syz(I [Σ]) up to signature σ, there exist d ∈ N and γj ∈ Hσ, cj ∈ Q,
aj , bj ∈ ⟨X⟩ such that αi = α−

∑︁d
j=1 cjajγjbj and sig(ajγjbj) ⪯ max{sig(α), sig(αi)} ≺ σ

for all j. Now, we essentially follow the proof of Lemma 5.4.6 and perform induction on d.

The case d = 0 is clear. Assume now that d > 0 and that the result is proven for all pairs
(α, αi) such that α− αi has a representation with d− 1 terms. Let β = ∑︁d

j=1 cjajγjbj . If
β = 0, we are done since α = αi. So assume β ̸= 0, which implies ∥β∥i > 0. Then we must
have supp(α) ∩ supp(β) ̸= ∅, as otherwise Lemma 5.4.16 would yield the contradiction
∥αi∥i = ∥α − β∥i = ∥α∥i + ∥β∥i > ∥α∥i ≥ ∥αi∥i, where the last inequality follow from
the minimality of ∥αi∥i. Thus, we have supp(α) ∩ supp(ajγjbj) ̸= ∅ for some 1 ≤ j ≤ d.
Without loss of generality, assume j = d. Hence, α can be rewritten to β′ = α− cdadγdbd
by γd ∈ Hσ. Note that sig(adγdbd) ≺ σ. Since β′−αi = ∑︁d−1

j=1 cjajγjbj has a representation
with d− 1 terms, the induction hypothesis implies that β′ can be rewritten to αi by Hσ

using only rewriters ajγjbj with signature ≺ σ.
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Lemma 5.4.15 says that any α ∈ R(f, σ) can be rewritten to each element in Ri(f, σ),
i = 0, 1, by Hσ using only rewriters with signature bounded by σ. Consequently, to find
a suitable basis B, it suffices, starting from some α, to only choose those syzygies that
can appear in such rewriting sequences. Finding these elements is a purely combinatorial
problem that can be solved without having to perform any actual rewriting steps. This leads
to Algorithm 12, in which we collect precisely all those relevant syzygies. Algorithm 12 can
be considered as an adaptation of the symbolic preprocessing in the F4 algorithm [Fau99].
In the following, for V ⊆ Σ, let supp(V ) = ⋃︁

γ∈V supp(γ). Furthermore, spanQ(V ) denotes
the Q-vector space spanned by the elements in V .

Algorithm 12: Finding relevant syzygies
Input: α ∈ R(f, σ), Hσ a Gröbner basis of Syz(I [Σ]) up to signature σ
Output: V ⊆ Syz(I [Σ]) such that Ri(f, σ) ⊆ α+ spanQ(V ) for i = 0, 1

1 V ← ∅;
2 todo← supp(α); done← ∅;
3 while todo ̸= ∅ :
4 select µ ∈ todo, remove it, and add it to done;
5 new← {aγb | a, b ∈ ⟨X⟩, γ ∈ Hσ, µ ∈ supp(aγb), sig(aγb) ≺ σ};
6 todo← todo ∪ (supp(new) \ done);
7 V ← V ∪ new;
8 return V ;

Proposition 5.4.17. Algorithm 12 terminates and is correct.

Proof. The conditions on the elements in new ensure that only module monomials smaller
than σ are inserted into todo. Furthermore, each monomial is processed at most once.
Consequently, termination follows from the fact that there are only finitely many monomials
smaller than σ (recall that ⪯ is fair). Correctness follows from Lemma 5.4.15.

Using Algorithm 12, we can set B = supp(α) ∪ supp(V ) as a basis of the search space,
where V is the output of the algorithm given α and Hσ as input. In many cases, this set is
small enough to reasonably work with.
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Detecting redundant syzygies

As an optional step, we can remove redundant elements from V before forming the basis B
in order to obtain a smaller basis, and thus, a smaller linear program to solve. More
precisely, since we only want to compute one element in Ri(f, σ), i = 0, 1, we can remove
syzygies as long as we can ensure that there remains at least one rewriting sequence from α

to at least one element in Ri(f, σ). We mention two basic techniques that turned out useful
in practice.

The first technique allows to remove syzygies from V that consist mostly of terms that
appear in no other element. Such syzygies cannot lead to simpler representations. To
make this statement precise, for W ⊆ V ⊆ Syz(I [Σ]) and β = ∑︁

j cjµj ∈ W with cj ∈ Q,
µj ∈M(Σ), we denote

βU :=
∑︂
j

cjµj with j such that µj /∈ supp
(︁
(V ∪ {α}) \ {β}

)︁
,

βV :=
∑︂
j

cjµj with j such that µj ∈ supp
(︁
(V ∪ {α}) \W

)︁
.

Intuitively, the element βU contains all those terms of β that are unique to β and that
appear in no other element of V ∪ {α}, and βV contains those terms that appear in β as
well as in elements outside of W .

Proposition 5.4.18. Let i ∈ {0, 1}. Furthermore, let α ∈ R(f, σ) and V ⊆ Syz(I [Σ]) such
that

(α+ spanQ(V )) ∩Ri(f, σ) ̸= ∅.

If W ⊆ V satisfies ∥βV ∥i ≤ ∥βU∥i for all β ∈W , then

(α+ spanQ(V \W )) ∩Ri(f, σ) ̸= ∅.

Proposition 5.4.18 provides a sufficient condition for a subset W ⊆ V to be redundant.
In order to prove this, we need the following two lemmas. The first one states that the
required property of W extends to the whole linear span. To this end, we extend the
definition of βU and βV to elements β = ∑︁

j bjβj ∈ spanQ(W ), where bj ∈ Q and βj ∈W ,
by βU := ∑︁

j bjβj,U and βV := ∑︁
j bjβj,V . Note that, in general, these definitions depend
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on the representation of β in terms of the elements in W ; different linear combinations
of the same element can yield different definitions of βU and βV . Therefore, to obtain an
unambiguous definition, we assume that, for every element β ∈ spanQ(W ), one particular
representation in terms of W has been fixed, and this is the representation that we use
to compute βU and βV . We note that, for all our arguments, the particular choice of the
representation does not matter. It is only important that, for each β, the elements βU and
βV are computed with respect to the same representation.

Lemma 5.4.19. Let V,W be as in Proposition 5.4.18. If β ∈ spanQ(W ), then ∥βV ∥i ≤
∥βU∥i.

Proof. Write β = ∑︁
j bjβj with nonzero bj ∈ Q and βj ∈ W . By assumption ∥βj,V ∥i ≤

∥βj,U∥i for all j. Furthermore, all βj,U have pairwise disjoint supports as they consist of
the monomials that are unique to each βj . So, Lemma 5.4.16 implies that ∥·∥i is linear
on linear combinations of the βj,U . Using this and the triangular inequality, we get with
cj = 1 if i = 0 and cj = |bj | if i = 1:

∥βV ∥i ≤
∑︂
j

∥bjβj,V ∥i =
∑︂
j

cj∥βj,V ∥i

≤
∑︂
j

cj∥βj,U∥i =
∑︂
j

∥bjβj,U∥i = ∥βU∥i.

The second lemma provides a lower bound on the norm of sums γ + β ∈ α+ spanQ(W ).

Lemma 5.4.20. Let α, V,W be as in Proposition 5.4.18. If β ∈ spanQ(W ) and γ ∈
α+ spanQ(V \W ), then ∥γ + β∥i ≥ ∥γ∥i − ∥βV ∥i + ∥βU∥i.

Proof. Let β′ = β − (βU + βV ). By definition, βU and β′ have pairwise different supports.
Furthermore, γ + βV does not share a monomial with βU and β′ as supp(γ + βV ) ⊆
supp ((V ∪ {α}) \W ) and all monomials of β that lie in this set are collected in βV .
Therefore, Lemma 5.4.16 and the inverse triangle inequality imply

∥γ + β∥i = ∥γ + βV ∥i + ∥βU∥i + ∥β′∥i
≥ ∥γ + βV ∥i + ∥βU∥i ≥ ∥γ∥i − ∥βV ∥i + ∥βU∥i.
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Proof of Proposition 5.4.18. We claim that removing, if present, elements from W from
a representation δ ∈ α+ spanQ(V ) cannot increase the norm. This implies the assertion
of the proposition. To prove our claim, write δ as δ = γ + β with γ ∈ α+ spanQ(V \W )
and β ∈ spanQ(W ). Now, Lemma 5.4.19 and 5.4.20, show that ∥δ∥i = ∥γ + β∥i ≥
∥γ∥i − ∥βV ∥i + ∥βU∥i ≥ ∥γ∥i.

The redundancy test provided by Proposition 5.4.18 is computationally fairly cheap to
check for a given set W ⊆ V . However, finding suitable candidates for W is not so trivial.
In our implementation, we test all singletons {β} ⊆ V , as well as all subsets {β, γ} ⊆ V

satisfying

• supp(β) ∩ supp(γ) ̸= ∅, and

• | supp(δ)∩supp(V \{δ})|
| supp(δ)| ≥ 1

3 for δ ∈ {β, γ}.

This empirically provided the best trade-off between efficiency in applying the criterion
and the effect it had on pruning V .

The second method does not directly allow to detect redundant elements in V . Instead
it can be considered as an auxiliary technique that can cause additional applications of
Proposition 5.4.18. The idea is to replace elements in V by linear combinations so that the
number of occurrences of certain monomials is reduced. In particular, by exploiting the
fact that

spanQ
(︁
V ∪ {α− β, γ + β}

)︁
= spanQ

(︁
V ∪ {α− β, α+ γ}

)︁
, (5.5)

we can reduce the number of occurrences of β at the cost of increasing the occurrences
of α.

In our implementation, we apply this technique to all binomial syzygies µ− σ ∈ V , where
µ, σ ∈ M(Σ). After removing all occurrences of σ, Proposition 5.4.18 allows to delete
the binomial syzygy from V . Additionally, we apply (5.5) randomly to elements α − β
where ∥β∥i > c∥α∥i for fixed c > 1. Often, this process triggers further invocations of
Proposition 5.4.18 to remove elements from V . Table 5.1 shows the efficiency of the two
methods presented in this section.
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Translation into linear program

Once we have obtained a reasonable basis of module monomials B = {µ1, . . . , µd} such
that the Q-vector space generated by B has nonempty intersection with Ri(f, σ) for
i = 0, 1, we can set up a linear system Ay = b, where A is the matrix of size s× d, with
s = |⋃︁j supp(µj)|, whose jth column contains the coefficients of µj , associating to each
row of A a monomial w ∈ ⋃︁j supp(µj). Similarly, b is a vector of size s containing the
coefficients of f . The matrix A bears resemblance to the matrices appearing in Gröbner
basis computations such as the F4 algorithm, aside from two main differences. In Gröbner
basis computations, polynomials are encoded as the rows of a matrix, and the columns
have to be ordered with respect to a (polynomial) monomial order. In our approach,
polynomials are encoded as the columns and the order of the rows is irrelevant.

