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516 Handbook of Linear Algebra

5.7 Pseudo-Inverse

Definitions:
A Moore—Penrose pseudo-inverse of a matrix A € C™*™ is a matrix A" € C"*™ that satisfies

the following four Penrose conditions:
aata=a; ataat=at; (Al =aah; (ata) = ata
Facts:

All the following facts except those with a specific reference can be found in [Gras3, pp.
105-141] or [RMT1, pp. 44-67).

1. Every A € C™" has a unique pseudo-inverse A'.
2. If A€ R™*", then A is real
3. If A € C™" of rank  has a full rank decomposition A = BC, where B € C™*" and
C € C™", then A can be evaluated using A’ = C*(B*AC*) 1 B*.
4. [LH95, p. 38] If A € C™*" of rank r < min{m,n} has an SVD A = USV", then its
pseudo-inverse is AT = VETU*, where
= diag(1/01,...,1/0,,0,...,0) € ™™,
5. [Higd6, p. 412] The pseudo-inverse A’ of A € F"*" (F = C or R) solves the mini-
mization problem
min_ [|AX — I,||%.
Dain
6. 0}, = Opm and Jf,, = ;3 Jum, Where 0, € C™™ is the all Os matrix and Jin €
€™ is the all 1s matrix.
7. Ifx#0, 0, then (xy*)f =~
#0y#0 then ()= ey e
8. If x # 0, then x =
# InP?
9. Let o be a scalar. Denote
of = ((x", if a#0,
0, if a=0.

Then
(a) (@A)t =atat
(b) (diag(B1, Ba. -+, 8,))" = diag(8], 8}, -+, B1)-
10. (Af)* = (4", (A1) = A,
11. If A is a nonsingular square matrix, then AT = A~1.
12. If U has orthonormal columns or orthonormal rows, then Ut = U*.
13. If A= A* and A= A2, then At = A,
14. AT = A° if and only if A*A is idempotent.
15. If A is normal and k is a positive integer, then AAT = ATA and (4%)1 = (AT)%.
16. If U € C™*™ is of rank n and satisfies UT = U*, then U has orthonormal columns.
17. If U € C™™ and V € C"*" are unitary matrices, then (UAV)! = V*=ATU".
18. Af = (A*A)TA* = A*(AA*)1. In particular,
(a) if A€ C™" (m > n) has full rank n, then A" = (4"4)"'A*;
(b) if A € C™*" (m < n) has full rank m, then AT = A*(44%)~1,
19. Let A € C™*". Then

)

w2

L (ATA)! = AT (A7) = (A7) AT
. [Gre66] Each one of the following conditions is necessary and sufficient for (AB)! =
i Al

. (Continuity of pseudo-inverse) Suppose that A € F™*" and E € F™", where F

8

Inner Product Spaces, Orthogonal Projection, Least Squares 517

(a) ATA, AA!, I, — A'A, and I,, — AA' are orthogonal projections.
(b) rank(A) = rank(A') = rank(AA") = rank(A'4)

(c) rank(Z, — AT A) = n — rank(A).

(d) rank(l,, — AAT) = m — rank(A).

AAT = Projungea); ATA = Projuauge(an

. Suppose that A € F™*", where F = C or R. Then

() range(A) = range(4A") = range(4A").

) range(A') = range(A*) = range(A" A) = range(A' A).
) ker(4) = ker(A*A) = ker(AT4).

) ker(A') = ker(A*) = ker(AA*) = ker(AA).

)

)

TE=Z=

range(A'4) @ ker(A1A4) = ™.
range(AA") & ker(AAT) = Fm.

I A= A+ Ag+ oo+ Ay, ATA; =0, and 443 =0, forall i,j =1, k, i £ J,

then AT = Al + A} + .. + AL
If Ais an mxr matrix of rank r and B is an rxn matrix of rank r, then (AB)T = BT AT,

() range(BB" A*) C range(A") and range(A* AB) C range(B).
(b) ATABB* and A*ABB' are both Hermitian matrices.

(c) ATABB*A* = BB*A* and BB'A*AB = A" AB.

(d) ATABB*A*ABB! = BB*AA.

(e) A'AB = B(AB)'AB and BB'A* = A AB(AB)".

