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516 Handbook of Linear Algebra

5.7 Pseudo-Inverse

Definitions:
A Moore—Penrose pseudo-inverse of a matrix A € C™*™ is a matrix A" € C"*™ that satisfies

the following four Penrose conditions:
aata=a; ataat=at; (Al =aah; (ata) = ata
Facts:

All the following facts except those with a specific reference can be found in [Gras3, pp.
105-141] or [RMT1, pp. 44-67).

1. Every A € C™" has a unique pseudo-inverse A'.
2. If A€ R™*", then A is real
3. If A € C™" of rank  has a full rank decomposition A = BC, where B € C™*" and
C € C™", then A can be evaluated using A’ = C*(B*AC*) 1 B*.
4. [LH95, p. 38] If A € C™*" of rank r < min{m,n} has an SVD A = USV", then its
pseudo-inverse is AT = VETU*, where
= diag(1/01,...,1/0,,0,...,0) € ™™,
5. [Higd6, p. 412] The pseudo-inverse A’ of A € F"*" (F = C or R) solves the mini-
mization problem
min_ [|AX — I,||%.
Dain
6. 0}, = Opm and Jf,, = ;3 Jum, Where 0, € C™™ is the all Os matrix and Jin €
€™ is the all 1s matrix.
7. Ifx#0, 0, then (xy*)f =~
#0y#0 then ()= ey e
8. If x # 0, then x =
# InP?
9. Let o be a scalar. Denote
of = ((x", if a#0,
0, if a=0.

Then
(a) (@A)t =atat
(b) (diag(B1, Ba. -+, 8,))" = diag(8], 8}, -+, B1)-
10. (Af)* = (4", (A1) = A,
11. If A is a nonsingular square matrix, then AT = A~1.
12. If U has orthonormal columns or orthonormal rows, then Ut = U*.
13. If A= A* and A= A2, then At = A,
14. AT = A° if and only if A*A is idempotent.
15. If A is normal and k is a positive integer, then AAT = ATA and (4%)1 = (AT)%.
16. If U € C™*™ is of rank n and satisfies UT = U*, then U has orthonormal columns.
17. If U € C™™ and V € C"*" are unitary matrices, then (UAV)! = V*=ATU".
18. Af = (A*A)TA* = A*(AA*)1. In particular,
(a) if A€ C™" (m > n) has full rank n, then A" = (4"4)"'A*;
(b) if A € C™*" (m < n) has full rank m, then AT = A*(44%)~1,
19. Let A € C™*". Then

)

w2

L (ATA)! = AT (A7) = (A7) AT
. [Gre66] Each one of the following conditions is necessary and sufficient for (AB)! =
i Al

. (Continuity of pseudo-inverse) Suppose that A € F™*" and E € F™", where F

8
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(a) ATA, AA!, I, — A'A, and I,, — AA' are orthogonal projections.
(b) rank(A) = rank(A') = rank(AA") = rank(A'4)

(c) rank(Z, — AT A) = n — rank(A).

(d) rank(l,, — AAT) = m — rank(A).

AAT = Projungea); ATA = Projuauge(an

. Suppose that A € F™*", where F = C or R. Then

() range(A) = range(4A") = range(4A").

) range(A') = range(A*) = range(A" A) = range(A' A).
) ker(4) = ker(A*A) = ker(AT4).

) ker(A') = ker(A*) = ker(AA*) = ker(AA).

)

)

TE=Z=

range(A'4) @ ker(A1A4) = ™.
range(AA") & ker(AAT) = Fm.

I A= A+ Ag+ oo+ Ay, ATA; =0, and 443 =0, forall i,j =1, k, i £ J,

then AT = Al + A} + .. + AL
If Ais an mxr matrix of rank r and B is an rxn matrix of rank r, then (AB)T = BT AT,

() range(BB" A*) C range(A") and range(A* AB) C range(B).
(b) ATABB* and A*ABB' are both Hermitian matrices.

(c) ATABB*A* = BB*A* and BB'A*AB = A" AB.

(d) ATABB*A*ABB! = BB*AA.

(e) A'AB = B(AB)'AB and BB'A* = A AB(AB)".

. (A® B)f = AT ® Bf, where ® denotes the Kronecker product.
- AT = lim A*(al + AA") ! = lim (ol + A" A) A",

- iA'([ FAA)T = i(” ATA)IA

CorR. Then Jim (A + E)' = A" if and only if there is € > 0 such that rank(A+ E)

rank(A) when ||E||; < e
Let A € C™*" be of rank r where 0 < r < min{m,n}. Suppose that A can be

partitioned as
An Arz
A f
[Az; An

where Ay; € C"™" and rank(Ay;) = r. Then

ALXAGL ALXA;

A= [A:.XA:‘ A:.XA;,],

where

X = (AnAf + Apd,) " An (A An + 45, Ay)
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1. Introduction

—
In this paper we exiend some results from [15] to infinite-dimensional settings. Among other things, we obtain the.
reverse order law for the Moore-Penrose inverse as y. We use the matrix form of a linear bounded operator, and
ihis matrix fom i induced by some natural decompoitions f Hibert spces
e Introduction we for wo auxiliary results. In Section 2 we present the results related to the
reverse oder e for the Moore.enros Invrse of Hlbert Space operaors wih cosed ange. The preset paper s the
extension of results from [15] to infinte-dimensional seftings.