Every solution y of Ay = b corresponds to a cofactor representation of f with support
in B = {µ1, . . . , µd} ⊆ M(Σ). To see this, we denote by Ai,j the entries of A and by bi

and yj the coordinates of b and y respectively. Furthermore, let wi ∈
⋃︁
j supp(µj) be the

monomial that is associated to the ith row of A and the ith coordinate of b. Then, we can
write f = ∑︁s

i=1 biwi and µj = ∑︁s
i=1Ai,jwi, for j = 1, . . . , d, and we see that

f =
s∑︂
i=1

biwi =
s∑︂
i=1

⎛⎝ d∑︂
j=1

Ai,jyj

⎞⎠wi =
d∑︂
j=1

yj

(︄
s∑︂
i=1

Ai,jwi

)︄
=

d∑︂
j=1

yjµj ,

showing that ∑︁d
j=1 yjµj ∈ R(f, σ) is a cofactor representation of f .

Moreover, every ℓi-minimal solution of Ay = b corresponds to an element in Ri(f, σ). As
noted before, computing ℓ0-minimal, that is, sparsest, solutions is NP-hard. Therefore, we
restrict ourselves to the case i = 1 and consider the problem

(P1) : min
y
∥y∥1 subject to Ay = b,

where ∥x∥1 = ∑︁
j |xj |. It is well-known that (P1) can be recast as a linear program, see for

example [CDS01, Sec. 3.1]. A linear program (in standard form) [Sch98] is an optimisation
problem for v ∈ Qt of the form

(LP ) : min
v

cTv subject to Uv = w, v ≥ 0,
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where v ≥ 0 is to be understood component-wise. The problem (P1) can be equivalently
formulated as a linear program by setting

t = 2d, cT = (1, . . . , 1), U = (A | −A), v =
(︄

p

q

)︄
, w = b,

with vectors p, q ∈ Qd. This linear program can then be solved efficiently using the simplex
algorithm [Dan51] or interior-point methods [PW00] and a solution y of (P1) is given by
y = p− q.

Putting everything together

Finally, we combine the results of the previous sections to form Algorithm 13 for computing
an element in R1(f, σ). In the algorithm, I [Σ] denotes the labelled module generated by
f1, . . . , fr.

Algorithm 13: ℓ1-minimal cofactor representation
Input: f1, . . . , fr ∈ Q⟨X⟩, f ∈ (f1, . . . , fr), σ ∈M(Σ), α ∈ R(f, σ)
Output: an element in R1(f, σ)

1 Hσ ← Gröbner basis of Syz(I [Σ]) up to signature σ;
2 V ← apply Algorithm 12 to α and Hσ;
3 V ← prune V using the techniques from Section 5.4.2;
4 {µ1, . . . , µd} ← supp(V ∪ {α});
5 A← matrix with columns containing the coefficients of µ1, . . . , µd;
6 b← vector containing the coefficients of f ;
7 v ← solution of the linear program (LP ) with

cT = (1, . . . , 1), U = (A | −A), v =
(︄

p
q

)︄
, w = b;

8 return
∑︁d
i=1(pi − qi)µi;

Theorem 5.4.21. Algorithm 13 terminates and is correct.

Proof. Termination follows from the fact that Hσ can be computed in finite time by
Theorem 3.3.16, see also Remark 3.3.17 (recall that the module order is assumed to be fair),
and from Proposition 5.4.17. Correctness follows from the discussions in this section.
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Remark 5.4.22. Algorithm 13 weighs each monomial µi equally by a weight of 1. It is
also possible to weigh the monomials differently by changing the vector c so that ci encodes
the weight of µi. This allows, for example, to weigh monomials by their degree, yielding
representations that prefer monomials with small degree. In this case, the output of the
algorithm is no longer guaranteed to be in R1(f, σ).

Special case: totally unimodular matrices

In general, the output of Algorithm 13 need not be a sparsest representation of f up to
signature σ, that is, it need not be an element in R0(f, σ). In this section, we discuss a
special case when this is indeed true. To this end, we consider the linear system Ay = b

constructed in Algorithm 13. We are interested in situations where the augmented matrix
(A | b) is totally unimodular as defined below.

Definition 5.4.23. A matrix T ∈ {−1, 0, 1}m×n is called totally unimodular if every
square submatrix of T has determinant 0 or ±1.

Theorem 5.4.24. Let A and b be as constructed in Algorithm 13. If the augmented matrix
(A | b) is totally unimodular, then the output of Algorithm 13 is an element in R0(f, σ).

In order to prove the theorem, we take a closer look at the coefficients of the sparsest and
ℓ1-minimal solutions of Ay = b. It is well-known that totally unimodular coefficient matrices
and integer right-hand sides yield integer optima for linear programs [Sch98, Cor. 19.1a].
The following lemma extends this statement under slightly stricter assumptions.

Lemma 5.4.25. Let the augmented matrix (A | b) be totally unimodular. If Ay = b is
solvable, then any sparsest or ℓ1-minimal solution y satisfies y ∈ {−1, 0, 1}d.

Proof. Since removing linearly dependent rows does not change the solution set of a solvable
system, we can assume that A has full row rank s = rank(A).

Sparsest solution. The columns of A corresponding to the nonzero entries of a sparsest
solution y have to be linearly independent (otherwise there would exist a sparser solution).
We can extend them by further columns of A to obtain an invertible s× s matrix A′. Then
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A′y′ = b, where y′ contains those coordinates of y that correspond to the columns of A
that are in A′. By assumption det(A′) = ±1. Furthermore, the matrix A′

i, obtained by
replacing the ith column of A′ by b, is – up to permutation of columns – a submatrix
of (A | b). Consequently, det(A′

i) ∈ {−1, 0, 1}, and applying Cramer’s rule shows y′
i =

det(A′
i)

det(A′) ∈ {−1, 0, 1}. Then the result follows since any coordinate of y that does not appear
in y′ has to be zero.

ℓ1-minimal solution. We consider the equivalent linear program (LP ) and note that
y ∈ {−1, 0, 1}d if and only if v ∈ {0, 1}2d. If v is a solution of (LP ), then it has to be a
basic feasible solution. This means ∥v∥0 ≤ s and that the columns of U that correspond
to the nonzero coordinates of v can be extended to an invertible s× s submatrix U ′ of U .
Since (U | b) = (A | −A | b) is totally unimodular, the same arguments as in the other case
show that v ∈ {−1, 0, 1}2d, and the statement follows from the nonnegativity constraint of
(LP ).

Using this lemma, we can now prove Theorem 5.4.24.

Proof of Theorem 5.4.24. By construction, the system Ay = b has a solution. For i = 0, 1,
let αi be the module element corresponding to an ℓi-minimal solution of the system. Note
that, again by construction, αi ∈ Ri(f, σ). By Lemma 5.4.25, αi contains only nonzero
coefficients ±1, which implies that ∥αi∥0 = ∥αi∥1 for i = 0, 1, and the result follows.

In most applications, all polynomials involved are of the form p− q with p, q ∈ ⟨X⟩ ∪ {0}
encoding identities of operators of the form P = Q. Such polynomials are called pure
difference binomials. The following corollary of Theorem 5.4.24 ensures that Algorithm 13
computes a sparsest representation up to signature σ provided that the input polynomials
are pure difference binomials.

Corollary 5.4.26. Let f, f1, . . . , fr ∈ Q⟨X⟩ be pure difference binomials, σ ∈M(Σ) and
α ∈ R(f, σ). Given these elements as input, the output of Algorithm 13 is an element in
R0(f, σ).

Proof. Let A, b be as constructed in Algorithm 13. By assumption on f, f1, . . . , fr, each
column of (A | b) contains at most one entry +1 and at most one entry −1 with all other
entries being 0. Each square submatrix U of (A | b) either contains a zero column (then U
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is singular), a column with one nonzero entry (then expansion of det(U) along this column
yields inductively det(U) ∈ {−1, 0, 1}), or each column of U contains exactly one entry
+1 and one entry −1 (then 1TU = 0 showing that U is singular). Thus, (A | b) is totally
unimodular and the result follows from Theorem 5.4.24.

Example 5.4.13 (continuing from p. 238). We revisit Example 5.4.13. All polynomials that
appear in this example are pure difference binomials. Hence, Corollary 5.4.26 implies that
Algorithm 13 yields a sparsest cofactor representation up to the used signature bound σ. In
particular, if a degree-compatible module order is used and if σ is chosen so that deg(σ) > 7,
then, by Corollary 5.4.8, the computed representation is a sparsest one (independent of
any bound).

Applying Algorithm 13 to Example 5.4.13, with the cofactor representation given in (5.4)
and a suitable signature bound σ, yields again (5.4), showing that this is a sparsest cofactor
representation. The basis used to form the linear system only consists of 300 elements,
compared to the 88 672 that Algorithm 11 would need.

To end this section, we note that, for pure difference binomials f, f1, . . . , fr, computing
sparsest representations can also be considered as a shortest path finding problem. In this
case, the vertices of a (possibly infinite) graph are given by all pure difference binomials
p − q that lie in the ideal (f1, . . . , fr), and we draw an (undirected) edge from p − q to
p′ − q′ if p′ − q′ = (p − q) ± afib for some 1 ≤ i ≤ r and a, b ∈ ⟨X⟩. Then, any path of
length N from f to zero yields a representation of f with at most N terms. In particular,
shortest paths correspond to sparsest representations. Combining this path finding idea
with the degree bound from Corollary 5.4.8 to cut off paths that cannot lead to sparsest
representations, also yields a suitable approach for finding shortest representations for the
special case of pure difference binomials.

5.4.3 Experiments

We have written a prototype implementation of Algorithm 13 for SageMath using our
package signature_gb (see Section 6.3) for the signature-based computations and the
IBM ILOG CPLEX optimisation studio [IBM23] for the linear programming. This
implementation, together with the benchmark examples described below, is available at

https://clemenshofstadler.com/software/.
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In Table 5.1, we compare the weight of cofactor representations computed by Algorithm 13
to those found by other approaches. In particular, we compare our algorithm to tracing
standard Gröbner basis computations and reductions, and to tracing reductions done with
a labelled Gröbner basis.

As benchmark examples, we recover short proofs of the following (recent) results in operator
theory on the Moore-Penrose inverse:

• SVD encodes [Hog13, Ch. 5.7 Fact 4], which provides a formula for the Moore-Penrose
inverse of a matrix in terms of the matrix’s singular value decomposition.

• ROL encodes the implication (2)⇒ (1) in [KDC07, Thm. 3], which provides a sufficient
condition for the identity (AB)† = B†A† to hold, where X† is the Moore-Penrose
inverse of an element in a ring with involution.

• ROL-n encodes the implication (n)⇒ (1) in [DD10, Thm. 2.1]. This family provides
several sufficient conditions for the identity (AB)† = B†A† to hold, where X† is the
Moore-Penrose inverse of a bounded operator on Hilbert spaces.

• Hartwig-n encodes the implication (n)⇒ (1) in [Cve+21, Thm. 2.3]. This family
provides several sufficient conditions for the identity (ABC)† = C†B†A† to hold,
where X† is the Moore-Penrose inverse of an element in a ring with involution.

• Ker encodes part of [RP87, Thm. 1], which characterises the existence of Moore-Penrose
inverses in additive categories with involution in terms of kernels of morphisms.