. (A® B)f = AT ® Bf, where ® denotes the Kronecker product.
- AT = lim A*(al + AA") ! = lim (ol + A" A) A",

- iA'([ FAA)T = i(” ATA)IA

CorR. Then Jim (A + E)' = A" if and only if there is € > 0 such that rank(A+ E)

rank(A) when ||E||; < e
Let A € C™*" be of rank r where 0 < r < min{m,n}. Suppose that A can be

partitioned as
An Arz
A f
[Az; An

where Ay; € C"™" and rank(Ay;) = r. Then

ALXAGL ALXA;

A= [A:.XA:‘ A:.XA;,],

where

X = (AnAf + Apd,) " An (A An + 45, Ay)
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Noncommutative polynomials

Noncommutative polynomials = elements in free algebra Z(X)
d
= DiqCi

finite words over X

Multiplication =  Concatenation of words

(X7 . oxi) - (x] .. .x])

X7 . XKX] X

Two-sided ideals IS ToN SIS MY3/A0.¢)
(f17~-~7fr) = Zzaij - 3 'bi,j ai,j7bi,j S Z<X>

?
Ideal membership problem f € (fy,...,f;) is semi-decidable
(e.g., using Grobner bases)
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Operator statements

Operators WAL [ A2

e0,a,b,c,... o s+t, s-t,[flt1,...,tn)
Linearity = abelian (partial) addition + assoc. (partial) mult. + dist.

Operator statements

s=t, —o, ((p/\-q))a ((p\/lb)a ((p:>1b)7 dx:e@, Vx:@

An operator statement is universally true if it follows from
linearity

e Fact: Determining universal truth is not decidable
= Algorithm that terminates on all inputs cannot exist

e Best we can hope for: (effective) semi-decision procedure
— Can be obtained using computer algebra
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Determining universal truth

(B Translate universal truth of formula into polynomial predicate

Quasi-identities

e Classical case of quasi-identities well studied (Helton, Stankus, Wavrik ‘98,
Schmitz, Levandovskyy '20, Raab, Regensburger, Hossein Poor '21)

m
vX: A\ Aj =By = P =0Q
Strategy =1

e Interpret each operator as polynomial in Z(X) and reformulate each
identity L = R as polynomial L — R
eg, AB=BA ~ ab—bae€Z(a,b)

e "Being a consequence” (=) translates into ideal membership

m
VX:/\Aifij/P:Q iff p—qé€(a;—by,..., am — bm)
j=1
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“The Moore-Penrose inverse is unique”
Recall: B is Moore-Penrose inverse of A if
ABA =A, BAB = B, B*A* = AB, A*B* = BA
If B and C satisfy these identities, then B = C

Using our software package operator_gb. ..
: from operator_gb import *
assumptions = [a*bxa - a,...]
certify (assumptions, b - c)
b - ¢ = (-c + c*xaxc) + bxc_adj*(-a_adj + a_adj*b_adj*a_adj)
- bxaxc*(-a*b + b_adj*a_adj) - b*(-a + axc*a)*b
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“The Moore-Penrose inverse is unique”
Recall: B is Moore-Penrose inverse of A if
ABA =A, BAB = B, B*A* = AB, A*B* = BA
If B and C satisfy these identities, then B = C

Using our software package operator_gb. ..
: from operator_gb import *
assumptions = [a*bxa - a,...]
certify (assumptions, b - c)
b - ¢ = (-c + c*xaxc) + bxc_adj*(-a_adj + a_adj*b_adj*a_adj)
- bxaxc*(-a*b + b_adj*a_adj) - b*(-a + axc*a)*b
+ b*(-axc + c_adj*a_adj) - b*(-axc + c_adj*a_adj)*b_adj*a_adj
- (-b + b*a*b) + (-cxa + a_adj*c_adj)*b*ax*c
- (-a_adj + a_adj*c_adj*a_adj)*b_adj*c + cx(-a + axb*a)*c
- (-b*a + a_adj*b_adj)*c + a_adj*c_adj*(-bxa + a_adj*b_adj)*c

e Software produces cofactor representation
(= certificate for ideal membership)

e Cofactor representation is algebraic proof requiring only linearity
= Statement is proven in all settings where linearity holds
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Determining universal truth

(BB Translate universal truth of formula into polynomial predicate

Universal statements

Universal
statement
vX: @

Theorem (H., Raab, Regensburger '22)

finitely many

3 3 ideal memberships — o
* in Z(X)
Idealisation l,

A universal statement is universally true iff its idealisation is true



Determining universal truth

(BB Translate universal truth of formula into polynomial predicate

Universal statements

effectively semi-decidable

using Grobner bases

Universal finitely many
statement ideal memberships
vX: @ in Z{X)