2. Reverse order law

In this section we prove the results concerning the reverse order law for the Moore-Penrose inverse.

be Hilbert spaces, and let A € L (Y., 2), B € £(X, Y) be such that A, B, AB have closed ranges. Then the

following statements hald:

(a) AB(AB)' = ABB'A' & A"AB=BB'A*AB & R(A*AB) S R(B) & B'A' € (AB)(1,2,3);
(b) (AB)!AB=BIATAB & ABB* = ABB*A'A & R(BB*A") S R(A") & BIA' € (AB)(1,2,4);
(€ Te ol samens e vl

AT,

o AB(4B)' = ABB'A! and (AB)! an e A'as;
o) 814" AB and ABB* = ABB*A'A;
(80 R(8AB) £ R(8)and R(B Ay £ R A

Proof. The operators 4 and B have the same matrix representations as in the previous theorem. The following products
will be useful:

A1By 0O it By' 0 AT By'A}D' 0
an=[A0 ] amt [ W8 ] wa[B0T 0]

>

First, we find the equivalent expressions for our statements in terms of Ay, A2 and By

.. Do, K. Dicit/ . Math. Ana Appl. 361 (2010)252-261 257

@) 1 AB(AB)! = ABB'AT & A1B1(A1B1)' = A1ATD . Here AiB1(A1By)' is Hermitian, 50 [A1A7, D *
2. A"AB = BBTA*AB ¢ A3A; =0.
3. Notice that R(A"AB) C R(B) if and only if BE'A*AB = A*AB,
10w check properly he enrese equatons, then we see tha. BIAI € (AB)(L2.3) & AATD 1A = Ay and
[A145,07"=0.

Now, we prove the following: 142, 4=2 and 1= 4,
We prove 1 ¢ 2. Notice that

MBIAMBY = AADT & (B = (1B AATD
The last statement s obtined by multiplying the first expression by (4,8, from th let sid, or multplyng the second
expression by A1B from the left side, and using A1A7 = A1 By By A7. Now, there s a chain of the equivalences:

AiB) = (ABY'MAIDT & (ABY (AA] + A2A3) = (A1 B) A AT

& (MB) A7 ©  R(A2A3) CN((A1B)')
& RADCN((MBY) & BiAA=0 & AjA=0

Therefore, we have just proved that 1
Now we prove 1= 4. If we multiply A{ By(4;B1)! = A;AD~" by A,B from the right side, we get AAD-1A; =
Thus, 4 holds.
il we prove 42 M AD 1= Ay aod (4145011, e 140, =0,
that A, (A1) C N (A2A3) = N(A). 50 A3A1 =0. Thus, 2 holds
Mot the cqualence 3 .4 roved n 3 0.

VAT AL + Az A3Ay, implying

(6) 1. (AB)'AB = B'ATAB < (4181)'A1By = By AD~A1B,. Moreover, (41B)'A1By is Hermitian, so (818}, A1~ Ayl =

o.
2. ABB* = ABB*A'A <> ABiB}AID~ Ay = A1B1B} and A;B,B}

A DAy =o0.
3. Notice that R(BB*A") C R(A") i and only if A'ABBA* = BB A", which is equivlent to ABB*AA = ABB". Hence,

4. The Penrose equarions imply that: BTAT € (AB)(1,2,4) & A|ATD~Ay = Ay and [8,B]. A{D~'Ay]=0.

We prove 154521

Stppose that 1 e, I we mutiply (A.Bn AiBy = By A{D='A1B1 by AiBy from the left side, we obtain A;
A A0 Ay, Furthermore, (8485, A D11 =0 holds. Therelore, 1 =4,

Suppose that 4 holds. Obviously. A,R\R‘A‘n 1Ay = AyA;D~1A\B1B; = A, B B;. Thus, the first equality of 2 holds. The
second equality of 2 also holds, since AD~"A2 =0 & AyA;D~ Ay = Ar, which is shown in the proof of Theorem 2.1. Here
we use again (8187, A{D~Ar] = 0. Consequently, 4= 2.

In order to prove that 2 = 1, we multiply AiBiB{A{D~'Ar = AiB1B] by (AiBy)! from the left side. It fol-
lows that BEATD 1Ay (ms,ﬂmu.s' 50 (A1B)! 1By = B{ATD™A1(B)~" which is equivalent to (418118

o 5. Hence, 2>

" Nolee that 4.5 e prod i 8]

Finally, the part (c) follows from the parts (a) and (b). O

We also prove the following result,

‘Theorem 2.3 Let X, Y, Z be Hilbert spaces, and let A & L(Y. Z), B € L(X.Y) be such that A, B, AB have closed ranges. Then we
have!