• SMW encodes [Den11, Thm. 2.1], which generalises the Sherman–Morrison–Woodbury
formula in terms of the Moore-Penrose inverse.

• Sum encodes [Li08, Lem. 1], which provides a sufficient condition for the identity
(A+B)† = A† +B† to hold, where X† is the Moore-Penrose inverse of an element in
a C∗-algebra.

For all examples, ⪯deglex is used in combination with the degree-compatible order ⪯DoPoT

for the signature-based computations.

The first columns of Table 5.1 contain information about the ideals that arise when
translating the operator statements. In particular, we list the number of generators of each
ideal and their maximal degree. Moreover, in the column for Algorithm 13, we provide
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Example #gens deg GB SigGB Algo. 13
(bound) w/o pruning w/ pruning ratio ̸= 0

SVD 32 3 49 39 25 (10) 127 k × 397 k 117 k × 326 k 0.82
ROL 28 5 80 39 30 (12) 22 k × 102 k 22 k × 55 k 0.54

ROL-2 28 5 31 21 15 (12) 24 k × 107 k 23 k × 59 k 0.55
ROL-3 28 5 39 44 31 (12) 19 k × 87 k 18 k × 46 k 0.52
ROL-4 28 5 91 46 33 (12) 68 k × 236 k 64 k × 136 k 0.57
ROL-5 28 5 27 30 22 (12) 33 k × 134 k 31 k × 79 k 0.59
ROL-6 28 5 37 39 30 (12) 22 k × 99 k 21 k × 54 k 0.54
ROL-7 40 9 78 23 17 (12) 18 k × 86 k 17 k × 45 k 0.52
ROL-8 44 7 1203 19 17 (12) 258 k × 965 k 242 k × 548 k 0.57

Hartwig-4 23 15 153 54 46 (18) 353 k × 1756 k 334 k × 1340 k 0.76
Hartwig-5 26 15 117 43 35 (17) 407 k × 1654 k 392 k × 1305 k 0.79
Hartwig-6 24 15 45 33 29 (17) 218 k × 967 k 215 k × 771 k 0.80

Ker 12 3 39 34 23 (12) 50 k × 142 k 50 k × 129 k 0.90
SMW 36 7 102 42 39 (12) 44 k × 114 k 42 k × 91 k 0.80
Sum 20 3 766 178 85 (9) 11 k × 18 k 10 k × 16 k 0.92

Table 5.1: Comparison of weights of cofactor representations computed by standard Gröbner bases
(GB), by signature Gröbner bases (SigGB), and by Algorithm 13 (Algo. 13). Also, size
comparison of the coefficient matrix A (rounded to thousands) in Algorithm 13 with
and without applying the pruning techniques from Section 5.4.2.

information on the used signature bound. A value n in this column indicates that we
consider only cofactor representations of degree < n. The degree bounds were chosen so that
the computation would finish for the larger examples Hartwig-n and ROL-8 within about
90 minutes on a regular laptop and for the remaining smaller examples within a few minutes.
We note that these degree bounds are strictly smaller than those that Corollary 5.4.8
yields, but the latter were computationally infeasible. Nevertheless, Table 5.1 shows that
Algorithm 13 still allows to find sparser representations for all considered examples.

Apart from the last three (Ker, SMW, Sum), all benchmark examples only consist of pure
difference binomials. For those, Corollary 5.4.26 implies that the representations computed
by Algorithm 13 are the sparsest up to the respective degree bounds. For the remaining
examples, the algorithm can still be used to find ℓ1-minimal representations, which are
heuristically also sparse, but without guarantee that they are the sparsest.

We also tested an adapted version of Algorithm 13 as described in Remark 5.4.22 that
minimises the total number of symbols appearing in a cofactor representation. For most
benchmark examples, the thereby computed representations have the same (minimal)
weight as those found with the standard version of the algorithm, but the total number of
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symbols decreases by up to 15%. Only for ROL-3 does the weight increase by one, while
the number of symbols decreases from 196 to 172.

In the last columns of Table 5.1, we compare the size of the matrix A constructed in
Algorithm 13 with and without applying the pruning techniques discussed in Section 5.4.2.
We also list the ratio between the number of nonzero entries in the pruned matrix and the
number of nonzero entries in the original matrix. As the table shows, in some examples
the size of the resulting linear system can be reduced drastically, cutting the number of
nonzero entries almost in half.
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6 Software

We have implemented all algorithms presented in this thesis in several software packages.
This chapter is devoted to the presentation of these packages.

In Section 6.1, we present our SageMath package operator_gb, which allows to certify
ideal membership in the free algebra based on the ability to compute noncommutative
Gröbner bases and cofactor representations. It also provides dedicated methods that
facilitate proving statements about linear operators, including several heuristics based
on the methods discussed in Section 5.3 for finding polynomials of certain form in ideals.
We give an overview on the functionality of the package in Section 6.1.1 and discuss
implementation details in Section 6.1.2. While the former is published as the appendix
of [BHR23], the latter is presented here for the first time. In Section 6.1.2, we also briefly
discuss a noncommutative version of Faugère’s F4 algorithm [Fau99] for computing Gröbner
bases in the free algebra, using linear algebra to perform polynomial reductions. We refer
to [Xiu12; Hof20] for a detailed description.

Section 6.2 is dedicated to the latest version of our Mathematica package OperatorGB,
which was initiated in [Hof20] and provides similar functionality as the SageMath package.
We only discuss the methods added in the latest version, consisting primarily of heuristics
for finding polynomials of certain form and of a method to automate diagram chases
in abelian categories (see also Section 7.3). For all basic commands as well as insights
concerning data structures and design choices, we refer to [Hof20, Ch. 6].

Finally, in Section 6.3, we give an overview of our SageMath package signature_gb

for signature and labelled Gröbner basis computations in the free algebra. Notably, in
Section 6.3.2, we present how to combine signature-based techniques with linear algebra
style reductions in the noncommutative setting, leading to a signature-based F4 algorithm
for computing signature Gröbner bases in the free algebra. Our adaptations are completely
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analogous to the case of commutative polynomials discussed in [AP10; Li+19] or [EF17,
Sec. 13].

6.1 SageMath package operator_gb

In this section, we give an introduction to the functionality provided by the SageMath
package operator_gb. We assume that the reader is already familiar with SageMath,
and otherwise refer to [Sag20]. Furthermore, we also discuss implementation details.

At the time of writing, the package is still under development and not part of the official
SageMath distribution. The current version, however, can be downloaded from

https://github.com/ClemensHofstadler/operator_gb

and installed as described on the webpage. The code can then be loaded into a SageMath
session by the following command.

sage: from operator_gb import *

6.1.1 Functionality

For now, the package only offers functionality for computations over the coefficient domain Q.
In the future, we plan to extend the functionality to other (finite) fields and subsequently
also to coefficient rings such as Z.

Certifying operator statements

The basic use-case of the package is to compute proofs of operator statements by cer-
tifying ideal membership of noncommutative polynomials. To this end, the package
provides the command certify(assumptions, claim), which allows to certify whether
a noncommutative polynomial claim lies in the ideal generated by a list of polynomials
assumptions.
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For example, to certify that abc− d lies in the ideal generated by ab− d and c− 1, proceed
as follows.

sage: F.<a,b,c,d> = FreeAlgebra(QQ)

sage: assumptions = [a*b - d, c - 1]

sage: proof = certify(assumptions, a*b*c - d)

Computing a (partial) Groebner basis and reducing the claims...

Done! Ideal membership of all claims could be verified!

Remark 6.1.1. Note that noncommutative polynomials are entered using the FreeAlgebra

data structure provided by SageMath.

The computed proof provides a cofactor representation of claim in terms of the elements
in assumptions. More precisely, it is a list of tuples (ai, ji, bi) with terms ai, bi in the free
algebra and integers ji such that

claim =
|proof|∑︂
i=1

ai · assumptions[ji] · bi.

The package provides a pretty_print_proof command to visualise the proof in form of a
string.

sage: proof

[(1,0,c), (d,1,1)]

sage: pretty_print_proof(proof, assumptions)

-d + a*b*c = (-d + a*b)*c + d*(-1 + c)

Remark 6.1.2. The certify command also checks if the computed cofactor representation
is valid over Z as well, that is, if all coefficients that appear are integers. If this is not the
case, it produces a warning, but still continues the computation and returns the result.
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It is also possible to give certify a list of polynomials as claim. In this case, a cofactor
representation of each element in claim is computed.

sage: claims = [a*b*c - d, a*b - c*d]

sage: proof = certify(assumptions, claims)

Computing a (partial) Groebner basis and reducing the claims...

Done! Ideal membership of all claims could be verified!

sage: pretty_print_proof(proof[0], assumptions)

-d + a*b*c = (-d + a*b)*c + d*(-1 + c)

sage: pretty_print_proof(proof[1], assumptions)

a*b - c*d = (-d + a*b) - (-1 + c)*d

If ideal membership cannot be verified, certify returns False. This outcome can occur
because of two reasons. Either claim is simply not contained in the ideal generated by
assumptions, or certify, which is an iterative procedure, had not been run for enough
iterations to verify the ideal membership. To avoid the latter situation, certify can be
passed an optional argument maxiter to determine the maximal number of iterations it is
run. By default, this value is set to 10.

sage: assumptions = [a*b*a - a*b]

sage: claim = a*b^20*a - a*b^20

sage: certify(assumptions, claim)

Computing a (partial) Groebner basis and reducing the claims...

Starting iteration 5...

Starting iteration 10...

Failed! Not all ideal memberships could be verified.

False
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sage: proof = certify(assumptions, claim, maxiter=20)

Computing a (partial) Groebner basis and reducing the claims...

Starting iteration 5...

Starting iteration 10...

Starting iteration 15...

Done! Ideal membership of all claims could be verified!

Remark 6.1.3. Since ideal membership in the free algebra is only semi-decidable, we
cannot decide whether the number of iterations of certify was simply too low or whether
claim is really not contained in the ideal.

Useful auxiliary functions for treating operator statements

The package provides some auxiliary functions which help in constructing polynomials
that commonly appear when treating operator statements.

• pinv(a, b, a_adj, b_adj): generate the polynomials

a*b*a - a, b*a*b - b, b_adj*a_adj - a*b, a_adj*b_adj - b*a

encoding the four Penrose identities for a with Moore-Penrose inverse b and respective
adjoints a_adj and b_adj.

• adj(f): compute the adjoint f∗ of a polynomial f. Each variable x is replaced by
x_adj. Note that all variables x and x_adj have to be defined as generators of the
same FreeAlgebra.

• add_adj(F): add to a list of polynomials F the corresponding adjoint elements.

Quivers and detecting typos

When encoding operator identities, the resulting polynomials can become quite intricate
and it can easily happen that typos occur. To detect typos, it can help to syntactically check
if entered polynomials correspond to correctly translated operator identities, respecting
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Figure 6.1: Quiver encoding domains and codomains of operators.

the restrictions imposed by the domains and codomains. To this end, the package allows
to encode the domains and codomains in form of a directed labelled multigraph, called
(labelled) quiver.