Idealisation

X
Theorem (H., Raab, Regensburger '22)

A universal statement is universally true i ERleCEUEEIAlINERAIILS
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5.7 Pseudo-Inverse

Definitions:
A Moore—Penrose pseudo-inverse of a matrix A € C™*™ is a matrix A" € C"*™ that satisfies
the following four Penrose conditions:

aata=a; ataat=at; (Al =aah; (ata) = ata

Facts:
All the following facts except those with a specific reference can be found in [Gras3, pp.
105-141] or [RMT1, pp. 44-67).

¥, Every A € C™" has a unique pseudo-inverse AT.

2. If A€ R™*", then A is real

W If A € C™" of rank r has a full rank decomposition A = BC, where B € C™" and
C € C™", then AT can be evaluated using A’ = C*(B*AC*)"1B".

& [LHO5, p. 38] If A € C™" of rank r < min{m,n} has an SVD A = ULV", then its
pseudo-inverse is AT = VETU*, where
= diag(1/01,...,1/0,,0,...,0) € R™™.
5. [Higd6, p. 412] The pseudo-inverse A’ of A € F"*" (F = C or R) solves the mini-
mization problem
min_ [|AX — I,||%.
K in
8. 0%, = Op and T}, = 72 Jum, Where 0, € C™™ is the all Os matrix and Jmn €
C™ is the all 1s matrix.
7. Ifx#0, 0, then (xy*)f =~
Oy A0 e (O [y
8. If x #0, then x' =
? [
9. Let o be a scalar. Denote
of = ((x", if a #0,
“ ', ifa=0.

Then
@ (@A)t =atat
(b) (diag(B1, Ba. -+, 8,))" = diag(8], 8}, -+, B1)-
W (AN = (47)'; (AN =4
. If A is a nonsingular square matrix, then AT = A~1.
12, If U has orthonormal columns or orthonormal rows, then U = U*.
1] If A= A* and A= A2, then AT = A,
M AT = A" if and only if A" A is idempotent.
15. If A is normal and k is a positive integer, then AAT = ATA and (4%)f = (A7)~
16 If U € C™*" is of rank n and satisfies UT = U*, then U has orthonormal columns.
W, If U € C™*™ and V € C"** are unitary matrices, then (UAV)! = V*ATU*.
1] AT = (A*A)TA* = A°(4A4")!. In particular,
(®) if A€ C™" (m > n) has full rank n, then A" = (4"4)"'A*;
(&) if A€ C™*" (m < n) has full rank m, then AT = A*(44%)~1,
19. Let A € C™*". Then
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20.

2.

2.

23.

(@) A'A, AA!, I, — A'A, and I,, — AA! are orthogonal projections.
(b) rank(A) = rank(A) = rank(AA") = rank(A'4)

(c) rank(Z, — AT A) = n — rank(A).

(d) rank(Z,, — AAT) = m — rank(A).

AAT = Projungea); ATA = Projuauge(an
Suppose that A € F™*" where F = C or R. Then

() range(A) = range(4A") = range(4A").

(b) range(A") = range(A*) = range(A* A) = range(A' 4).

(¢) ker(A) = ker(A*A) = ker(AT4).

(@) ker(A) = ker(A*) = ker(44") = ker(4A").

) range(A'A) @ ker(ATA) = F".

) range(AA') & ker(AAT) = F™.

I A=A+ Ay ++ A, AA; = 0, and AA7 =0, for all i,j = 1, k, i # j,
then AT = Al + A} + .. + AL

If Ais an mxr matrix of rank r and B is an rxn matrix of rank r, then (AB)T = BT AT,

RO}

24 (A"A) = AT(A")]; (A4%) = (4T AT,

25.

(@) ATABB*A*ABB'

. (Continuity of pseudo-inverse) Suppose that A € F™*" and E € F™", where F

[Gre66] Each one of the following conditions is necessary and sufficient for (AB)! =
Biat:

() range(BB" A*) C range(A") and range(A* AB) C range(B).

@) ATABB* and A*ABB' are both Hermitian matrices.