(a) AB(AB)'A = ABB! > A*ABB' = BB'A*A & R(A*AB) C R(B) <> B'A' € (AB)(1,2,3);
(b) B(AB)'AB = ATAB & AIABB* = BB*ATA  R(BB*A*) C R(A") & BIAT € (AB)(1,2,4)
(c) The following three statements are equivalent:

(1) (4B)' = B'al

(2) AB(AB)'A = ABB! and B(AB)'AB = A'AB;

(3) A*ABB! = BB1A*A and AIABB® = BB*ATA.

Proof. The operators A and B have the same matrix representations as in the previous theorem. First, we find equivalent
expressions, in the terms of A1, Az and By, for our assumptions,
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Operators WAL [ A2

e0,a,b,c,... o s+t, s-t,[flt1,...,tn)
Linearity = abelian (partial) addition + assoc. (partial) mult. + dist.

Operator statements

s=t, —o, ((p/\-q))a ((p\/lb)a ((p:>1b)7 dx:e@, Vx:@

An operator statement is universally true if it follows from
linearity

e Fact: Determining universal truth is not decidable
= Algorithm that terminates on all inputs cannot exist

e Best we can hope for: (efficient) semi-decision procedure



Operator statements
* T
Operators NELI | P
e0,a,b,c,... o s+t, s-t,[flt1,...,tn)
Linearity = abelian (partial) addition + assoc. (partial) mult. + dist.

Operator statements

s=t, —o, ((p/\-q))a ((p\/lb)a ((p:>1b)7 dx:e@, Vx:@

An operator statement is universally true if it follows from
linearity

LIESEN (H., Raab, Regensburger '22)

There exists a semi-decision procedure for determining universal truth of
operator statements based on symbolic computations.

It can be realised efficiently using computer algebra.
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Recall: B is Moore-Penrose inverse of A if
ABA — A, BAB — B, B*A* — AB, A*B* — BA

If B and C satisfy these identities, then B = C
B = BAB = BACAB = ... = C

A different point of view

L=R <<= L-R
L=M=R & L-R=(L-M)+ (M-R)

Theorem (Raab, Regensburger, Hossein Poor '21)

m
AA=Bi=L=R if L-R=Y ¢-Pj(A; By)Q
j

i=1



Toy example: “The Moore-Penrose inverse is unique”
Recall: B is Moore-Penrose inverse of A if
ABA — A, BAB — B, B*A* — AB, A*B* — BA
If B and C satisfy these identities, then B = C

B = BAB = BACAB = ... = C
A different point of view
L=R 4= L-R
L=M=R & L-R=(L-M)+ (M—R)

Theorem (Raab, Regensburger, Hossein Poor '21)

m
/\Ai:B-L:>L:R iff
i=1 j

e ‘‘cofactor representation”

e computable with computer algebra
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Using our software package operator_gb. ..
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from operator_gb import =*
assumptions = [a*bxa - a,...]
certify(assumptions, b - c)



Toy example: “The Moore-Penrose inverse is unique”

Recall: B is Moore-Penrose inverse of A if
ABA — A, BAB — B, B*A* — AB, A*B* — BA

If B and C satisfy these identities, then B = C
Using our software package operator_gb. ..

from operator_gb import =*
assumptions = [a*bxa - a,...]
certify(assumptions, b - c)

b - ¢ = (-c + cxaxc) + b*c_adj*(-a_adj + a_adj*b_adj*a_adj)
- bxaxc*(-a*b + b_adj*a_adj) - b*(-a + axc*a)*b
+ bx(-axc + c_adj*a_adj) - bx(-a*c + c_adj*a_adj)*b_adj*a_adj
- (-b + b*axb) + (-c*a + a_adj*c_adj)*b*axc
- (-a_adj + a_adj*c_adj*a_adj)*b_adj*c + cx(-a + axb*a)x*c

- (-b*a + a_adj*b_adj)*c + a_adj*c_adj*(-b*a + a_adj*b_adj)*c



Toy example: “The Moore-Penrose inverse is unique”

Recall: B is Moore-Penrose inverse of A if
ABA — A, BAB — B, B*A* — AB, A*B* — BA

If B and C satisfy these identities, then B = C
Using our software package operator_gb. ..

from operator_gb import =*
assumptions = [a*bxa - a,...]
certify(assumptions, b - c)

b - ¢ = (-c + cxaxc) + b*c_adj*(-a_adj + a_adj*b_adj*a_adj)
- bxaxc*(-a*b + b_adj*a_adj) - b*(-a + axc*a)*b
+ bx(-axc + c_adj*a_adj) - bx(-a*c + c_adj*a_adj)*b_adj*a_adj
- (-b + b*axb) + (-c*a + a_adj*c_adj)*b*axc
- (-a_adj + a_adj*c_adj*a_adj)*b_adj*c + cx(-a + axb*a)x*c

- (-b*a + a_adj*b_adj)*c + a_adj*c_adj*(-b*a + a_adj*b_adj)*c

e Software produces cofactor representation (= algebraic proof)

e Statement is proven in all settings where linearity holds
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5.7 Pseudo-Inverse

Definitions:
A Moore—Penrose pseudo-inverse of a matrix A € C™*™ is a matrix A" € C"*™ that satisfies
the following four Penrose conditions:

aata=a; ataat=at; (Al =aah; (ata) = ata

Facts:
All the following facts except those with a specific reference can be found in [Gras3, pp.
105-141] or [RMT1, pp. 44-67).

