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516 Handbook of Linear Algebra

5.7 Pseudo-Inverse

Definitions:
A Moore—Penrose pseudo-inverse of a matrix A € C™*™ is a matrix A" € C"*™ that satisfies

the following four Penrose conditions:
aata=a; ataat=at; (Al =aah; (ata) = ata
Facts:

All the following facts except those with a specific reference can be found in [Gras3, pp.
105-141] or [RMT1, pp. 44-67).

1. Every A € C™" has a unique pseudo-inverse A'.
2. If A€ R™*", then A is real
3. If A € C™" of rank  has a full rank decomposition A = BC, where B € C™*" and
C € C™", then A can be evaluated using A’ = C*(B*AC*) 1 B*.
4. [LH95, p. 38] If A € C™*" of rank r < min{m,n} has an SVD A = USV", then its
pseudo-inverse is AT = VETU*, where
= diag(1/01,...,1/0,,0,...,0) € ™™,
5. [Higd6, p. 412] The pseudo-inverse A’ of A € F"*" (F = C or R) solves the mini-
mization problem
min_ [|AX — I,||%.
Dain
6. 0}, = Opm and Jf,, = ;3 Jum, Where 0, € C™™ is the all Os matrix and Jin €
€™ is the all 1s matrix.
7. Ifx#0, 0, then (xy*)f =~
#0y#0 then ()= ey e
8. If x # 0, then x =
# InP?
9. Let o be a scalar. Denote
of = ((x", if a#0,
0, if a=0.

Then
(a) (@A)t =atat
(b) (diag(B1, Ba. -+, 8,))" = diag(8], 8}, -+, B1)-
10. (Af)* = (4", (A1) = A,
11. If A is a nonsingular square matrix, then AT = A~1.
12. If U has orthonormal columns or orthonormal rows, then Ut = U*.
13. If A= A* and A= A2, then At = A,
14. AT = A° if and only if A*A is idempotent.
15. If A is normal and k is a positive integer, then AAT = ATA and (4%)1 = (AT)%.
16. If U € C™*™ is of rank n and satisfies UT = U*, then U has orthonormal columns.
17. If U € C™™ and V € C"*" are unitary matrices, then (UAV)! = V*=ATU".
18. Af = (A*A)TA* = A*(AA*)1. In particular,
(a) if A€ C™" (m > n) has full rank n, then A" = (4"4)"'A*;
(b) if A € C™*" (m < n) has full rank m, then AT = A*(44%)~1,
19. Let A € C™*". Then

)

w2

L (ATA)! = AT (A7) = (A7) AT
. [Gre66] Each one of the following conditions is necessary and sufficient for (AB)! =
i Al

. (Continuity of pseudo-inverse) Suppose that A € F™*" and E € F™", where F

8
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(a) ATA, AA!, I, — A'A, and I,, — AA' are orthogonal projections.
(b) rank(A) = rank(A') = rank(AA") = rank(A'4)

(c) rank(Z, — AT A) = n — rank(A).

(d) rank(l,, — AAT) = m — rank(A).

AAT = Projungea); ATA = Projuauge(an

. Suppose that A € F™*", where F = C or R. Then

() range(A) = range(4A") = range(4A").

) range(A') = range(A*) = range(A" A) = range(A' A).
) ker(4) = ker(A*A) = ker(AT4).

) ker(A') = ker(A*) = ker(AA*) = ker(AA).

)

)

TE=Z=

range(A'4) @ ker(A1A4) = ™.
range(AA") & ker(AAT) = Fm.

I A= A+ Ag+ oo+ Ay, ATA; =0, and 443 =0, forall i,j =1, k, i £ J,

then AT = Al + A} + .. + AL
If Ais an mxr matrix of rank r and B is an rxn matrix of rank r, then (AB)T = BT AT,

() range(BB" A*) C range(A") and range(A* AB) C range(B).
(b) ATABB* and A*ABB' are both Hermitian matrices.

(c) ATABB*A* = BB*A* and BB'A*AB = A" AB.

(d) ATABB*A*ABB! = BB*AA.

(e) A'AB = B(AB)'AB and BB'A* = A AB(AB)".