(¢) ATABB*A* = BB*A* and BB'A*AB = A" AB.
BB A"A.
(¢) ATAB = B(AB)'AB and BB'A* = A AB(AB)".

. (A® B)f = AT ® Bf, where ® denotes the Kronecker product.
- AT = lim A*(al + AA") ! = lim (ol + A" A) A",

- iA'([ FAA)T = i(” ATA)IA

CorR. Then Jim (A + E)' = A" if and only if there is € > 0 such that rank(A+ E)
rank(A) when ||E||; < e

30 Let A € C™*" be of rank r where 0 < r < min{m,n}. Suppose that A can be

partitioned as
An Arz
A ,
[Az; An

where Ay; € C"™" and rank(Ay;) = r. Then

ALXAGL ALXA;

. [A:.xA:\ A:.XA;,],

where

X = (AnAf + Apd,) " An (A An + 45, Ay)
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“Every matrix has a Moore-Penrose inverse”
Fact: A matrix = 3JP,Q : PA*A=A and AA*Q =A
IX: (PA*A=A A AA*Q =A) = pinv(A,X)
Strategy
1 Derive explicit expression for X

2 Reformulate statement as a universal statement

3 Prove by verifying ideal membership

Using our software package operator_gb. ..
assumptions = [a - p*xa_adj*a,...]
I = NCIdeal (assumptions + pinv(a,x))
I.find_equivalent_expression(x)
[x - a_adj*qg*x, x - a_adj*p*x,
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“Every matrix has a Moore-Penrose inverse”
Fact: A matrix = 3JP,Q : PA*A=A and AA*Q =A
IX: (PA*A=A A AA*Q =A) = pinv(A,X)
Strategy
1 Derive explicit expression for X

2 Reformulate statement as a universal statement

3 Prove by verifying ideal membership

Using our software package operator_gb. ..

assumptions = [a - p*xa_adj*a,...]
I = NCIdeal (assumptions + pinv(a,x))
I.find_equivalent_expression(x)

[x - a_adj*qg*x, x - a_adj*p*x,
x - a_adj*qg*p_adj, x - a_adj*x_adj*x]

= X =A*QP"* is MP-inverse of A

(can be certified using the software)

10
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Existential statements

In the previous example, we found a suitable expression.

Was this just luck? — No!
Herbrand's theorem (Herbrand '30)
An existential statement is universally true if and only if explicit

expressions exist and can be constructed as polynomial expressions in
terms of the basic operators appearing in the statement.

e Enumerating all possible expressions is hopeless
e Requires good heuristics — provided by computer algebra

e Several heuristics implemented in operator_gb
(ansatz, variable elimination, ideal/subalgebra intersections,. . .)
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Determining universal truth

(B Translate universal truth of formula into polynomial predicate

General operator statements

N
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‘ Np Vefzyb
Operator ) Universal finitely many
statement —3 ® 5 statement ideal memberships —>
¥ Instantiations VX : @ in Z(X)

,[ Idealisation

Theorem (H., Raab, Regensburger '22)

An operator statement is universally true iff the procedure terminates
and returns v

To treat all operator statements ~ combine with Herbrand's theorem
+ Heuristics
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5.7 Pseudo-Inverse

Definitions:
A Moore—Penrose pseudo-inverse of a matrix A € C™*™ is a matrix A" € C"*™ that satisfies
the following four Penrose conditions:

aata=a; ataat=at; (Al =aah; (ata) = ata

Facts:

All the following facts except those with a specific reference can be found in [Gras3, pp.
105-141] or [RMT1, pp. 44-67).

W Every A € C™" has a unique pseudo-inverse A'.

@ If A€ R™*", then AT is real

W If A € C™" of rank r has a full rank decomposition A = BC, where B € C"™*" and
C € C™", then A can be evaluated using A’ = C*(B*AC*) 1 B*.

& [LHO5, p. 38] If A € C™" of rank r < min{m,n} has an SVD A = ULV", then its
pseudo-inverse is AT = VETU*, where

= diag(1/01,...,1/0,,0,...,0) € ™™,

X [Hig96, p. 412] The pseudo-inverse A’ of A € F™*" (F = C or R) solves the mini-
mization problem
min_ [|AX — I,||%.
o lin

800, = 0 and Jf,,, = ;1 Jum, where O € C™*" is the all 0s matrix and Jynn €
Cm*™ s the all 1s matri

I IEX#0,y#0, thcn(xyv)'

- [yl
8 If x # 0, then x' = E
x
9. Let  be a scalar. Denote
of = ((x", ifa#0,
“ ', ifa=0.