¥, Every A € C™" has a unique pseudo-inverse AT.

2. If A€ R™*", then A is real

W If A € C™" of rank r has a full rank decomposition A = BC, where B € C™" and
C € C™", then AT can be evaluated using A’ = C*(B*AC*)"1B".

& [LHO5, p. 38] If A € C™" of rank r < min{m,n} has an SVD A = ULV", then its
pseudo-inverse is AT = VETU*, where
= diag(1/01,...,1/0,,0,...,0) € R™™.
5. [Higd6, p. 412] The pseudo-inverse A’ of A € F"*" (F = C or R) solves the mini-
mization problem
min_ [|AX — I,||%.
K in
8. 0%, = Op and T}, = 72 Jum, Where 0, € C™™ is the all Os matrix and Jmn €
C™ is the all 1s matrix.
7. Ifx#0, 0, then (xy*)f =~
Oy A0 e (O [y
8. If x #0, then x' =
? [
9. Let o be a scalar. Denote
of = ((x", if a #0,
“ ', ifa=0.

Then
@ (@A)t =atat
(b) (diag(B1, Ba. -+, 8,))" = diag(8], 8}, -+, B1)-
W (AN = (47)'; (AN =4
. If A is a nonsingular square matrix, then AT = A~1.
12, If U has orthonormal columns or orthonormal rows, then U = U*.
1] If A= A* and A= A2, then AT = A,
M AT = A" if and only if A" A is idempotent.
15. If A is normal and k is a positive integer, then AAT = ATA and (4%)f = (A7)~
16 If U € C™*" is of rank n and satisfies UT = U*, then U has orthonormal columns.
W, If U € C™*™ and V € C"** are unitary matrices, then (UAV)! = V*ATU*.
1] AT = (A*A)TA* = A°(4A4")!. In particular,
(®) if A€ C™" (m > n) has full rank n, then A" = (4"4)"'A*;
(&) if A€ C™*" (m < n) has full rank m, then AT = A*(44%)~1,
19. Let A € C™*". Then
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20.

2.

2.

23.

(@) A'A, AA!, I, — A'A, and I,, — AA! are orthogonal projections.
(b) rank(A) = rank(A) = rank(AA") = rank(A'4)

(c) rank(Z, — AT A) = n — rank(A).

(d) rank(Z,, — AAT) = m — rank(A).

AAT = Projungea); ATA = Projuauge(an
Suppose that A € F™*" where F = C or R. Then

() range(A) = range(4A") = range(4A").

(b) range(A") = range(A*) = range(A* A) = range(A' 4).

(¢) ker(A) = ker(A*A) = ker(AT4).

(@) ker(A) = ker(A*) = ker(44") = ker(4A").

) range(A'A) @ ker(ATA) = F".

) range(AA') & ker(AAT) = F™.

I A=A+ Ay ++ A, AA; = 0, and AA7 =0, for all i,j = 1, k, i # j,
then AT = Al + A} + .. + AL

If Ais an mxr matrix of rank r and B is an rxn matrix of rank r, then (AB)T = BT AT,

RO}

24 (A"A) = AT(A")]; (A4%) = (4T AT,

25.

(@) ATABB*A*ABB'

. (Continuity of pseudo-inverse) Suppose that A € F™*" and E € F™", where F

[Gre66] Each one of the following conditions is necessary and sufficient for (AB)! =
Biat:

() range(BB" A*) C range(A") and range(A* AB) C range(B).

@) ATABB* and A*ABB' are both Hermitian matrices.

(¢) ATABB*A* = BB*A* and BB'A*AB = A" AB.
BB A"A.
(¢) ATAB = B(AB)'AB and BB'A* = A AB(AB)".

. (A® B)f = AT ® Bf, where ® denotes the Kronecker product.
- AT = lim A*(al + AA") ! = lim (ol + A" A) A",

- iA'([ FAA)T = i(” ATA)IA

CorR. Then Jim (A + E)' = A" if and only if there is € > 0 such that rank(A+ E)
rank(A) when ||E||; < e

30 Let A € C™*" be of rank r where 0 < r < min{m,n}. Suppose that A can be

partitioned as
An Arz
A ,
[Az; An

where Ay; € C"™" and rank(Ay;) = r. Then

ALXAGL ALXA;

. [A:.xA:\ A:.XA;,],

where

X = (AnAf + Apd,) " An (A An + 45, Ay)
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1. Introduction

—
In this paper we exiend some results from [15] to infinite-dimensional settings. Among other things, we obtain the.
reverse order law for the Moore-Penrose inverse as a corollary. We use the matrix form of a linear bounded operator, and
ihis matrix fom i induced by some natural decompoitions f Hibert spces
e Introduction we for wo auxiliary results. In Section 2 we present the results related to the
reverse oder e for the Moore.enros Invrse of Hlbert Space operaors wih cosed ange. The preset paper s the
extension of results from [15] to infinte-dimensional seftings.