. (A® B)f = AT ® Bf, where ® denotes the Kronecker product.
- AT = lim A*(al + AA") ! = lim (ol + A" A) A",

- iA'([ FAA)T = i(” ATA)IA

CorR. Then Jim (A + E)' = A" if and only if there is € > 0 such that rank(A+ E)

rank(A) when ||E||; < e
Let A € C™*" be of rank r where 0 < r < min{m,n}. Suppose that A can be

partitioned as
An Arz
A f
[Az; An

where Ay; € C"™" and rank(Ay;) = r. Then

ALXAGL ALXA;

A= [A:.XA:‘ A:.XA;,],

where

X = (AnAf + Apd,) " An (A An + 45, Ay)
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Noncommutative polynomials

Noncommutative polynomials = elements in free algebra R(X)

d
= i€

finite words over X

Multiplication =  Concatenation of words
(X1 .ooxi1 ) - (X]ooax) = Xp.oXkX] X
Example: (ab—1)-(ba+1) = abba+ab—ba—1

Two-sided ideals JSToN SIS MY H0. ¢!
(f1,....f:) = Z aij-fi-bij | aij, bij € R(X)

?
Ideal membership problem f € (fy,...,f;) is semi-decidable
(e.g., using Grobner bases)
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Operator statements

Operators NRELINY [ A2

e0,A,B,C,... e S+T, S-T.@T,.... o)
Linearity = abelian (partial) addition + assoc. (partial) mult. + dist.

Operator statements

S=T, —eo, ((P/\Il)); ((p\/lb)v ((p:>1b)7 X1, VX:o

An operator statement is universally true if it follows from
linearity

e Fact: Determining universal truth is not decidable
= Algorithm that terminates on all inputs cannot exist

e Best we can hope for: (effective) semi-decision procedure
— Can be obtained using computer algebra
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Recall: B is Moore-Penrose inverse of A if

aba —a, bab — b, b*a* — ab, a*b* —ba

VA,B,C : mp(A,B) A mp(A,C) = B=C
B = BAB = BACAB = ... = C

From identities to polynomials

L=R & 1l—-re ZX)
B=...=C &= b-ce(fi,...,f12)

Theorem (Helton, Stankus, Wavrik '98, Schmitz, Levandovskyy '20, Raab, Regensburger, Hossein Poor '21)

VX:/\ e iff s—t:Zam-(‘pi—qi)-bm
i=1 i,j

e ‘cofactor representation”

e computable with Grébner bases
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Recall: B is Moore-Penrose inverse of A if

aba —a, bab — b, b*a* — ab, a*b* —ba

VA,B,C : mp(A,B) A mp(A,C) = B=C
Using our software package operator_gb. ..

from operator_gb import *
assumptions = [a*bx*xa - a,...]
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“The Moore-Penrose inverse is unique”

Recall: B is Moore-Penrose inverse of A if

aba —a, bab — b, b*a* — ab, a*b* —ba

VA,B,C : mp(A,B) A mp(A,C) = B=C
Using our software package operator_gb. ..

from operator_gb import *
assumptions = [a*bx*xa - a,...]
certify (assumptions, b - ¢)

b - ¢ = (-c + c*xaxc) + bxc_adj*(-a_adj + a_adj*b_adj*a_adj)
- b*axc*(-axb + b_adj*a_adj) - bx(-a + akc*a)*b
+ b*(-axc + c_adj*a_adj) - bx(-a*xc + c_adj*a_adj)+*b_adj*a_adj
- (-b + b*axb) + (-c*a + a_adj*c_adj)*b*axc
- (-a_adj + a_adj*c_adj*a_adj)*b_adj*c + c*(-a + axb*a)*c
- (-bxa + a_adj*b_adj)*c + a_adj*c_adj*(-b*a + a_adj*b_adj)x*c

e Software produces cofactor representation (= algebraic proof)

= Operator statement is universally true



Determining universal truth

Quasi-identities

(Helton, Stankus, Wavrik '98, Schmitz, Levandovskyy '20, Raab, Regensburger, Hossein Poor '21)

VX:/\Pi:Qi = S=T iff s—t € (plfql ..... Pm —

i=1
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Determining universal truth

Universal statements

N ?“@
Universal finitely many
A\ * \

statement > o* 3 ideal memberships — o

VX : @ in Z(X)
Idealisation l

Theorem (H., Raab, Regensburger '22b)

A universal statement is universally true iff its idealisation is true

H., Raab, Regensburger. Universal truth of operator statements via ideal membership. preprint. 2022.