Computationally, a quiver is given by a list of triplets (u, v, a), where u and v can be any
symbols that encode the domain U and the codomain V of the basic operator A and a is the
indeterminate representing A. For example, a quiver encoding the situation of operators
A,B,C,D on spaces U, V,W as in Figure 6.1, can be constructed as follows.

sage: F.<a,b,c,d> = FreeAlgebra(QQ)

sage: Q = Quiver([(’U’,’V’,a), (’V’,’W’,b), (’W’,’V’,c), (’V’,’U’,d)])

sage: Q

Labelled quiver with 3 vertices in the labels {a, b, c, d}

One can easily check if a polynomial is compatible with the situation of operators encoded
by a quiver.

sage: Q.is_compatible(a*b + c*d)

False

sage: Q.is_compatible(a*d + c*b)

True

A quiver can be handed as an optional argument to certify, which then checks all input
polynomials for compatibility with the given quiver and raises an error if required.
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sage: assumptions = [a*d, c*b]

# typo in the claim, c*b -> b*c

sage: claim = a*d - b*c

sage: certify(assumptions, claim, quiver=Q)

ValueError: The claim a*d - b*c is not compatible with the quiver

Gröbner basis computations

Behind the scenes, the certify command computes Gröbner bases in the free algebra. In
this section, we present the methods of the package that allow to do such computations.

Ideals and monomial orders

The main data structure provided by the package is that of a (two-sided) ideal in the
free algebra, called NCIdeal. Such an ideal can be constructed from any finite set of
noncommutative polynomials.

sage: F.<x,y,z> = FreeAlgebra(QQ)

sage: gens = [x*y*z - x*y, y*z*x*y - y]

sage: NCIdeal(gens)

NCIdeal (-x*y + x*y*z, -y + y*z*x*y) of Free Algebra on

3 generators (x, y, z) over Rational Field with x < y < z

Attached to an NCIdeal also comes a monomial order with respect to which further
computations are done. By default, this is a degree lexicographic order, where the
indeterminates are sorted as in the parent FreeAlgebra. The order of the variables can
be individualised by providing a list as an optional argument order. Furthermore, by
providing a list of lists, block orders (also known as elimination orders) can be defined. The
order within each block is still degree lexicographic and blocks are provided in ascending
order.
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sage: NCIdeal(gens, order=[y,x,z])

NCIdeal (-x*y + x*y*z, -y + y*z*x*y) of Free Algebra on

3 generators (x, y, z) over Rational Field with y < x < z

sage: NCIdeal(gens, order=[[y,x],[z]])

NCIdeal (-x*y + x*y*z, -y + y*z*x*y) of Free Algebra on

3 generators (x, y, z) over Rational Field with y < x « z

Gröbner bases and normal forms

For computing Gröbner bases, the class NCIdeal provides the method groebner_basis

with the following optional arguments:

• maxiter (default: 10): Maximal number of iterations executed.

• maxdeg (default: ∞): Maximal degree of considered ambiguities.

• trace_cofactors (default: True): If cofactor representations of each Gröbner basis
element in terms of the generators should be computed.

• criterion (default: True): If Gebauer-Möller criteria as described in [Xiu12,
Sec. 4.2.2] should be used to detect redundant ambiguities.

• reset (default: True): If all internal data should be reset. If set to False, this allows
to continue previous (partial) Gröbner basis computations.

• verbose (default: 0): ’Verbosity’ value determining the amount of information about
the computational progress that is printed.

In the following, we illustrate how to compute a Gröbner basis of the ideal I = (xyx −
xy, yxxy − y).
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sage: F.<x,y> = FreeAlgebra(QQ)

sage: gens = [x*y*x - x*y, y*x*x*y - y]

sage: I = NCIdeal(gens)

sage: G = I.groebner_basis(); G

[- x*y + x*y*x, - y + y*x2*y, - y + y*x, - x*y + x*y2,

- x*y + x*y2*x, - y + y2, - y + y3]

We note that the polynomials output by the groebner_basis routine are not SageMath
noncommutative polynomials but our own NCPolynomials. They provide similar function-
ality as the native data structure (basic arithmetic, equality testing, coefficient/monomial
extraction), but can additionally also store a cofactor representation. In particular, the
elements output by the groebner_basis command all hold a cofactor representation with
respect to the generators of the NCIdeal.

sage: f = G[2]

sage: pretty_print_proof(f.cofactors(), I.gens())

-y + y*x = y*x*(-x*y + x*y*x) + (-y + y*x2*y) - (-y + y*x2*y)*x

Remark 6.1.4. To convert an NCPolynomial back into SageMath’s native data struc-
ture, our class provides the method to_native. Conversely, to convert a SageMath
noncommutative polynomial f into an NCPolynomial, one can use NCPolynomial(f).

The package also allows to interreduce a set of NCPolynomials using the command
interreduce.

sage: interreduce(G)

[- y + y*x, - y + y2]

To compute the normal form of an element f with respect to the generators of an
NCIdeal, the class provides the method reduced_form. The output of this method

262



6 Software

is an NCPolynomial g holding a cofactor representation of the difference f-g with respect
to the generators of the NCIdeal. The method reduced_form accepts the same optional
arguments as groebner_basis.

sage: f = I.reduced_form(y^2 - y); f

0

sage: pretty_print_proof(f.cofactors(), I.gens())

-y + y2 = (-y + y*x2*y) - y*x*(-x*y + x*y*x)*y - (-y + y*x2*y)*y

- y*x*(-x*y + x*y*x)*x*y + (-y + y*x2*y)*x2*y

sage: I.reduced_form(y^2)

y

Heuristics for finding polynomials of certain form

One of the main functionalities provided by the package are dedicated heuristics for
systematically searching for polynomials of certain form in an NCIdeal. To this end, the
class NCIdeal provides the method find_equivalent_expression(f), which searches for
elements of the form f - g, with arbitrary g, in an NCIdeal. It accepts the following
optional arguments:

• All optional arguments that also groebner_basis accepts with the same effects.

• order: A monomial order with respect to which the computation is executed. The
argument has to be provided like a custom order when defining an NCIdeal.

• heuristic (default: ’groebner’): Determines the heuristic used. Available are

– ’naive’: Try exhaustively all monomials m up to a degree bound and check if f -

m is in the ideal.
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– ’groebner’: Enumerate a Gröbner basis and search in the Gröbner basis for
suitable elements containing f.

– ’subalgebra’: Intersect the two-sided ideal with a subalgebra to find suitable
elements.

– ’right-ideal’/’left-ideal’: Intersect the two-sided ideal with a right/left ideal to
find suitable elements.

• prefix (default: None): A term p providing the prefix of g, i.e., the heuristic looks
for elements of the form f - p*h with arbitrary h (required for heuristic ’right-ideal’).

• suffix (default: None): A term s providing the suffix of g, i.e., the heuristic looks
for elements of the form f - h*s with arbitrary h (required for heuristic ’left-ideal’).

• degbound (default: 5): Some heuristics only compute up to a fixed degree bound.
This argument allows to change this degree bound.

• quiver (default: None): Use a quiver to restrict the search space only to polynomials
that are compatible with this quiver.

sage: F.<a,b,c,d> = FreeAlgebra(QQ)

sage: gens = [a*b*a-a, b*a*b-b, a*b-c*d, b*a-d*c, c*d*c-c, d*c*d-d]

sage: I = NCIdeal(gens)

sage: I.find_equivalent_expression(a*b)

[-a*b + c*d]

sage: I.find_equivalent_expression(a*b, heuristic=’naive’, suffix=b)

[a*b - c*d*a*b]

sage: I.find_equivalent_expression(a*b, heuristic=’right-ideal’,

....: prefix=a*b)

[- a*b + a*b*c*d, - a*b + a*b*a*b]
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Additionally, the class NCIdeal provides methods for applying cancellability.

• I.apply_left_cancellability(a, b): Search for elements of the form a*b*f in I

and return b*f.

• I.apply_right_cancellability(a, b): Search for elements of the form f*a*b in
I and return f*a.

Both methods can be given an optional argument heuristic to determine the used search
heuristic. Available are ’subalgebra’, ’one-sided’, and ’two-sided’ (default: ’subalgebra’).

sage: I.apply_left_cancellability(c, a)

[- a + a*b*a, - a2 + a*d*c*a]

# verify ideal membership to check correctness of result

sage: I.reduced_form(c*(-a^2 + a*d*c*a))

0

sage: I.apply_right_cancellability(a*b, c*d, heuristic=’two-sided’,

....: maxiter=5)

[- a*b + a*b*a*b, - a*b + c*d*a*b]

# verify ideal membership to check correctness of result

sage: I.reduced_form((-a*b + c*d*a*b)*c*d)

0
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6.1.2 Implementation details

Noncommutative F4 algorithm

The package operator_gb implements a noncommutative version of Faugère’s F4 algo-
rithm [Fau99] for computing Gröbner bases in the free algebra. In contrast to Buchberger’s
algorithm, where only one S-polynomial is reduced at a time, the main idea of the F4
algorithm is to reduce several S-polynomials by a list of polynomials simultaneously. This
is done by representing polynomials in terms of a matrix and computing a reduced row
echelon form of this matrix. We refer to [Xiu12; Hof20] for further information and a
detailed description of this algorithm in the noncommutative setting.

The most costly step of a Gröbner basis computation with the F4 algorithm is the matrix
normal form computation. Thus, special elimination techniques were developed in the
commutative setting to improve these computations by exploiting the special structure
of the matrices that arise in Gröbner basis computations (sparse, rank deficient, almost
block triangular). The most notable such technique is the Faugère-Lachartre elimination
algorithm [FL10], which can also be applied in the noncommutative setting. The algorithm
is illustrated in Figure 6.2.

A B

C D

(a)

I A−1B

C D

(b)

I A−1B

0

D − CA−1B
(c)

I A−1B

0

rref(D − CA−1B)
(d)

Figure 6.2: Faugère-Lachartre elimination.

The idea of the Faugère-Lachartre elimination is to permute all already visible pivots into
an upper triangular submatrix A by swapping rows and columns. The rest of the matrix is
divided into three blocks B, C, and D, as shown in (a). Since A is invertible, a reduction
of these rows yields an identity and A−1B, see (b). Then the identity part is used to zero
out the submatrix C and D is updated accordingly, see (c). Finally, the lower right block
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is reduced to reduced row echelon form (for example, using the same procedure recursively
or by standard Gaussian elimination).

Typically, the submatrices A and C are very sparse, allowing for efficient linear algebra
techniques to speed up the computations. Furthermore, the upper triangular structure
of A allows to compute the product A−1B by backward substitution.

The package operator_gb implements the Faugère-Lachartre elimination as described
above. Furthermore, it uses the noncommutative versions of the Gebauer-Möller criteria
described in [Xiu12, Sec. 4.2.2] for detecting redundant ambiguities.

Monomials

The most fundamental objects that a Gröbner basis algorithm has to work with are
monomials, in our setting, that is, words from the free monoid. In our implementation,
monomials are represented by strings. This is a natural choice since strings are optimised
for precisely the most crucial operations that are needed in Gröbner basis computations:
multiplication of monomials (string concatenation) and divisibility tests (substring checking).
We have also tried other data structures more similar to the commutative exponent vectors
but their performance could not compare to strings.