2. Reverse order law

In this section we prove the results concerning the reverse order law for the Moore-Penrose inverse.

3 2 be Hilbert spaces, and let A € L(Y, 2), B & L(X, Y) be such that A, B, AB have closed ranges. Then the
Jollowing statements hold:

(3 AB(AB)' = ABB'A' & A"AB=BB'A*AB & R(A*AB) S R(B) & B'A' € (AB)(1,2,3);
(b) (AB)! AB=BIATAB & ABB* = ABB*A'A & R(BB*A") S R(A") & BIA' € (AB)(1,2,4);
(€ Tt o samens e vl

AT,

3T ABAB) — ABBATand (a5 A =slatas;
G A°AB = BBIA"AB and ABB" = ABB*A'A
5 RhAm € B8y and R(58 A0 € Rl

Prool. The operators A and B have (he same matrix representations as in the previous theorem. The following products
will be useful

o[ @Bt o iat [Bi'ATDT O
ant=["0] o=t o

by O
a4 0]
First, we in the equivalent xpressions or our statements in terms of A, 4z and By

>

0

.. Do, K. Dicit/ . Math. Ana Appl. 361 (2010)252-261 257

@) 1 AB(AB)! = ABB'AT & A1B1(A1B1)' = A1ATD . Here AiB1(A1By)' is Hermitian, 50 [A1A7, D *
2. A"AB = BBTA*AB ¢ A3A; =0.
3. Notice that R(A"AB) C R(B) if and only if BE'A*AB = A*AB,
10w check properly he enrese equatons, then we see tha. BIAI € (AB)(L2.3) & AATD 1A = Ay and
[A145,07"=0.

Now, we prove the following: 142, 4=2 and 1= 4,
We prove 1 ¢ 2. Notice that

MBIAMBY = AADT & (B = (1B AATD
The last statement s obtined by multiplying the first expression by (4,8, from th let sid, or multplyng the second
expression by A1B from the left side, and using A1A7 = A1 By By A7. Now, there s a chain of the equivalences:

AiB) = (ABY'MAIDT & (ABY (AA] + A2A3) = (A1 B) A AT

& (MB) A7 ©  R(A2A3) CN((A1B)')
& RADCN((MBY) & BiAA=0 & AjA=0

Therefore, we have just proved that 1
Now we prove 1= 4. If we multiply A{ By(4;B1)! = A;AD~" by A,B from the right side, we get AAD-1A; =
Thus, 4 holds.
il we prove 42 M AD 1= Ay aod (4145011, e 140, =0,
that A, (A1) C N (A2A3) = N(A). 50 A3A1 =0. Thus, 2 holds
Mot the cqualence 3 .4 roved n 3 0.

VAT AL + Az A3Ay, implying

(6) 1. (AB)'AB = B'ATAB < (4181)'A1By = By AD~A1B,. Moreover, (41B)'A1By is Hermitian, so (818}, A1~ Ayl =

o.
2. ABB" = ABB*A'A > AByBjATD ' Ay = A1B1B} and A(B\BjATD A,

A o
3. Notice that R(BB*A") C R(A") i and only if A'ABBA* = BB A", which is equivlent to ABB*AA = ABB". Hence,

4. The Penrose equarions imply that: BTAT € (AB)(1,2,4) & A|ATD~Ay = Ay and [8,B]. A{D~'Ay]=0.

We prove 154521

Stppose that 1 e, I we mutiply (A.Bn AiBy = By A{D='A1B1 by AiBy from the left side, we obtain A;
A A0 Ay, Furthermore, (8485, A D11 =0 holds. Therelore, 1 =4,

Suppose that 4 holds. Obviously. A,R\R‘A‘n 1Ay = AyA;D~1A\B1B; = A, B B;. Thus, the first equality of 2 holds. The
second equality of 2 also holds, since AD~"A2 =0 & AyA;D~ Ay = Ar, which is shown in the proof of Theorem 2.1. Here
we use again (8187, A{D~Ar] = 0. Consequently, 4= 2.

In order to prove that 2 = 1, we multiply AiBiB{A{D~'Ar = AiB1B] by (AiBy)! from the left side. It fol-
lows that BEATD 1Ay (ms,ﬂmu.s' 50 (A1B)! 1By = B{ATD™A1(B)~" which is equivalent to (418118

o 5. Hence, 2>

" Nolee that 4.5 e prod i 8]

Finally, the part (c) follows from the parts (a) and (b). O

We also prove the following result,

‘Theorem 2.3 Let X, Y, Z be Hilbert spaces, and let A & L(Y. Z), B € L(X.Y) be such that A, B, AB have closed ranges. Then we
have!