Determining universal truth

Universal statements efficiently verifiable

using Grobner bases

Universal finitely many
statement ideal memberships
VX in Z(X)

Idealisation

Theorem (H., Raab, Regensburger '22b)

A universal statement is universally true i ER{e(FIEE AR

H., Raab, Regensburger. Universal truth of operator statements via ideal membership. preprint. 2022.
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5.7 Pseudo-Inverse

Definitions:
A Moore—Penrose pseudo-inverse of a matrix A € C™*™ is a matrix A" € C"*™ that satisfies
the following four Penrose conditions:

aata=a; ataat=at; (Al =aah; (ata) = ata

Facts:
All the following facts except those with a specific reference can be found in [Gras3, pp.
105-141] or [RMT1, pp. 44-67).

¥, Every A € C™" has a unique pseudo-inverse AT.

2. If A€ R™*", then A is real

W If A € C™" of rank r has a full rank decomposition A = BC, where B € C™" and
C € C™", then AT can be evaluated using A’ = C*(B*AC*)"1B".

& [LHO5, p. 38] If A € C™" of rank r < min{m,n} has an SVD A = ULV", then its
pseudo-inverse is AT = VETU*, where
= diag(1/01,...,1/0,,0,...,0) € R™™.
5. [Higd6, p. 412] The pseudo-inverse A’ of A € F"*" (F = C or R) solves the mini-
mization problem
min_ [|AX — I,||%.
K in
8. 0%, = Op and T}, = 72 Jum, Where 0, € C™™ is the all Os matrix and Jmn €
C™ is the all 1s matrix.
7. Ifx#0, 0, then (xy*)f =~
Oy A0 e (O [y
8. If x #0, then x' =
? [
9. Let o be a scalar. Denote
of = ((x", if a #0,
“ ', ifa=0.

Then
@ (@A)t =atat
(b) (diag(B1, Ba. -+, 8,))" = diag(8], 8}, -+, B1)-
W (AN = (47)'; (AN =4
. If A is a nonsingular square matrix, then AT = A~1.
12, If U has orthonormal columns or orthonormal rows, then U = U*.
1] If A= A* and A= A2, then AT = A,
M AT = A" if and only if A" A is idempotent.
15. If A is normal and k is a positive integer, then AAT = ATA and (4%)f = (A7)~
16 If U € C™*" is of rank n and satisfies UT = U*, then U has orthonormal columns.
W, If U € C™*™ and V € C"** are unitary matrices, then (UAV)! = V*ATU*.
1] AT = (A*A)TA* = A°(4A4")!. In particular,
(®) if A€ C™" (m > n) has full rank n, then A" = (4"4)"'A*;
(&) if A€ C™*" (m < n) has full rank m, then AT = A*(44%)~1,
19. Let A € C™*". Then
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20.

2.

2.

23.

(@) A'A, AA!, I, — A'A, and I,, — AA! are orthogonal projections.
(b) rank(A) = rank(A) = rank(AA") = rank(A'4)

(c) rank(Z, — AT A) = n — rank(A).

(d) rank(Z,, — AAT) = m — rank(A).

AAT = Projungea); ATA = Projuauge(an
Suppose that A € F™*" where F = C or R. Then

() range(A) = range(4A") = range(4A").

(b) range(A") = range(A*) = range(A* A) = range(A' 4).

(¢) ker(A) = ker(A*A) = ker(AT4).

(@) ker(A) = ker(A*) = ker(44") = ker(4A").

) range(A'A) @ ker(ATA) = F".

) range(AA') & ker(AAT) = F™.

I A=A+ Ay ++ A, AA; = 0, and AA7 =0, for all i,j = 1, k, i # j,
then AT = Al + A} + .. + AL

If Ais an mxr matrix of rank r and B is an rxn matrix of rank r, then (AB)T = BT AT,

RO}

24 (A"A) = AT(A")]; (A4%) = (4T AT,

25.

(@) ATABB*A*ABB'

. (Continuity of pseudo-inverse) Suppose that A € F™*" and E € F™", where F

[Gre66] Each one of the following conditions is necessary and sufficient for (AB)! =
Biat:

() range(BB" A*) C range(A") and range(A* AB) C range(B).

@) ATABB* and A*ABB' are both Hermitian matrices.