Then
@ (@A)t =atat
0 (diag(Bu, Ao, -+, Bu))' = diag(B], 8}, -, BY)-
W (AN = (47)'; (AN =4
. If A is a nonsingular square matrix, then AT = A~1.
12, If U has orthonormal columns or orthonormal rows, then U = U*.
1] If A= A* and A= A2, then AT = A,
M AT = A" if and only if A" A is idempotent.
15. If A is normal and k is a positive integer, then AAT = ATA and (4%)f = (A7)~
16 If U € C™*" is of rank n and satisfies UT = U*, then U has orthonormal columns.
W, If U € C™*™ and V € C"** are unitary matrices, then (UAV)! = V*ATU*.
1] AT = (A*A)TA* = A°(4A4")!. In particular,
(®) if A€ C™" (m > n) has full rank n, then A" = (4"4)"'A*;
(&) if A€ C™*" (m < n) has full rank m, then AT = A*(44%)~1,
19. Let A € C™*". Then
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BE

BRR ¥

]

X X Xx
£

(@) A'A, AA!, I, — A'A, and I,, — AA! are orthogonal projections.

(¢ rank(A) = rank(A') = rank(AA") = rank(A'A)

0 rank(Z, — ATA) = n — rank(A).

O rank(l,, — AAT) = m — rank(A).

AAT = Projungea); ATA = Projuauge(an

Suppose that A € F™*", where F = C or R. Then

(#) range(A) = range(AA°) = range(AAT).

(p) range(AT) = range(A") = range(A" A) = range(A'A).

(@) ker(A) = ker(A*A) = ker(A' A).

(@) ker(A") = ker(A*) = ker(AA*) = ker(AA1).

(€) range(A1A) & ker(ATA) = F".

() range(AA") & ker(AAT) = ™.

I A=A+ Ay ++ A, AA; = 0, and AA7 =0, for all i,j = 1, k, i # j,
then AT = Al + A} + .. + AL

If Ais an mxr matrix of rank r and B is an rxn matrix of rank r, then (AB)T = BT AT,
(A7 A)T = Al(A")T; (A4°) = (47141,

[(ijgs@] Each one of the following conditions is necessary and sufficient for (AB)! =

(#) range(BB*A*) C range(A*) and range(A*AB) C range(B).
(#) ATABB* and A"ABB' are both Hermitian matrices.

(&) ATABB*A* = BB*A* and BBIA*AB = A" AB.

(@) ATABB*A*ABB' = BB*A*A.

(#) ATAB = B(AB)'AB and BB'A* = A"AB(AB)'.

(A® B) = A" @ B, where ® denotes the Kronecker product.
Al= lim A%(al + A4")"" = lim(al + 4°4) A"

- iA'([ FAA)T = i(” ATA)IA

(Continuity of pseudo-inverse) Suppose that A € F™*" and E € F™*", where F'
CorR. Then Jim (A + E)' = A" if and only if there is € > 0 such that rank(A+ E)
rank(A) when ||E||; < e

Let A € C™*" be of rank r where 0 < r < min{m,n}. Suppose that A can be

partitioned as
An Arz
A ,
[Az; An

where Ay; € C"™" and rank(Ay;) = r. Then

. [A:.xA:_\ A:.XA;,] )
AL XA ALXA;

where

X = (AnAf + Apd,) " An (A An + 45, Ay)
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Applications

Handbook of Linear Algebra (20 v /6 ¢ / 4 %)
o yields ideals with < 70 generators in < 18 indeterminates
o cofactor representations consist of < 226 terms
o all proofs take ~15 seconds altogether

Recent results in operator theory
o Reverse order law of the Moore-Penrose inverse (Djordjevic, Dincic '09)
o they: We use [...] decompositions of Hilbert spaces
o we: purely algebraic proofs = our proofs generalise results

NeW results (Cvetkovi¢-lli¢, H., Hossein Poor, Milosevi¢, Raab, Regensburger '21)
o software used to find minimal assumptions
ker(a) — ker(b) — ker(c)

Diagram lemmas (Five lemma, i i i
Nine lemma, Snake lemma,. . .) A B ¢ 0

&
0 A B e
| | |

coker(a) — coker(b) — coker(c)
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