When transforming the input into our data structure, we do not use the variable names
provided by the user. Instead, each variable is first mapped to a single ASCII character. If
more than 128 (the number of ASCII characters) indeterminates are needed, each variable
is mapped to a unique combination of two ASCII characters. The use of more than
1282 = 16 384 indeterminates is not supported (and probably also not needed). In this way,
the internal representations are kept as compact as possible while still giving the user the
freedom to enter arbitrary names for the indeterminates.

Divisibility tests of monomials occur in several places in Gröbner basis algorithms. The most
apparent example is during polynomial reduction, when searching for a basis element whose
leading monomial divides the term being reduced. Another example is the computation of
inclusion ambiguities. In both cases, we have a varying monomial (the needle) of which
we want to find a divisor among a fixed – typically large – set of divisor candidates (the
haystack). In the examples above, the haystack is the set of leading monomials of the
current partial Gröbner basis.
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Testing divisibility of the needle by all elements in the haystack sequentially is linear in
the size of the haystack and can become very expensive. Therefore, it makes sense to use
dedicated algorithms for multi-pattern string matching. We use the Aho-Corasick algo-
rithm [AC75] for this, in form of the open source implementation pyahocorasick [Muł22].

The Aho-Corasick algorithm first transforms the haystack into a finite-state machine that
resembles a prefix tree with additional edges that eliminate the need for backtracking. By
using this data structure, the algorithm can match the needle against all elements in the
haystack simultaneously. This results in a search-complexity linear in the length of the
strings and independent of the size of the haystack. Building the finite-state machine is
still linear in the size of the haystack, however this cost is negligible since this operation
has to be done very rarely compared to the number of searches – namely only when new
elements are added to the Gröbner basis.

Besides making divisibility tests more efficient, the Aho-Corasick data structure can also be
used to improve the computation of overlap ambiguities. Generating overlap ambiguities
requires comparing all suffixes B of a new leading monomial AB against all prefixes of the
already known leading monomials. The prefix tree of the Aho-Corasick algorithm allows
to do this in an efficient way. By passing a suffix B through the prefix tree, all overlap
ambiguities with overlap B can be computed simultaneously. To compute all overlap
ambiguities between AB and the known leading monomials, we also have to compare all
prefixes A of AB against all suffixes of the other elements. To do this efficiently as well, we
keep – besides the prefix tree – also a suffix tree of the known leading monomials. Then the
remaining overlap ambiguities can be computed by passing all prefixes A of AB through
the suffix tree. This reduces the complexity of computing all overlap ambiguities from
proportional in the size of the haystack to linear in the length of the strings.

Polynomials

The main algorithms of the package rely on linear algebra for polynomial reduction, which
has the advantage that only very minimal polynomial arithmetic is required. The only
operations that need to be available for polynomials are multiplication by a monomial and
by a constant, and retrieving the leading monomial. In particular, polynomial addition
is not required, as all polynomial reductions are performed implicitly during the matrix
normal form computation. This allows to implement polynomials in a very simple fashion.
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In our implementation, each polynomial consists of a list of coefficients and a list of
monomials sorted so that the ith coefficient belongs to the ith monomial. Additionally,
we keep a separate reference to the leading monomial. While being very simple, this data
structure allows to efficiently do all relevant operations.

6.2 Mathematica package OperatorGB

The Mathematica package OperatorGB essentially provides the same functionality as the
SageMath package. Most prominently, it also offers a Certify command for certifying
ideal membership in the free algebra based on the computation of cofactor representations.
We refer to [Hof20, Ch. 6] for further information on the Certify command and related
functionality, as well as for remarks on the design choices made when implementing these
methods. In the following, we describe some new methods that have been added to the
package recently. The latest version of the package can be obtained from

https://github.com/ClemensHofstadler/OperatorGB.

The package can be loaded into Mathematica by placing it in the current working
directory and executing the following line.

In[1]:= << OperatorGB.m

Package OperatorGB version 1.4.2
Copyright 2019, Institute of Mathematics, University of Kassel
by Clemens Hofstadler, clemens.hofstadler@mathematik.uni-kassel.de

6.2.1 Functionality

Heuristics for finding polynomials

Since version 1.3, the package also implements the heuristics described in Section 5.3 for
finding elements of certain form in one- or two-sided ideals. In particular, the package
provides the following methods.
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• Intersect[I, J, MaxIter -> 1]: Enumerate a Gröbner basis of the intersection of
the two-sided ideals I and J. The optional argument MaxIter determines the maximal
number of iterations of the underlying Gröbner basis computation (default: 1).

In[2]:= SetUpRing[{x, y, z}];

I = {x ** y};

J = {y ** z};

Intersect[I, J, MaxIter -> 3]

Out[2]= {x ** y ** z, y ** z ** x ** y, x ** y ** y ** z,

-y ** z ** x ** x ** y, -y ** z ** y ** x ** y,

-y ** z ** z ** x ** y, x ** y ** y ** y ** z}

• IntersectSubalgebra[I, S, MaxIter-> 5]: Enumerate elements in the intersec-
tion of the two-sided ideal I with the subalgebra S. The optional argument MaxIter

determines the maximal number of iterations of the underlying Gröbner basis com-
putation (default: 5).

In[3]:= SetUpRing[{x, y}];

I = {x ** x - 3 x, x ** y ** x};

S = {x};

IntersectSubalgebra[I, S, MaxIter -> 3]

Out[3]= {-3 x + x ** x}

• IntersectRightIdeal[I, Iρ, Q, MaxDeg -> 5]: Enumerate a right Gröbner basis
of the intersection of the two-sided ideal I with the right ideal Iρ. Since a generating
set of this intersection is typically infinite, we restrict the output only to polynomials
that are compatible with the quiver Q. The optional argument MaxDeg determines
an upper bound on the lengths of the monomials w used in Proposition 5.3.4 to
transform a (partial) two-sided Gröbner basis into a (partial) right Gröbner basis.
Hence, this argument yields a stopping criterion (default: 5).

In[4]:= SetUpRing[{x, y, z}];

I = {x ** y};

Iρ = {x, z};
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(* We set Q to be the trivial quiver with only one vertex

over all variables that appear in our ideals. *)

Q = TrivialQuiver[{x, y, z}];

IntersectRightIdeal[I, Iρ, Q, MaxDeg -> 2]

Out[4]= {x ** y, x ** x ** y, z ** x ** y, x ** x ** x ** y,

x ** z ** x ** y, z ** x ** x ** y, z ** y ** x ** y,

z ** z ** x ** y}

As can be seen, the number of generators of this intersection grows quite fast.
Restricting only to generators where the variable z cannot appear to the left of x

or y, drastically reduces the number of generators.

In[5]:= Q = {{x, 1, 1}, {y, 1, 1}, {z, 2, 1}};

IntersectRightIdeal[I, Iρ, Q, MaxDeg -> 2]

Out[5]= {x ** y, x ** x ** y, x ** x ** x ** y}

• IntersectLeftIdeal[I, Iλ, Q, MaxDeg -> 5]: Enumerate a left Gröbner basis
of the intersection of the two-sided ideal I with the left ideal Iλ. The other arguments
for this method serve the same purpose as in IntersectRightIdeal.

• Hom[cofactors, I, MaxIter, A : In]: Enumerate a Gröbner basis of the homo-
geneous part hom(I) of the ideal I with respect to the grading defined by the matrix
A. The ith row of A specifies the degree of xi, where the xi are ordered as they appear
in SetUpRing. By default, A is the identity matrix In. The argument MaxIter deter-
mines an upper bound on the number of iterations of the underlying Gröbner basis
computation that is done during this procedure. Additionally, for each polynomial f

in the output, a cofactor representation of f in terms of the generators of I is saved
in the list cofactors.

In[6]:= SetUpRing[{x, y, z}]

I = {x ** y - y, x + y ** x, z ** y ** x};

cofactors = {};

Hom[cofactors, I, 3]

Out[6]= {z ** x, z ** y, -x ** y ** x + y ** x ** x,

-x ** y ** y + y ** x ** y}
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Using the degree matrix

A =

⎛⎜⎜⎝
2 0
−1 0
0 1

⎞⎟⎟⎠
yields

In[7]:= cofactors = {};

A = {{2, 0}, {-1, 0}, {0, 1}};

Hom[cofactors, I, 3, A]

Out[7]= {-x ** y ** y ** x + y ** x ** y ** x, z ** y,

-x ** y ** x + y ** x ** x, -x ** y ** y + y ** x ** y,

-x + x ** y ** y ** x, -y + x ** y ** y ** y, z ** x}

• Mon[cofactors, I, MaxIter, OneSided -> "right"]: Enumerate a one-sided
Gröbner basis of mon(I), the one-sided ideal generated by all monomials in the
one-sided ideal I. The arguments cofactors and MaxIter serve the same purpose as
in Hom. The optional value OneSided determines whether I (and consequently also
the output mon(I)) is considered as a right ideal or as a left ideal (default: "right").

In[8]:= I = {x ** x ** y - y ** x, x ** x + x ** y - x,

x ** y ** x ** y - y ** x ** y, x ** y ** x};

cofactors = {};

Mon[cofactors, I, 5]

Out[8]= {x ** y ** x, y ** x ** y, x ** x ** y ** y,

x ** x ** x ** y ** y}

In[9]:= (* Now consider I as left ideal *)

cofactors = {};

Mon[cofactors, I, 5, OneSided -> "left"]

Out[9]= {x ** y ** x}

Remark 6.2.1. Thus far, the computation of cofactor representations is only supported
for Hom and Mon.
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Some of the commands discussed above require the ideal to be one-sided. To this end,
the package provides the methods ToRightGB[I, d, X, Q] and ToLeftGB[I, d, X, Q]

that take a two-sided ideal I, a quiver Q, a set of variables X, and an integer d as input
and enumerate a right, respectively left, Gröbner basis of I. Since these Gröbner bases are
typically infinite, the variable d gives an upper bound on the lengths of the monomials w
used in Proposition 5.3.4 to transform a (partial) two-sided Gröbner basis into a (partial)
one-sided Gröbner basis. Additionally, we restrict ourselves to only computing generators
that are compatible with the quiver Q. This can drastically speed up the computation. The
set X determines which indeterminates may appear in the generators, that is, computations
are done in Q⟨X⟩.

We illustrate the usage of these commands to compute monomials in a two-sided ideal I.
To this end, we first translate the two-sided generating set into a one-sided generating set.
Since we do not want to restrict our computations in any way, we set Q to be the trivial
quiver and X to be the set of all variables.