(¢) ATABB*A* = BB*A* and BB'A*AB = A" AB.
BB A"A.
(¢) ATAB = B(AB)'AB and BB'A* = A AB(AB)".

. (A® B)f = AT ® Bf, where ® denotes the Kronecker product.
- AT = lim A*(al + AA") ! = lim (ol + A" A) A",

- iA'([ FAA)T = i(” ATA)IA

CorR. Then Jim (A + E)' = A" if and only if there is € > 0 such that rank(A+ E)
rank(A) when ||E||; < e

30 Let A € C™*" be of rank r where 0 < r < min{m,n}. Suppose that A can be

partitioned as
An Arz
A ,
[Az; An

where Ay; € C"™" and rank(Ay;) = r. Then

ALXAGL ALXA;

. [A:.xA:\ A:.XA;,],

where

X = (AnAf + Apd,) " An (A An + 45, Ay)
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IX: (PA*A=A AAA*Q=A) = mp(A,X)
Strategy
1 Derive explicit expression for X

2 Reformulate statement as a universal statement

3 Prove by computing idealisation

Using our software package operator_gb. ..

assumptions = [a - p*xa_adj*a,...]
I = NCIdeal (assumptions + pinv(a,x))
I.find_equivalent_expression(x)

[x - a_adj*qg*x, x - a_adj*p*x,
x - a_adj*qg*p_adj, x - a_adj*x_adj*x]

= X =A*QP"* is MP-inverse of A

(can be certified using the software)

10
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Existential statements

In the previous example, we found a suitable polynomial expression.

Was this just luck?

ANWESWEd No! — Herbrand's theorem (Herbrand '30)

Such expressions always exist and the possible candidates are enumerable.

e Enumerating all possible expressions is hopeless

e Requires good heuristics — provided by computer algebra
(H., Raab, Regensburger '22a)

e Several heuristics implemented in operator_gb
(ansatz, ideal/subalgebra intersections, hom. part, monomial part,...)

H., Raab, Regensburger. Computing Elements of Certain Form in Ideals to Prove Properties of Operators. In:

Mathematics in Computer Science. 2022.
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Projections

Majorisation

Range
inclusions

Mono-
morphisms

Existential

quantifier

Exact
sequences

Epi-
morphisms

Cokernels

Kernels

*-cancel.

Injectivity,
Surjectivity

Cancellability
properties

Full matrix
ranks

Solvability
of Invertibility

equations

Positive
solutions
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Determining universal truth

Universal statements

N ?“@
Universal finitely many
A\ * \

statement > o* 3 ideal memberships — o

VX : @ in Z(X)
Idealisation l

Theorem (H., Raab, Regensburger '22b)

A universal statement is universally true iff its idealisation is true

H., Raab, Regensburger. Universal truth of operator statements via ideal membership. preprint. 2022.

K]



Determining universal truth

Universal statements

Q73 ?&\:@
Universal & finitely many
A\ \

statement > o* 3 ideal memberships — o

VX in Z(X)
Idealisation l

Theorem (H., Raab, Regensburger '22b)
A universal statement is universally true iff its idealisation is true

To treat all operator statements ~ combine with Herbrand's theorem
+ Heuristics

H., Raab, Regensburger. Universal truth of operator statements via ideal membership. preprint. 2022.
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Determining universal truth

General operator statements

&

RS
. Np Vef:e’oé
Operator : Universal finitely many
statement — ® % atement ideal memberships — o
¥ Instantiations VX : @ in Z(X)

,[ Idealisation l

Theorem (H., Raab, Regensburger '22b)
An operator statement is universally true iff the procedure terminates
and returns v

To treat all operator statements ~» combine with Herbrand's theorem
+ Heuristics

H., Raab, Regensburger. Universal truth of operator statements via ideal membership. preprint. 2022.
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5.7 Pseudo-Inverse

Definitions:
A Moore—Penrose pseudo-inverse of a matrix A € C™*™ is a matrix A" € C"*™ that satisfies
the following four Penrose conditions:

aata=a; ataat=at; (Al =aah; (ata) = ata

Facts:

All the following facts except those with a specific reference can be found in [Gras3, pp.
105-141] or [RMT1, pp. 44-67).

W Every A € C™" has a unique pseudo-inverse A'.