(31 ABAB)A= ABB' &> A"ABE! =BB'A"A & RU"AB) CR(B) & B1A! € (AB)1,2.3)

() B(AB)'AB = ATAB = BB*A'A & R(BB*A") CR(A%) & BIAT € (AB){1,2,4);
(0 Tefellowing e statemens e quivient

) ) = p'al

o anchi 85" and B(AB)'AB = A1AB;

G A Sk e AT

Proof. The operators A and B have the same matrix representations as in the previous theorem. First, we find equivalent
expressions, in the terms of A1, Az and By, for our assumptions,
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IX: (PA*A=A A AA*Q =A) = pinv(A,X)
Strategy
1 Derive explicit expression for X
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3 Prove by computing cofactor representations
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“Every matrix has a Moore-Penrose inverse”
Fact: A matrix = 3JP,Q : PA*A=A and AA*Q =A
IX: (PA*A=A A AA*Q =A) = pinv(A,X)
Strategy
1 Derive explicit expression for X

2 Plug in the explicit expression ~» removes the existential quantifier

3 Prove by computing cofactor representations

Using our software package operator_gb. ..

assumptions = [a - p*xa_adj*a,...]
I = NCIdeal (assumptions + pinv(a,x))
I.find_equivalent_expression(x)

[- x + a_adj*g*x, - x + a_adj*p*x,
- x + a_adj*q*p_adj, - x + a_adj*x_adj*x]

= X =A*QP"* is MP-inverse of A

(can be proven using the software)
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In the previous example, we found a suitable expression.
Was this just luck? — No!
Herbrand's theorem (Herbrand '30)

An existential statement is universally true if and only if explicit
expressions exist and can be constructed as polynomial expressions in
terms of the basic operators appearing in the statement.
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Existential statements

In the previous example, we found a suitable expression.

Was this just luck? — No!
Herbrand's theorem (Herbrand '30)

An existential statement is universally true if and only if explicit
expressions exist and can be constructed as polynomial expressions in
terms of the basic operators appearing in the statement.

e Enumerating all possible expressions is hopeless
e Requires good heuristics — provided by computer algebra

e Several heuristics implemented in operator_gb
(ansatz, variable elimination, Grdbner basis techniques,. . .)
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5.7 Pseudo-Inverse

Definitions:
A Moore—Penrose pseudo-inverse of a matrix A € C™*™ is a matrix A" € C"*™ that satisfies
the following four Penrose conditions:

aata=a; ataat=at; (Al =aah; (ata) = ata

Facts:

All the following facts except those with a specific reference can be found in [Gras3, pp.
105-141] or [RMT1, pp. 44-67).

W Every A € C™" has a unique pseudo-inverse A'.

@ If A€ R™*", then AT is real

W If A € C™" of rank r has a full rank decomposition A = BC, where B € C"™*" and
C € C™", then A can be evaluated using A’ = C*(B*AC*) 1 B*.

& [LHO5, p. 38] If A € C™" of rank r < min{m,n} has an SVD A = ULV", then its
pseudo-inverse is AT = VETU*, where

= diag(1/01,...,1/0,,0,...,0) € ™™,

X [Hig96, p. 412] The pseudo-inverse A’ of A € F™*" (F = C or R) solves the mini-
mization problem
min_ [|AX — I,||%.
o lin

800, = 0 and Jf,,, = ;1 Jum, where O € C™*" is the all 0s matrix and Jynn €
Cm*™ s the all 1s matri

I IEX#0,y#0, thcn(xyv)'

- [yl
8 If x # 0, then x' = E
x
9. Let  be a scalar. Denote
of = ((x", ifa#0,
“ ', ifa=0.

Then
@ (@A)t =atat
0 (diag(Bu, Ao, -+, Bu))' = diag(B], 8}, -, BY)-
W (AN = (47)'; (AN =4
. If A is a nonsingular square matrix, then AT = A~1.
12, If U has orthonormal columns or orthonormal rows, then U = U*.
1] If A= A* and A= A2, then AT = A,
M AT = A" if and only if A" A is idempotent.
15. If A is normal and k is a positive integer, then AAT = ATA and (4%)f = (A7)~
16 If U € C™*" is of rank n and satisfies UT = U*, then U has orthonormal columns.
W, If U € C™*™ and V € C"** are unitary matrices, then (UAV)! = V*ATU*.
1] AT = (A*A)TA* = A°(4A4")!. In particular,
(®) if A€ C™" (m > n) has full rank n, then A" = (4"4)"'A*;
(&) if A€ C™*" (m < n) has full rank m, then AT = A*(44%)~1,
19. Let A € C™*". Then
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BE

BRR ¥

]

X X Xx
£

(@) A'A, AA!, I, — A'A, and I,, — AA! are orthogonal projections.

