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Why noncommutative Grébner bases?

Ideal theoretic problems Studying operator statements
o Ideal membershi e Model lin. operators
P by noncomm. polies
e Elimination ideal T
tion ideals e Simplify and prove
° |dea|/suba|gebra operator statements
intersections e Validity of first-order
° operator statements
—
nc ideal membership
(Helton, Stankus, Wavrik '98, Schmitz,
(Mora '85, Borges, Borges '98, Levandovskyy '20, Raab, Regensburger,
Nordbeck '98) Hossein Poor '21, H, Raab, Regensburger '22)

Studying finitely presented algebras
If A = K(X|R), then Grobner bases allow to

e decide whether A is trivial, commutative, finite dim.,...
e compute K-basis of A

e decide word problem f L gin A
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Free monoid (X) [((ARGREIITEEE )

e finite words (including empty word 1) over X

e concatenation X - X2 = X1X2 # X2X1 = X2 X
Free algebra K(X) [(NVEIGIEIRS]

e K-vector space with basis (X)
e cymy - comy = (cicz)(mymy), with ¢; € K,my € (X)
e For F C K(X),

(F) = {Z aifib; | ai, by € K(X), f; € F}

If X| > 1, then K(X) is not Noetherian!
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Basic definitions
m=<m’ = amb <am’b

= total, Well—founded,-mj on (X)

1t(f)

= f = 4+ smaller terms

le(f)  Im(f)
Polynomial reduction

Let f, g € K(X) with g # 0 and G C K(X).
Reduction by g: If 3a,b € (X) : lm(agb) = lm(f), then

le(f
fooy f— B,
le(g)
Example: f=xyzy+xz, g=yz—1

f —g Tf—xgy=xz+xy
Reduction by G:  f —¢ f’ = dgeG:f—gf

Since < is well-founded, — ¢ is terminating.
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Grobner bases

Generating set G of ideal I C K(X) s.t. —¢ is confluent

Equiv. characterisations [ CRIEREI JTH FH IR

& LM(I) = LM(G)
e fel iff f5g0
& {m-+I|misin normal form w.r.t. =g} is a K-basis of K(X)/I

K-basis: K-basis of K(X | R) is given by K-basis of K(X)/(R)
Commutativity: K(X | R) is comm. iff  [x;,x;] € (R) for all i <j

Algebraicity: p € K(X | R) is alg. iff (R+(p—y))NKyl #0
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Grobner bases and the word problem
Not all fin. gen. ideals in K(X) have finite Grébner bases!

= |deal membership (and many other problems) in K(X)
only semidecidable

Well-behaved special cases

e dimg (K(X)/I) < oo = every minimal GB of I is finite

e I homogeneous and finitely generated = ideal membership
decidable

e Many infinite GBs are finitely parametrisable = ideal membership
decidable

e Verifying ideal membership is always possible in finite time, and in
practice this is often all we need.
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Ambiguities & S-polynomials

Overlap ambiguity

f = — + -
g= -

Inclusion ambiguity

g = mommmm— -

e Central part has to be non-trivial (coprime criterion)

f mm — mem g € SPol(f, g)

wm fmm —g € SPol(f,g)

e S-polynomials are not unique but finite!

e xxyx and xy have two ambiguities: XXYX XXYX
Xy Xy
e xyxy has an (overlap) ambiguity with itself: Xyxy

Xyxy



Buchberger’s algorithm

Diamond lemma (Bergman '78)

G C K(X) is GB of (G) iff ¥ S-poly pof G:p =g 0



Buchberger’s algorithm

Diamond lemma (Bergman '78)

G C K(X) is GB of (G) iff ¥ S-poly pof G:p =g 0

f1,...,fr € K(X) 9i

N . . 4 New polynomial
Grobner basis (@) from pair @
\/
9j
- o
_

Reduction



Buchberger’s algorithm

Diamond lemma (Bergman '78)

G C K(X) is GB of (G) iff ¥ S-poly pof G:p =g 0

f],...,fT€K<X> gi

N . . 4 New polynomial
Grobner basis (@) from pair @
\/

9j

£0

Reduction

1. Selection: fair strategy  “Every S-poly is selected eventually”



Buchberger’s algorithm

Diamond lemma (Bergman '78)

G C K(X) is GB of (G) iff ¥ S-poly pof G:p =g 0

f],...,fT€K<X> gi
N . . 4 New polynomial
Grobner basis (@) from pair
\/
9j

70 ©)

- Reduction

1. Selection: fair strategy  “Every S-poly is selected eventually”
2. Construction: form S-polynomials from ambiguities

3. Reduction: reduction using (partial) Grobner basis



Software
Bergman: Grobner bases in noncommutative algebras and in

modules over them (Backelin et al. '06)

Letterplace: SINGULAR package for noncommutative Grobner bases
(4 cofactor repr.) in free algebras, finitely presented algebras, and
modules. Allows computations over Z (Levandovskyy, La Scala '09)

Magma: Noncommutative F4 algorithm (steel ~'09)