@ If A€ R™*", then AT is real

W If A € C™" of rank r has a full rank decomposition A = BC, where B € C"™*" and
C € C™", then A can be evaluated using A’ = C*(B*AC*) 1 B*.

& [LHO5, p. 38] If A € C™" of rank r < min{m,n} has an SVD A = ULV", then its
pseudo-inverse is AT = VETU*, where

= diag(1/01,...,1/0,,0,...,0) € ™™,

X [Hig96, p. 412] The pseudo-inverse A’ of A € F™*" (F = C or R) solves the mini-
mization problem
min_ [|AX — I,||%.
o lin

800, = 0 and Jf,,, = ;1 Jum, where O € C™*" is the all 0s matrix and Jynn €
Cm*™ s the all 1s matri

I IEX#0,y#0, thcn(xyv)'

- [yl
8 If x # 0, then x' = E
x
9. Let  be a scalar. Denote
of = ((x", ifa#0,
“ ', ifa=0.

Then
@ (@A)t =atat
0 (diag(Bu, Ao, -+, Bu))' = diag(B], 8}, -, BY)-
W (AN = (47)'; (AN =4
. If A is a nonsingular square matrix, then AT = A~1.
12, If U has orthonormal columns or orthonormal rows, then U = U*.
1] If A= A* and A= A2, then AT = A,
M AT = A" if and only if A" A is idempotent.
15. If A is normal and k is a positive integer, then AAT = ATA and (4%)f = (A7)~
16 If U € C™*" is of rank n and satisfies UT = U*, then U has orthonormal columns.
W, If U € C™*™ and V € C"** are unitary matrices, then (UAV)! = V*ATU*.
1] AT = (A*A)TA* = A°(4A4")!. In particular,
(®) if A€ C™" (m > n) has full rank n, then A" = (4"4)"'A*;
(&) if A€ C™*" (m < n) has full rank m, then AT = A*(44%)~1,
19. Let A € C™*". Then

Inner Product Spaces, Orthogonal Projection, Least Squares 517

BE

BRR ¥

]

X X Xx
£

(@) A'A, AA!, I, — A'A, and I,, — AA! are orthogonal projections.

(¢ rank(A) = rank(A') = rank(AA") = rank(A'A)

0 rank(Z, — ATA) = n — rank(A).

O rank(l,, — AAT) = m — rank(A).

AAT = Projungea); ATA = Projuauge(an

Suppose that A € F™*", where F = C or R. Then

(#) range(A) = range(AA°) = range(AAT).

(p) range(AT) = range(A") = range(A" A) = range(A'A).

(@) ker(A) = ker(A*A) = ker(A' A).

(@) ker(A") = ker(A*) = ker(AA*) = ker(AA1).

(€) range(A1A) & ker(ATA) = F".

() range(AA") & ker(AAT) = ™.

I A=A+ Ay ++ A, AA; = 0, and AA7 =0, for all i,j = 1, k, i # j,
then AT = Al + A} + .. + AL

If Ais an mxr matrix of rank r and B is an rxn matrix of rank r, then (AB)T = BT AT,
(A7 A)T = Al(A")T; (A4°) = (47141,

[(ijgs@] Each one of the following conditions is necessary and sufficient for (AB)! =

(#) range(BB*A*) C range(A*) and range(A*AB) C range(B).
(#) ATABB* and A"ABB' are both Hermitian matrices.

(&) ATABB*A* = BB*A* and BBIA*AB = A" AB.

(@) ATABB*A*ABB' = BB*A*A.

(#) ATAB = B(AB)'AB and BB'A* = A"AB(AB)'.

(A® B) = A" @ B, where ® denotes the Kronecker product.
Al= lim A%(al + A4")"" = lim(al + 4°4) A"

- iA'([ FAA)T = i(” ATA)IA

(Continuity of pseudo-inverse) Suppose that A € F™*" and E € F™*", where F'
CorR. Then Jim (A + E)' = A" if and only if there is € > 0 such that rank(A+ E)
rank(A) when ||E||; < e

Let A € C™*" be of rank r where 0 < r < min{m,n}. Suppose that A can be

partitioned as
An Arz
A ,
[Az; An

where Ay; € C"™" and rank(Ay;) = r. Then

. [A:.xA:_\ A:.XA;,] )
AL XA ALXA;

where

X = (AnAf + Apd,) " An (A An + 45, Ay)