(¢ rank(A) = rank(A') = rank(AA") = rank(A'A)

0 rank(Z, — ATA) = n — rank(A).

O rank(l,, — AAT) = m — rank(A).

AAT = Projungea); ATA = Projuauge(an

Suppose that A € F™*", where F = C or R. Then

(#) range(A) = range(AA°) = range(AAT).

(p) range(AT) = range(A") = range(A" A) = range(A'A).

(@) ker(A) = ker(A*A) = ker(A' A).

(@) ker(A") = ker(A*) = ker(AA*) = ker(AA1).

(€) range(A1A) & ker(ATA) = F".

() range(AA") & ker(AAT) = ™.

I A=A+ Ay ++ A, AA; = 0, and AA7 =0, for all i,j = 1, k, i # j,
then AT = Al + A} + .. + AL

If Ais an mxr matrix of rank r and B is an rxn matrix of rank r, then (AB)T = BT AT,
(A7 A)T = Al(A")T; (A4°) = (47141,

[(ijgs@] Each one of the following conditions is necessary and sufficient for (AB)! =

(#) range(BB*A*) C range(A*) and range(A*AB) C range(B).
(#) ATABB* and A"ABB' are both Hermitian matrices.

(&) ATABB*A* = BB*A* and BBIA*AB = A" AB.

(@) ATABB*A*ABB' = BB*A*A.

(#) ATAB = B(AB)'AB and BB'A* = A"AB(AB)'.

(A® B) = A" @ B, where ® denotes the Kronecker product.
Al= lim A%(al + A4")"" = lim(al + 4°4) A"

- iA'([ FAA)T = i(” ATA)IA

(Continuity of pseudo-inverse) Suppose that A € F™*" and E € F™*", where F'
CorR. Then Jim (A + E)' = A" if and only if there is € > 0 such that rank(A+ E)
rank(A) when ||E||; < e

Let A € C™*" be of rank r where 0 < r < min{m,n}. Suppose that A can be

partitioned as
An Arz
A ,
[Az; An

where Ay; € C"™" and rank(Ay;) = r. Then

. [A:.xA:_\ A:.XA;,] )
AL XA ALXA;

where

X = (AnAf + Apd,) " An (A An + 45, Ay)
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1. Introduction

—
In this paper we exiend some results from [15] to infinite-dimensional settings. Among other things, we obtain the.
reverse order law for the Moore-Penrose inverse as a corollary. We use the matrix form of a linear bounded operator, and
ihis matrix fom i induced by some natural decompoitions f Hibert spces
the Introduction we fors wo auxiliary results. In Section 2 we present the results related to the
reverse oder e for the Moore.enros Invrse of Hlbert Space operaors wih cosed ange. The preset paper s the
extension of results from [15] to infinte-dimensional seftings.

2. Reverse order law

In this section we prove the results concerning the reverse order law for the Moore-Penrose inverse.

be Hilbert spaces, and let A € L (Y., 2), B € £(X, Y) be such that A, B, AB have closed ranges. Then the

following statements hald:

@ AB(AB)! = ABB'A' &> A*AB = BB'A*AB & R(A"AB) S R(B) & B'A' € (AB)(1,2,3);
] (AB) AB=BIATAB & ABB* = ABB*A'A & R(BB*A") € R(A") & B'AT ¢ (AB){1,2,4);
1 el samens e vl

1AT;

O Wt = A8 A and Ay A =slatas;
f A*AB = BBIA"AB and ABB" = ABB*AlA
97 R (K28 £ R(8)and R(B Ay £ ROA)

Proof. The operators 4 and B have the same matrix representations as in the previous theorem. The following products
will be useful:

A1By 0O it By' 0 AT By'A}D' 0
an=[A0 ] amt [ W8 ] wa[B0T 0]

>

First, we find the equivalent expressions for our statements in terms of Ay, A2 and By
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@) 1 AB(AB)! = ABB'AT & A1B1(A1B1)' = A1ATD . Here AiB1(A1By)' is Hermitian, 50 [A1A7, D *
2. A"AB = BBTA*AB ¢ A3A; =0.
3. Notice that R(A"AB) C R(B) if and only if BE'A*AB = A*AB,
10w check properly he enrese equatons, then we see tha. BIAI € (AB)(L2.3) & AATD 1A = Ay and
[A145,07"=0.

Now, we prove the following: 142, 4=2 and 1= 4,
We prove 1 ¢ 2. Notice that

MBIAMBY = AADT & (B = (1B AATD
The last statement s obtined by multiplying the first expression by (4,8, from th let sid, or multplyng the second
expression by A1B from the left side, and using A1A7 = A1 By By A7. Now, there s a chain of the equivalences:
AiB) = (ABY'MAIDT & (ABY (AA] + A2A3) = (A1 B) A AT
& (MB)AAY & R(AA3) CN((M1B))

© RA)CN(AMB)') & BiAjA @ AjA=0.