In[10]:= SetUpRing[{x, y}]

I = {x ** x ** y - y ** x, x ** x + x ** y - x,

x ** y ** x ** y - y ** x ** y, x ** y ** x}

X = {x, y};

Q = TrivialQuiver[X];

rightGens = ToRightGB[I, 3, X, Q];

cofactors = {};

Mon[cofactors, rightGens, 4];

Out[10]= {y ** x, x ** y ** x}

Diagram chasing

The package also provides a simple interface for performing diagram chasing proofs in
abelian categories. More precisely, it offers the method DiagramChase that takes as input
an ideal I and an integer n. The ideal I is generated by polynomials describing some
diagram for which a proof by diagram chasing shall be found. Additionally, the user can
provide the optional arguments ExactAt, Mono, Epi, Algorithm, and MaxIter. ExactAt

is a list of pairs of variables determining which symbols represent exact sequences of
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morphisms in the diagram. Similarly, Mono and Epi are lists of variables that determine
which morphisms in the diagram are monomorphisms and epimorphisms respectively.
By default, ExactAt, Mono and Epi are all empty. The optional argument Algorithm

determines which of the heuristics for finding polynomials discussed previously is used for
the computations. The options here are “one-sided”, “two-sided”, and “subalgebra”

(default: “one-sided”). The optional argument MaxIter determines how many iterations
of the underlying Gröbner basis computations are executed (default: 3).

We refer to Section 7.3 for an illustration of this functionality.

6.3 SageMath package signature_gb

We give a brief overview of the SageMath package signature_gb for signature and
labelled Gröbner basis computations in the free algebra. Since the data structures used
are the same as in the case of the operator_gb package (see Section 6.1.2), we omit this
information here. Instead, after presenting the functionality of the package, we describe
how to combine the F4 algorithm with signature-based techniques, as this is the algorithm
used in our implementation.

At the time of writing, the package is still under development, but a beta version can be
obtained from

https://github.com/ClemensHofstadler/signature_gb

and installed as described on the webpage.

6.3.1 Functionality

The basic data structure provided by the package is that of a LabelledModule. It can be
constructed from a finite list of SageMath noncommutative polynomials as follows. We
note that, so far, only polynomials with rational coefficients are supported. Furthermore,
variable names are restricted to single (lower- and uppercase) characters.
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sage: from signature_gb import *

Package signature_gb version 0.1.0 (beta version)

by Clemens Hofstadler, clemens.hofstadler@mathematik.uni-kassel.de

sage: F.<a,b,c,d> = FreeAlgebra(QQ)

sage: gens = [a*b*a-a, b*a*b-b, a*b-c*d, b*a-d*c, c*d*c-c, d*c*d-d]

sage: M = LabelledModule(gens,[a,b,c,d]); M

Labelled module generated by

-a + a*b*aˆ[e_1], -b + b*a*bˆ[e_2], a*b - c*dˆ[e_3],

b*a - d*cˆ[e_4], -c + c*d*cˆ[e_5], -d + d*c*dˆ[e_6]

Monomial order: a < b < c < d, Signature order: dpot

The second argument provides the monomial order with respect to which the computations
are executed. A list yields a degree lexicographic order. By default, the module order is
degree-over-position-over-term (dpot). It can be changed to degree-over-term-over-position
(dtop) as follows.

sage: LabelledModule(gens,[a,b,c,d],signature_order=’dtop’)

Labelled module generated by

-a + a*b*aˆ[e_1], -b + b*a*bˆ[e_2], a*b - c*dˆ[e_3],

b*a - d*cˆ[e_4], -c + c*d*cˆ[e_5], -d + d*c*dˆ[e_6]

Monomial order: a < b < c < d, Signature order: dtop

The main functionality provided by a LabelledModule is computing signature and labelled
Gröbner bases. A signature Gröbner basis can be enumerated as follows.

sage: M = LabelledModule(gens,[a,b,c,d])

sage: G, H = M.signature_GB(100)

18 ambiguities in total (computation took 0.00104)

10 critical pairs were generated.
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22 ambiguities in total (computation took 0.00012)

10 critical pairs were generated.

All critical pairs were reduced to 0.

sage: G

[poly: -a + a*b*a, sig : e1,

poly: -b + b*a*b, sig : e2,

poly: -a*b + c*d, sig : e3,

poly: -b*a + d*c, sig : e4,

poly: -c + c*d*c, sig : e5,

poly: -d + d*c*d, sig : e6,

poly: -c + a*b*c, sig : e3*c,

poly: -d + d*a*b, sig : d*e3,

poly: -d + b*a*d, sig : e4*d,

poly: -c + c*b*a, sig : c*e4]

Remark 6.3.1. By default, the package provides some information on the computational
progress. In particular, it lists the number of ambiguities and S-polynomials (in the
algorithm called critical pairs) computed in every iteration.

The commands above run 100 iterations of the signature-based algorithm and outputs a
(partial) signature Gröbner basis G and a (partial) Gröbner basis H of the leading term
module of the syzygy module. To compute a signature basis up to some fixed signature, a
sig_bound can be provided in form of a positive integer N . Then the algorithm computes
a signature basis up to degree N (if the number of iterations is chosen large enough).

sage: M = LabelledModule(gens,[a,b,c,d])

sage: G,H = M.signature_GB(100,sig_bound=3)

18 ambiguities in total (computation took 0.00018)

10 critical pairs were generated.

All critical pairs were reduced to 0.
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To reconstruct a (partial) labelled Gröbner basis and a (partial) basis of the syzygy module,
run the following commands in the given order.

sage: G,H = M.signature_GB(100)

sage: G2 = M.reconstruct_labelled_basis()

sage: H2 = M.reconstruct_syzygies()

sage: G2

[poly : -a + a*b*a, label : e1,

poly : -b + b*a*b, label : e2,

poly : -a*b + c*d, label : -e3,

poly : -b*a + d*c, label : -e4,

poly : -c + c*d*c, label : e5,

poly : -d + d*c*d, label : e6,

poly : -c + a*b*c, label : e5 + e3*c,

poly : -d + d*a*b, label : e6 + d*e3,

poly : -d + b*a*d, label : e6 + e4*d,

poly : -c + c*b*a, label : e5 + c*e4]

Once a labelled Gröbner basis is reconstructed, a LabelledModule also provides the
possibility to test ideal membership of noncommutative polynomials. If ideal membership
can be verified, it outputs a cofactor representation.

sage: F.<a,b,c,d,e> = FreeAlgebra(QQ)

sage: gens = [1-a*b,1-b*a,a*e*a-a, e*a*e-e, a*e-c*d, e*a-d*c,

....: c*d*c-c, d*c*d-d]

sage: M = LabelledModule(gens,[a,b,c,d,e])

sage: G,H = M.signature_GB(100)

sage: M.reconstruct_labelled_basis()

sage: M.membership_test(b - e)

Membership test SUCCESSFUL.

poly : b - e, label : b*e1 - e2*e - b*e3*b - b*a*e*e1
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6.3.2 Signature-based F4 algorithm

The algorithms for computing signature and labelled Gröbner bases presented in Chapter 3
are all phrased in Buchberger style analogous to Algorithm 1. However, as noticed in the
commutative case [AP10; Li+19], signature-based techniques can also be combined with
the use of linear algebra for polynomial reduction, allowing to reduce S-polynomials in
batches rather than individually, yielding a signature-based F4 algorithm.

The package signature_gb implements such a version of the F4 algorithm for computing
signature Gröbner bases in the free algebra. In the following, we give a very brief description
of this algorithm. We refer to [EF17, Sec. 13] for a more thorough explanation on how to
include signature-based techniques into the F4 algorithm in the commutative case, and
note that the adaptations to the noncommutative setting are straightforward.

Such an algorithm selects several ambiguities at once, forms the corresponding S-polynomials,
and subsequently organises them, together with their regular reducers, in a matrix. This
is done by writing the coefficients of f , for each selected signature polynomial f (σ), as
the entries of a row in A. In this way, every column of A corresponds to a monomial.
Additionally, the row corresponding to f (σ) is labelled by the signature σ. To ensure
that a reduction of A corresponds to performing regular sig-reductions, the following two
conditions have to be satisfied:

1. The columns of A are sorted in decreasing order with respect to the monomials they
represent.

2. The rows of A are sorted in increasing order with respect to their signature label.

Then, performing one-sided Gaussian elimination on A, where a row can only be used to
eliminate rows below it that have strictly larger signature, corresponds precisely to regular
sig-reducing the selected signature polynomials. In the resulting matrix, each nonzero row
has a unique pivot, but its appearance may, in fact, not be triangular. We call this normal
form a sig-echelon form of A. Finally, the rows of this reduced matrix whose first entry has
changed during this normal form computation are added as new basis elements or newly
identified syzygy signatures, depending on whether the reduced row is zero or not.
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Signature-based Faugère-Lachartre elimination

One crucial optimisation of the F4 algorithm is to use Faugère-Lachartre elimination for
the matrix normal form computations. However, the first step of this technique requires to
freely swap rows (see (a) in Figure 6.2). This is not allowed in signature-based computations.
To exploit this technique also for the computation of signature Gröbner bases, one can
divide the matrix into blocks and perform Faugère-Lachartre elimination block-wise. This
procedure, which is also described in [Li+19], is illustrated in Figure 6.3.

First, as usual for signature-based computations, the rows of the matrix are sorted by
increasing signature. Then they are split into two consecutive blocks, see (a). If several
rows share the same signature, one has to ensure that the last row of the first block has a
signature strictly smaller than the first row of the second block. Then one-sided reductions
are performed on the first block to obtain a sig-echelon form, yielding (b). At this point, all
polynomials relevant for the signature Gröbner basis are collected from Block 1. Next, the
reduced first block is analysed and all visible pivots are swapped into an upper triangular
submatrix A. The remaining matrix is divided into three blocks B,C, and D as in the
usual Faugère-Lachartre elimination, see (c). Note that this rearrangement of the first
block does not affect the sig-reductions that will be performed on the second block since
all rows in Block 1 have strictly smaller signature than those in Block 2. Then the usual
Faugère-Lachartre elimination is performed, see (d), where for the final reduction of the
lower right block one-sided reductions have to be used (or this procedure is used recursively)
to obtain a sig-echelon form.

Block 1

Block 2

(a)

Block 2

(b)

A B

C D

(c)

I A−1B

0

sig-rref(D −CA−1B)
(d)

Figure 6.3: Signature-safe adaptation of Faugère-Lachartre elimination.
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7.1 Moore-Penrose case study

Using our framework and the functionality provided by our software package operator_gb,
we have successfully automated the proofs of a variety of theorems concerning the
Moore-Penrose inverse, ranging from classical facts in the Handbook of Linear Alge-
bra [Hog13, Sec. I.5.7] over important characterisations of the Moore-Penrose inverse (AB)†

of a product of linear operators A,B on Hilbert spaces [DD10] to very recent improve-
ments [Cve+21] of a classical result by Hartwig that were found with the help of our
software. We have assembled a Jupyter notebook containing the automated proofs of all
statements, which is available at

https://cocalc.com/georeg/Moore-Penrose-case-study/notebook.