Applications

e Handbook of Lin. Algebra (20 // 6 &/ 4 %) (Bernauer, H., Regensburger '23)
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Study. In: Proceedings of CASC. 2023.
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o software used to find minimal assumptions

Bernauer, H., Regensburger. How to Automatise Proofs of Operator Statements: Moore-Penrose Inverse; A Case
Study. In: Proceedings of CASC. 2023.
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Applications

Handbook of Lin. Algebra (20 ¢/ 6 ¥/ 4 %) (Berauer, H., Regensburger '23)
o vyields ideals with < 70 generators in < 18 indeterminates
o all proofs take ~17 seconds altogether

Recent results in operator theory (Bermauer, H., Regensburger '23)
o Reverse order law of the Moore-Penrose inverse (bjordievic, Dincic '09)
o they: We use [...] decompositions of Hilbert spaces
o we: purely algebraic proofs = our proofs generalise results

NeW I’eSUItS (Cvetkovi¢-lli¢, H., Hossein Poor, Milosevi¢, Raab, Regensburger '21)
o software used to find minimal assumptions

. ) ker(a) — ker(b) — ker(c)
Diagram lemmas (Five lemma, ! ! !

A*HETH:—M)

Nine lemma, Snake lemma,...) {HEEE S
0

A B )
9

coker(a) — coker(b) — coker(c)

Bernauer, H., Regensburger. How to Automatise Proofs of Operator Statements: Moore-Penrose Inverse; A Case
Study. In: Proceedings of CASC. 2023.

Cvetkovi¢-lli¢, H., Hossein Poor, Milosevi¢, Raab, Regensburger. Algebraic proof methods for identities of matrices
and operators: improvements of Hartwig's triple reverse order law. In: Applied Mathematics and Computation.
2021.
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+ heuristics

+ operator auxiliaries
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operator_gb

=] nc Grobner bases + certified ideal membership SEETEEIRETsidTal<dlS
Opal, Bergman, Magma,
NCAlgebra (Mathematica),
GAP, NCPoly (ApCoCoA)

+ heuristics
Letterplace (Singular)

+ operator auxiliaries
Foundation: efficient noncommutative F4 algorithm

Requires: fast monomial comparisons + fast (sparse) linear algebra

monomials = strings dedicated (sparse)

LA in C (via Cython)
exploiting

e
efficient multi-pattern

string matching matrix structure

signature_gb = Noncommutative signature Grobner bases
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Signature Grobner bases

Lots of redundant operations in GB computations

. f=3 ai;

| i,

[€Fl] Detect these operations! o—It(x a
(FBY Add “birth certificate” to polynomials -~ (f, o)

1)
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Signature Grobner bases

Lots of redundant operations in GB computations

. f=3 ai;-fi- by
Detect these operations! N 2 - i by

o= 1t(z Qij - & - biJ')
(FBY Add “birth certificate” to polynomials -~ (f, o)
signature GBs in RIX[(Y)

(H., Verron)
signature GBs in K[X] signature GBs in R[X]
(Faugere) (Eder, Pfister, Popescu) (Francis, Verron)
I Y N TN Y N TV N N SN ST N SN S N A A SO T S S (N W S S M AN
| | | |
2000 2010 2020 T 2030
signature GBs in K(X)
(H., Verron)

H., Verron. Signature Grébner bases, bases of syzygies and cofactor reconstruction in the free algebra. In: Journal
of Symbolic Computation. 2022.
H., Verron. Signature Grébner Bases in Free Algebras over Rings. In: Proceedings of ISSAC. 2023. 17



Signature Grobner bases

Lots of redundant operations in GB computations

. f= Cfs b
Detect these operations! N 2 - i by

o= 1t(z Qij - & - bm’)
(FBY Add “birth certificate” to polynomials -~ (f, o)
signature GBs in RIX[(Y)

(H., Verron)
signature GBs in K[X] signature GBs in R[X]

(Faugere) (Eder, Pfister, Popescu) (Francis, Verron)
||||||||||||||||||||||||||||||>
| | | |
2000 2010 2020 T 2030

signature GBs in K(X)
(H., Verron)

In the noncommutative setting. . .
... many things are similar (basic definitions, algorithm blueprint)

... many things are very different (trivial syzygies, handling of
S-polynomials, decoupling selection strategy from signature order)