Therefore, we have just proved that 1

Now we prove 1= 4. If we multiply A{ By(4;B1)! = A;AD~" by A,B from the right side, we get AAD-1A; =
Thus, 4 holds

i, ve prove 42 1 ALAD 1= and [A147 07110, then AiAids =Dy
that A, (A1) C N(A2A) =N(A3). 50 AAr =0. Thus, 2 holds,

Mot the cqualence 3 .4 roved n 3 0.

VAT AL + Az A3Ay, implying

(6) 1. (AB)'AB = B'ATAB < (4181)'A1By = By AD~A1B,. Moreover, (41B)'A1By is Hermitian, so (818}, A1~ Ayl =

o.
2. ABB" = ABB*A'A > AByBjATD ' Ay = A1B1B} and A(B\BjATD A,

A o
3. Notice that R(BB*A") C R(A") i and only if A'ABBA* = BB A", which is equivlent to ABB*AA = ABB". Hence,

4. The Penrose equarions imply that: BTAT € (AB)(1,2,4) & A|ATD~Ay = Ay and [8,B]. A{D~'Ay]=0.

We prove 154521

Stppose that 1 e, I we mutiply (A.Bn AiBy = By A{D='A1B1 by AiBy from the left side, we obtain A;
A A0 Ay, Furthermore, (8485, A D11 =0 holds. Therelore, 1 =4,

Suppose that 4 holds. Obviously. A,R\R‘A‘n 1Ay = AyA;D~1A\B1B; = A, B B;. Thus, the first equality of 2 holds. The
second equality of 2 also holds, since AD~"A2 =0 & AyA;D~ Ay = Ar, which is shown in the proof of Theorem 2.1. Here
we use again (8187, A{D~Ar] = 0. Consequently, 4= 2.

In order to prove that 2 = 1, we multiply AiBiB{A{D~'Ar = AiB1B] by (AiBy)! from the left side. It fol-
lows that BEATD 1Ay (ms,ﬂmu.s' 50 (A1B)! 1By = B{ATD™A1(B)~" which is equivalent to (418118

o 5. Hence, 2>

" Nolee that 4.5 e prod i 8]

Finally, the part (c) follows from the parts (a) and (b). O

We also prove the following result,

‘Theorem 2.3 Let X, Y, Z be Hilbert spaces, and let A & L(Y. Z), B € L(X.Y) be such that A, B, AB have closed ranges. Then we
have!

@ AB(AB)'A = ABB' > A*ABB' = BB'A*A & R(A"AB) C R(B) & B'A' € (AB)(1,2,3)
7 B(AB)!AB = A1AB  A1ABB* = BB*A'A & R(BB*A®) C R(A*) & BIAT € (AB){1,2,4)
¢ The following three statements are equivalent:

o By = aiAT
@] AB(AB)'A = ABB and B(AB)!AB = A'AB;
@ A*ABB! = BBIA*A and AIABB" = BB*A'A

Proof. The operators A and B have the same matrix representations as in the previous theorem. First, we find equivalent
expressions, in the terms of A1, Az and By, for our assumptions,
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e yields statements with < 70 identities in < 18 basic operators
e cofactor representations consist of < 226 terms

e all proofs take ~15 seconds altogether

Recent results in operator theory (g TR LT
o they: We use [...] decompositions of Hilbert spaces

e we: purely algebraic proofs = our proofs generalise results

Discovering new results (Cvetkovié¢-lli¢, H., Hossein Poor, Milosevi¢, Raab, Regensburger '21)

Triple reverse order law (Harwig'ss) A, B, C matrices.

(ABC)T = CTBTAT
=
PQP =P, R(A*AP) =R(Q*), R(CC*P*) =R(Q)
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e we: purely algebraic proofs = our proofs generalise results

Discovering new results (Cvetkovié¢-lli¢, H., Hossein Poor, Milosevi¢, Raab, Regensburger '21)

Triple reverse order law (Miozevic'19) A, B, C elements in C*-algebra R
with A, B, C, ABC MP-invertible.

(ABC)T = CTBTAT

—
PQP=P, A'APR =QR, CCPR =QR

with P = ATABCC!, Q = CC'BtATA
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Handbook of Linear Algebra [(ARCANEE VR B

e yields statements with < 70 identities in < 18 basic operators
e cofactor representations consist of < 226 terms

e all proofs take ~15 seconds altogether

Recent results in operator theory (g TR LT
o they: We use [...] decompositions of Hilbert spaces

e we: purely algebraic proofs = our proofs generalise results

Discovering new results (Cvetkovié¢-lli¢, H., Hossein Poor, Milosevi¢, Raab, Regensburger '21)

Triple reverse order law (...21) A, B, C elements in ring R
with A, B, C, ABC MP-invertible.

(ABC)f = CTB Af

=
PQP=P, A*APR D Q'R , CCP*R C QR

with P = ATABCCT, Q= CCiB ATA
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What about your problems...?
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