For our case study, we considered the first 25 facts in the section on the Moore-Penrose
inverse in the Handbook of Linear Algebra [Hog13, Sec. I.5.7]. Among these 25 statements,
we found that five cannot be treated within the framework, as they contain properties that
cannot be expressed in terms of identities of operators, such as properties of the matrix
entries or statements that require induction. Additionally, three statements can only be
partially handled for the same reason. The remaining 17 statements, along with those parts
of the three statements mentioned before that can be treated within the framework, can all
be translated into polynomial computations and proven fully automatically with the help
of our software. The corresponding polynomial computations take place in ideals generated
by up to 70 polynomials in up to 18 indeterminates. The proof of each statement takes
less than one second and the computed cofactor representations, certifying the required
ideal memberships, consist of up to 226 terms.
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As part of our case study, we also examined Theorems 2.2 – 2.4 in [DD10], which provide
several necessary and sufficient conditions for the reverse order law (AB)† = B†A† to
hold, where A,B are bounded linear operators on Hilbert spaces with closed ranges. Our
software can automatically prove all these statements in less than five seconds altogether,
yielding algebraic proofs that consist of up to 279 terms. We note that, in contrast to the
original proofs in [DD10], which rely on matrix forms of bounded linear operators that are
induced by some decompositions of Hilbert spaces, our proofs do not require any structure
on the underlying spaces except a certain cancellability assumption and the property that
range inclusions can be translated into factorisations as discussed in Section 5.2.4. This
implies that our proofs generalise the results from bounded operators on Hilbert spaces to
morphisms in arbitrary preadditive semicategories meeting these assumptions.

Finally, our case study contains fully automated proofs of Theorem 2.3 and 2.4 in our joint
work [Cve+21], which provide necessary and sufficient conditions for the triple reverse
order law (ABC)† = C†B†A† to hold, where A,B,C are elements in a ring with involution.
These theorems can be considered as significant improvements of a classical result by
Hartwig [Har86]. We discuss them in more detail in the succeeding section.

7.2 Improvements of Hartwig’s triple reverse order law

For a classical group inverse, it is easy to show that (ab)−1 = b−1a−1 for all group elements
a, b. In the setting of generalised inverses, this reverse order law need no longer hold
unconditionally. The reverse order law problem, originally posed by Greville [Gre66], asks
for necessary and sufficient conditions for the reverse order law to hold. Greville considered
it in the case of the Moore-Penrose inverse of the product of two matrices. Namely, for
given matrices A,B such that AB is defined, he showed

(AB)† = B†A† ⇐⇒ R(A∗AB) ⊆ R(B) and R(BB∗A∗) ⊆ R(A∗),

where R(M) denotes the range of a matrix M .

This was followed by further research on this subject branching in several directions:

• for products of more than two matrices;

• for different classes of generalised inverses;
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• in different settings (operator algebras, C∗-algebras, rings, etc.);

We refer to [CW17, Ch. 2] for a textbook exposition summarising these results and for
further references.

One of the first to be inspired by Greville’s result was Hartwig [Har86], who studied
the reverse order law for the Moore-Penrose inverse of a product of three matrices. He
gave the following characterisation. In the following, a square matrix M is called EP if
R(M) = R(M∗).

Theorem 7.2.1. Let A,B,C be complex matrices such that ABC is defined and let
P = A†ABCC†, Q = CC†B†A†A. The following conditions are equivalent:

(i) (ABC)† = C†B†A†;

(ii) PQP = P , QPQ = Q, and both of A∗APQ and QPCC∗ are Hermitian;

(iii) PQP = P , QPQ = Q, and both of A∗APQ and QPCC∗ are EP;

(iv) PQP = P , R(A∗AP ) = R(Q∗), and R(CC∗P ∗) = R(Q);

(v) PQ = (PQ)2, R(A∗AP ) = R(Q∗), and R(CC∗P ∗) = R(Q);

Since then, this statement has been generalised to other settings such as algebras of
bounded linear operators [DD14] or C∗-algebras [Mil18]. In both papers, results analogous
to Hartwig’s paper were obtained, but with the additional conditions of regularity of all
three elements and their products. In our joint work [Cve+21], we present several significant
improvements of Hartwig’s triple reverse order law, using the framework developed in
Chapter 4 and the software package operator_gb. The improvements include the following
generalisations:

• We consider the problem in rings with involution, which is a more abstract setting
than what has been considered in the literature so far.

• We relax conditions (iv) and (v) in the original result of Hartwig (Theorem 7.2.1),
by replacing the respective equalities of ranges assumed in both of these conditions
with appropriate inclusions of ranges.
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• Compared to the results for algebras of operators and C∗-algebras, we significantly
reduce the set of starting assumptions upon which these results are based by dropping
certain regularity conditions.

• We also generalise the result by showing that B† can be replaced by an arbitrary
element ˜︁B that need not be related to B in any way. In this way, the regularity
assumption of the element B is dropped.

The main setting that we consider is that of a (noncommutative) ring R with a unit 1 ̸= 0
and an involution a ↦→ a∗ satisfying

(a∗)∗ = a, (a+ b)∗ = a∗ + b∗, (ab)∗ = b∗a∗.

As in other settings, an element b ∈ R is the unique Moore-Penrose inverse of an element
a ∈ R if it satisfies the Penrose identities

aba = a, bab = b, (ab)∗ = ab, (ba)∗ = ba.

We denote the Moore-Penrose inverse of a by a†. Furthermore, an element a ∈ R is right
∗-cancellable if, for all z ∈ R, zaa∗ = 0 implies za = 0, and EP if aR = a∗R.

We only list one of the improvements of Theorem 7.2.1 below and refer for the other results
to [Cve+21].

Theorem 7.2.2 ([Cve+21, Thm. 2.3]). Let a, b, c ∈ R be such that a, c are Moore-Penrose
invertible. Let p = a†abcc† and q = cc†˜︁ba†a, for ˜︁b ∈ R. The following conditions are
equivalent:

(i) abc is Moore-Penrose invertible and (abc)† = c†˜︁ba†;

(iv) pqp = p, a∗apR ⊇ q∗R, and cc∗p∗R ⊆ qR;

(v) abc is right ∗-cancellable, pq = (pq)2, a∗apR ⊇ q∗R, and cc∗p∗R ⊆ qR;

(vi) qpq = q, a∗apR ⊇ q∗R, and cc∗p∗R ⊆ qR;

283



7 Applications

In the following, we discuss different aspects and use cases of using the framework developed
in Chapter 4 to prove Hartwig’s original result and its improvements.

First, we focus on the implication (v)⇒ (i) in Theorem 7.2.1: if PQ = (PQ)2, R(A∗AP ) =
R(Q∗), and R(CC∗P ∗) = R(Q), then (ABC)† = C†B†A†, which can be proven using
Theorem 5.1.7.

As discussed in Section 5.2.4, the four inclusions of ranges are equivalent to the following
identities for some operators U1, U2, V1, V2:

A∗AP = Q∗V1, A∗APV2 = Q∗, CC∗P ∗ = QU1, CC∗P ∗U2 = Q. (7.1)

For each Moore-Penrose inverse A†, B†, C†, (ABC)† we have the four defining identities,
and finally, we also have the identity PQ = (PQ)2 as an assumption.

Translating these identities into polynomials, we introduce an indeterminate for each
basic operator. Moreover, for each indeterminate, we introduce another indeterminate
representing the adjoint of the corresponding operator. In total, this amounts to 22
indeterminates. Similarly, each identity of operators is translated into two polynomials,
one for the identity itself and one for its adjoint. Thereby, we obtain a set F of 34
noncommutative polynomials with integer coefficients representing the assumptions. The
claim corresponds to the polynomial f = m† − c†b†a†, where m† is the indeterminate
introduced for (ABC)†.

Then we can use our software package operator_gb to show that f lies in the ideal
generated by the polynomials of F . The cofactor representation certifying this ideal
membership was computed in less than 5 seconds and has 937 terms. Since this cofactor
representation only contains integer coefficients, the ideal membership also holds over
the integers. Hence, by Theorem 5.1.7, this proves that (ABC)† = C†B†A† holds under
the given assumptions. In fact, the implication (v) ⇒ (i) is proven in any preadditive
semicategory in which it can be formulated.

By investigating the cofactor representations that are computed by our software package,
one can check which assumptions of a theorem are really needed, and which are in fact
redundant. For instance, it turns out that the first and last identity in (7.1) can be
dropped. This corresponds to relaxing the range conditions in (v) to R(A∗AP ) ⊇ R(Q∗)
and R(CC∗P ∗) ⊆ R(Q). Additionally, we could observe that the cofactor representation
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of f contains no polynomial associated to any of the four defining equations of B†, showing
that B† can, in fact, be replaced by an arbitrary operator B̃ that does not have to be related
to B in any way. These observations led to some of the generalisations in Theorem 7.2.2.

It is also possible to prove the implication (i) ⇒ (v) using our framework, in particular
Theorem 5.1.7, and software. To this end, first explicit expressions for U1, U2, V1, V2 in
terms of the other basic operators have to be found. Using the heuristics implemented in
operator_gb, we can find the following elements:

U1 = BCC∗B∗A∗(A†)∗, U2 = (B†)∗(C†)∗C†B†A†A,

V1 = B∗A∗ABCC†, V2 = B†A†(A†)∗(B†)∗(C†)∗C∗.
(7.2)

Then, using the defining identities of A†, B†, C†, (ABC)†, the identity (ABC)† = C†B†A†,
and the corresponding adjoint statements as assumptions, the software finds cofactor rep-
resentations of the polynomial corresponding to PQ = (PQ)2 as well as of the polynomials
associated to the four identities in (7.1), where U1, U2, V1, V2 have been replaced by the
expressions in (7.2). We note that these cofactor representations only contain polynomials
with integer coefficients. Hence, based on Theorem 5.1.7, this proves the implication
(i)⇒ (v).

Similarly to the equivalence discussed above, the software can also be used to prove all
other parts of Theorem 7.2.1 as well as of the generalised Theorem 7.2.2. In the following,
we explain how this can be done using the equivalence (i)⇔ (v) in Theorem 7.2.2.

For the implication (v) ⇒ (i), we translate the assumptions pq = (pq)2, a∗apR ⊇ q∗R,
cc∗p∗R ⊆ qR and their adjoint statements into polynomials. Note that, in order to translate
the set inclusions, we can use factorisations analogous to (7.1). In contrast to the original
statement of Hartwig, where the Moore-Penrose invertibility of ABC is already given, we
now have to prove that m = abc is Moore-Penrose invertible and that m† = c†b̃a†. Hence,
the claim is that m̃ = c†b̃a† satisfies the four defining identities of m†. However, trying to
show the ideal membership of the corresponding polynomials in the ideal generated by the
polynomials representing the assumptions fails. This is because these polynomials do not
contain any information about the right ∗-cancellability of m. To use this property, we have
to find a polynomial in the ideal generated by the polynomials associated to our assumptions
that corresponds to an identity to which this property is applicable. Using the heuristics
of the package, we can find a polynomial corresponding to the identity (1−mm̃)mm∗ = 0
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in the ideal generated by the polynomials representing the assumptions. We can apply the
right ∗-cancellability of m to (1−mm̃)mm∗ = 0 to obtain (1−mm̃)m = 0. After including
the polynomial associated to this new identity in the set of translated assumptions, the
software manages to verify the ideal membership of all polynomials corresponding to the
claimed identities fully automatically, and thereby proves the claimed statement.