NCAlgebra: MATHEMATICA package for simplification and
reduction modulo noncommutative Grobner bases (Helton, Stankus '01)

GBNP: GAP package for noncommutative Grobner bases for free
and path algebras (cohen, Gijsbers '03)

OperatorGB: MATHEMATICA and SAGEMATH package for
noncommutative Grébner bases (+ cofactor repr.) and for
automatically proving operator statements (H., Raab, Regensburger '19)

SignatureGB (soon): SAGEMATH package for noncommutative
signature Grobner bases
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7 (
Efficient computation Expanding applicability
~ Linear algebra reductions ~ Coefficient rings
(Steel ~'09, Xiu '12) (Mikhalev, Zolotykh '98,

~ Signature-based Levandovskyy, Metzlaff, Abou Zeid

'20)

algorithms (H., Verron '22)
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Linear algebra reductions — F4

B  Use linear algebra for polynomial reduction!

T =

e Allows to reduce many S-polies simultaneously

1 Say we want to reduce {p1,...,Pm}

2 Find multiples of reducers needed for
reductions (Symbolic preprocessing) ~~
{a1g1b1,..., akgrbi}

3 Form Macaulay style matrix & row-reduce

4 Rows with new leading monomials get
added to Grdbner basis

e Exploit efficient (sparse) linear algebra
techniques and matrix structure

)

_f_>
N

*

|

eJ

P1
Pm
argiby

akgibi

10
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Signature-based algorithms — F5, GVW

A lot of time is spent on zero reductions.

Detect such useless computations! = Signatures

e Given fy,..., T € K(X) generating ideal I = (fy,...,f;)

e Free K(X)-bimodule £ = @_; K(X) ® K(X) with basis ¢1,...

e K(X)-bimodule homomorphism *: X — I &; — f;

STOEINCNO MR  sig(«) = leading monomial of o

(w.r.t. module order)
Sig-based algorithms work with pairs (sig(o), f) where &@ =
Regular operations

o>-pn= (0,f)£(n,g) = (0,f+g) (sig. preserved)

= regular reductions & S-polynomials

) Er

11



Buchberger’s algorithm with signatures
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L} Sig-Grobner New polynomial
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* Reduction
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Buchberger’s algorithm with signatures

(e1,f1), (er, fr)
L} Sig-Grobner New polynomial
basis from pair
#0
o

Reduction

1. Selection: fair strategy
2. Construction: regular S-polynomials

3. Reduction: regular reductions using (partial) Sig-Grobner basis



Buchberger’s algorithm with signatures

(E]af1)7"'7(£‘r7f1‘) (0_i gl)
L} Sig-Grébner ®/\
basis Y

Syzygy basis

New polynomial
from pair

Elimination criteria

1. Selection: fair strategy
2. Construction: regular S-polynomials

3. Reduction: regular reductions using (partial) Sig-Grobner basis
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Buchberger’s algorithm with signatures

OIliTs[id Signature Grdbner basis, allowing to recover

e a Grobner basis of the ideal (+ cofactor representations)

e a Grobner basis of the syzygy module

e Termination is very rare — even less common than standard
noncommutative GB algorithms

e Algorithm terminates iff ideal admits finite signature Grébner
basis

e Experimental data suggests performance improvement

K]
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Noncommutative Grobner bases over rings

Setting

R(X)...free algebra over comm. PID (e.g. R =Z)
As in the field case, but now also considering coefficients, that is
fogf < da,be(X):Im(f) =Im(agb) & lc(g) | lc(f)

Grobner bases

Different notions, but most relevant are strong Grébner bases.

Definition: G C1I st. f5gO0forall fel

14
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Problems over rings

S-polynomials are not enough!

Consider I = (f =3x,g = 2y) C Z(x,y,z)

e {f, g} not a strong GB: xy = fy — xg € [ is not reducible
e Adding SPol(f,g) = 0 does not help
e Look at ged(le(f),le(g)) = GPol(f, g) = xy

e {f, g,xy} still no strong GB: xz™y = fz"y — xz™y € I not reducible
= need to look at all combinations f msm lm(g) £ lm(f) mem g

SPol(f, g) and GPol(f, g) are infinite

= can only compute up to some degree bound

15



Buchberger’s algorithm over rings

f],...,fT€R<X> g
1

L} strong ®/\ New polynomial
Grobner basis N from pair

9j

©)

Reduction

1. Selection: fair strategy
2. Construction: S- and G-polynomials up to degree bound

3. Reduction: reduction using (partial) Grébner basis

16
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Conclusion

Introduction

e Very similar to commutative Grobner bases
e No termination guarantee ~» Problems only semidecidable

e Many well-behaved special cases

Advanced topics

e Linear algebra reductions ~ Performance improvement
e Signature-based algorithms

o Add module perspective to polynomials
o Grébner basis of ideal + syzygy module
o Elimination criteria ~ Performance improvement

e Grdbner bases over rings
o Infinitely many S- & G-polynomials
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