H., Verron. Signature Grébner bases, bases of syzygies and cofactor reconstruction in the free algebra. In: Journal
of Symbolic Computation. 2022.
H., Verron. Signature Grébner Bases in Free Algebras over Rings. In: Proceedings of ISSAC. 2023. 17



(f17£1)7"'7(fT7£T‘)

Sig-based Buchberger’s algorithm

(f, 0)

N

sig. Grébner basis | (1) ®)

Syzygy basis

(g, 1)
#0
— U ANNNNNN— ]

1. Selection

Reduction

. fair strategy ~ “Every S/G-poly is selected eventually”

2. Construction: regular S/G-polynomials

3. Reduction: regular sig-reductions
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Sig-based Buchberger’s algorithm

(fh&])a"'a(fﬁ&‘) (f,G)

k sig. Grébner basis | (1) ®)
—o—

ANNNNNN— ]

Reduction

Syzygy basis

1. Selection: fair strategy  “Every S/G-poly is selected eventually”
2. Construction: regular S/G-polynomials

3. Reduction: regular sig-reductions

Theorem (H., Verron '22, '23b)

This enumerates a (possibly infinite) sig. GB and syzygy basis



Sig-based Buchberger’s algorithm

(fh&])a"'a(fﬁ&‘) (f,G)

k sig. Grébner basis | (1) ®)
—o—

ANNNNNAN— ]

-1

Syzygy basis

“on

1. Selaction: fair str. , G-poly is selected eventually”

(SF) £

2| Construction: regular S/G-polynomials

3. Reduction: regular sig-reductions

Theorem (H., Verron '22, '23b)

This enumerates a (possibly infinite) sig. GB and syzygy basis
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relative improvement

with signatures

102

10!

10°

107!

operator_gb vs. signature_gb

00 Computation tim
0o S-polynomials
[T Reductions to 0

T T T T T T T T
SN Y S
X R RN
A5 o
— AN _
~ .
homogeneous inhomogeneous
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Hilbert’s 24th problem

“The 24th problem in my Paris lecture was to be: Criteria of
simplicity, or proof of the greatest simplicity of certain proofs.

- David Hilbert, ~1900.

operator statement ANANANANANASY proof
ideal membership «\\\» cofactor representation

N
fe (f],...,fr) f:Zi,j:] ai ‘fi'bi,j
Can we decide whether a cofactor representation of length < N exists? — Yes!

Theorem [CIRVSREED
In a (minimal) cofactor representation
max deg(ai;j - fi-bij) < poly(N,deg(f), deg(fi)).

1)

H., Verron. Short proofs of ideal membership. preprint. 2023. 20



Short proofs in practice

Theorem (Djordjevi¢, Dinci¢ '09)
A, B matrices such that AB exists.

Bf(ABBN)f = (ATAB)IAT = BIAT =

(AB)T = BTAT

~ (ab)T—bTaTe (f],...,f44)
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Short proofs in practice

Theorem (Djordjevi¢, Dinci¢ '09)
A, B matrices such that AB exists.

Bf(ABBT)I = (ATAB)'AT = BfAT = (AB)! = BIAT

~ (ab)T—bTaTe (f],...,f44)

Classical Grébner bases: 1203 terms (~16 pages)
New approach:

(ab)t —bfal = f27 — f10 + bTf14 — f12(ab)T — b (abbT) 17 + bT (abb?) 15

(
+ (a'ab)talfo(ab)t — b*f23((ab)T)*(ab)t — f27ab(ab)’ + fa2ab(ab)f
t

—f39(a")*((ab)")*(ab)’ + bf (abb") T ((abb")T)* (bT)*f3
—bff14a*b* (af)* + (afab)Tatabfy; (ab)?

—bi(abb!) f5((ab)")*b* (af)* + f20b*(a")* ((ab)T)* (ab)T
+ (afab)Tafabb*fa3((ab)T)* (ab)f

21



Algorithms

[HV23b]

[HRR22b]
Theory

[Cve+21]
Applications
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Outlook

Producing proof certificates

More advanced computational techniques

o Boolean abstraction (DPLL(T), CDCL(T))
o Congruence closure
o Unification

Further applications

. . Algebraic Properties
o Generalised inverses of Generalized

Inverses

o Abelian categories
o Group theory

Constructing counterexamples

Investigating structure of Grobner bases
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