The proof of (i) ⇒ (v) of Theorem 7.2.2 using the software essentially proceeds along
the same lines as the proof discussed above concerning the same implication in Hartwig’s
original theorem. The only difference is that now also the right ∗-cancellability of m
has to be shown. To this end, we include the identity zmm∗ = 0 in the assumptions
and prove zm = 0 with an arbitrary ring element z. When translating these identities
into polynomials, z has to be replaced by a new indeterminate that does not satisfy any
additional relations. The software then proves the ideal membership of the polynomial
associated to the claimed identity in the ideal generated by the polynomials representing
the assumptions fully automatically.

Similarly to the implications discussed above, also all other implications of Theorem 7.2.1,
Theorem 7.2.2, and all other results presented in [Cve+21] can be proven automatically using
the framework and software. The relevant algebraic computations are available as part of
the notebook https://cocalc.com/georeg/Moore-Penrose-case-study/notebook.

7.3 Diagram chases

Recall from Section 2.1.1 that abelian categories form a special class of preadditive categories
where kernels and cokernels of morphisms exist and have certain nice properties. They are
very important structures providing a natural setting for homological algebra and have
many applications in pure category theory and algebraic geometry, see, for example, [Bor94,
Ch. 1] or [Mac13, Ch. VIII] for textbook expositions and further details. In particular,
many statements in homological algebra, for example, can be phrased as diagram lemmas
in abelian categories. Commonly, these diagram lemmas are proven using a technique
called diagram chasing and different approaches have been developed to automate such
computations [Him20; Pos22].

In this section, we discuss how the framework introduced in this thesis allows to prove
diagram lemmas by computations with noncommutative polynomials. We note that this
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work is, thus far, still very much in its beginnings. For illustrative purposes, we consider
the following classical example of a diagram lemma, which is known as Four lemma and
part of the more general Five lemma [Mac13, Lem. VIII.4.4].

Lemma 7.3.1 (The Four Lemma). Let

A B C D

A′ B′ C ′ D′

f g h

f ′ g′ h′

α β γ δ

be a commutative diagram with exact rows. If β, δ are monic and α is epi, then γ is also
monic.

In order to express the assumptions and the claim of this statement in terms of the
language of our framework, we use the following characterisations. We note that these
characterisations are inspired by the “elementary rules for chasing diagrams” in terms of
subobjects, see, for example, [Mac13, Thm. VIII.4.3].

Proposition 7.3.2. For morphisms in an abelian category the following hold:

1. f : U → V is monic if and only if, for all g : T → U , f ◦ g = 0 implies g = 0;

2. f : U → V is epi if and only if, for all g : V →W , g ◦ f = 0 implies g = 0;

3. f : U → V is epi if and only if, for all x : T → V , there exist y : S → U and e : S → T

with e epi such that f ◦ y = x ◦ e;

4. a sequence U f−→ V
g−→W is exact if and only if g ◦ f = 0 and, for all x : T → V with

g ◦ x = 0, there exist y : S → U and e : S → T with e epi such that f ◦ y = x ◦ e;

Proof. The characterisations 1 and 2 follow immediately from the definitions of monic and
epi.
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For 3, first assume that f is epi and let x : T → V . Form the pullback of f and x, yielding
the following diagram.

S T

U V

f ′

x′ x

f

Since f is epi, also f ′ is epi (see, for example, [Mac13, Prop. VIII.4.2]), which yields
f ◦ y = x ◦ e with e = f ′ and y = x′ as required. Conversely, assume that, for every
x : T → V , there exist y : S → U and e : S → T with e epi such that f ◦ y = x ◦ e. Then,
for the particular choice x = 1V , we have f ◦ y = 1V ◦ e = e, showing that f ◦ y is epi. But
then also f itself is epi because, for arbitrary g, h : V →W ,

g ◦ f = h ◦ f =⇒ g ◦ f ◦ y = g ◦ f ◦ y =⇒ g = h.

Finally, for characterisation 4, let f = m̃ ◦ ẽ be the natural factorisation of f . Note that
m̃ = im(f) and that ẽ is epi. First, we observe that

g ◦ f = g ◦ m̃ ◦ ẽ = 0 ⇐⇒ g ◦ m̃ = 0 ⇐⇒ m̃ = ker(g) ◦ u ⇐⇒ im(f) ≦ ker(g),

for some morphism u. This shows the first part of the equivalence.

For the second part, we first assume that ker(g) ≦ im(f), which means that there is u
such that ker(g) = im(f) ◦ u. If we let x be such that g ◦ x = 0, then x factors through
ker(g) = im(f) ◦ u = m̃ ◦ u, that is, x = m̃ ◦ u ◦ v for some v. With ỹ = u ◦ v, form the
pullback on the left part of the diagram.

S T T

U • V

e

y ỹ x

ẽ m̃

Since ẽ is epi, also e is epi, which gives f ◦ y = m̃ ◦ ẽ ◦ y = x ◦ e as required.
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To finish the proof, assume that, for all x with g ◦ x = 0, there exist y and e with e epi
such that f ◦ y = x ◦ e. Applying this assumption to x = ker(g) yields f ◦ y = ker(g) ◦ e.
Furthermore, we have coker(f) ◦ f = 0, and hence, also

0 = coker(f) ◦ f ◦ y = coker(f) ◦ ker(g) ◦ e,

which implies that coker(f) ◦ ker(g) = 0 since e is epi. But this means that ker(g) factors
through ker(coker(f)) = im(f), that is, ker(g) = im(f) ◦ u for some morphism u, showing
that ker(g) ≦ im(f).

Using these characterisations, we can translate Lemma 7.3.1 into a formula in the language
of our framework. For example, the exactness of A f−→ B

g−→ C can be translated into the
operator statement

gf ≈ 0 ∧ ∀x∃y, e∀h : gx ≈ 0→ (fy ≈ xe ∧ (he ≈ 0→ h ≈ 0)) , (7.3)

where we have omitted the sorts of the variables for better readability. In general, translating
Lemma 7.3.1 yields an operator statement consisting of assumptions that are all either
basic identities of the form ai ≈ bi, like gf ≈ 0, or slight generalisations of existential
quasi-identities Q1x1 . . . Qnxn : ⋀︁i (︂⋀︁j si,j ≈ ti,j → pi ≈ qi

)︂
, as in

∀x∃y, e∀h : (gx ≈ 0→ fy ≈ xe) ∧ ((gx ≈ 0 ∧ he ≈ 0)→ h ≈ 0) ,

which is equivalent to the second part of (7.3). The claimed property translates into the
formula ∀z : γz ≈ 0→ z ≈ 0.

To prove Lemma 7.3.1, we can then proceed as follows. First, we form the polynomial ideal
I generated by the polynomials ai − bi corresponding to all assumptions that are plain
identities ai ≈ bi as well as by the polynomial γz encoding the identity γz ≈ 0. Then we
alternate between the following steps:

1. Search for instantiations of si,j − ti,j in I. If si,j − ti,j ∈ I for some i and all j, extend
I by adding the corresponding instantiation of pi − qi to it.

2. Try to verify that z ∈ I.
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Once we can verify that indeed z ∈ I, this shows that z = 0, proving, by Proposition 7.3.2,
that γ is indeed monic. In practice, this looks as follows.

Example 7.3.3. We start by forming the ideal I generated by the following polynomials

βf − f ′α, γg − g′β, δh− h′γ,

gf, hg, g′f ′, h′g′,

γz

encoding the commutativity of the diagram, part of the exactness assumptions, as well as
the assumption γz = 0.

Then, using the techniques discussed in Section 5.3 for finding polynomials of certain form
in an ideal, we search for elements in I to which we can apply the second part of the
exactness assumptions or the properties of the monomorphisms β, δ and the epimorphism α.
Doing this, we can find, for example, the element δhz ∈ I, which corresponds to the identity
δ ◦ h ◦ z = 0. Applying the fact that δ is monic, we can derive the new identity h ◦ z = 0
and add the polynomial hz to I, enlarging the ideal in this way.

Now, again using the methods from Section 5.3, we search for elements in the enlarged ideal
to which we can apply our assumptions. An easy find is now the new element hz to which
we can apply the exactness of B g−→ C

h−→ D, yielding the new identity g ◦ y = z ◦ e with
new morphism y and epimorphism e. On the polynomial level, this means we can add the
element gy − ze to the ideal I, and we obtain a new deduction rule ∀h : he ∈ I =⇒ h ∈ I,
encoding the property ∀h : h ◦ e = 0 =⇒ h = 0 of the epimorphism e.

Repeating the process, we can then find the polynomial g′βy, encoding g′ ◦ β ◦ y = 0, to
which we can apply the exactness of A′ f ′

−→ B′ g′
−→ C ′. This yields the new polynomial

f ′y′ − βye′ and a new deduction rule ∀h : he′ ∈ I =⇒ h ∈ I.

The morphism corresponding to y′ must have the same codomain as α because it appears
to the right of f ′. Therefore, we can apply the fact that α is epi and deduce the new
identity α ◦ y′′ = y′ ◦ e′′ with new morphism y′′ and epimorphism e′′. Thus, we can add the
corresponding the polynomial αy′′ − y′e′′ to our ideal and we obtain a new deduction rule
∀h : he′′ ∈ I =⇒ h ∈ I.
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Then we can find the polynomial βfy′′ − βye′e′′ ∈ I, to which we can apply the fact that β
is monic and add the new element fy′′− ye′e′′. With this new element, we can now find the
polynomial zee′e′′ in the ideal, and finally, after applying the deduction rules for e, e′, e′′,
we arrive at the polynomial z, which finishes the proof.

The process outlined above is implemented in our Mathematica package OperatorGB in
form of a method called DiagramChase, see also Section 6.2.1 for additional information.
Using this method, proving Lemma 7.3.1 reduces to the following commands.

First, we set up all basic assumptions.

In[11]:= commut = {β ** f - f’ ** α, γ ** g - g’ ** β, δ ** h - h’ ** γ};

exact = {g ** f, h ** g, g’ ** f’, h’ ** g’};

monic = {γ ** z};

assumptions = Join[commut, exact, monic];

SetUpRing[{z}, {f, g, h, f’, g’, h’}, {α, β, γ, δ}]

Then we can start the diagram chase, giving as additional information which pairs of vari-
ables correspond to exact sequences and which variables encode mono- and epimorphisms.
Furthermore, we specify that 3 iterations of the steps outlined above should be executed.

In[12]:= G = DiagramChase[assumptions, 3,

ExactAt -> {{f, g}, {g, h}, {f’, g’}, {g’, h’}},

Mono -> {β, δ},

Epi -> {α}];

After about 18 seconds, the procedure terminates and returns a set G consisting of 30
elements, one of which is

Out[12]= z ** e70 ** e83 ** e150

where e70, e83, e150 are the (random) names for the newly introduced epimorphisms
e, e′, e′′. From this, we can deduce that also z itself lies in the ideal once we apply the
deduction rules for e70, e83, e150, which finishes the proof. We note that, if we run
DiagramChase for a few more iterations, then these deduction rules will also be applied
automatically, and the set G will contain z itself.

291



7 Applications

Similarly, also the Five lemma can be proven fully automatically. Furthermore, by extending
the approach to be able to treat kernels and cokernels, also statements like the Snake
lemma [Mac13, Lem. VIII.4.5] can be treated. We have to note, however, that this does
not work fully automatically yet.
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