Gröbner bases in the free algebra: Introduction \& advanced topics

Clemens Hofstadler • Institute of Mathematics • University of Kassel Séminaire Calcul Formel
Limoges, France, January 12, 2023

UN IKASSEL
VERSIT ${ }^{\prime}$ T

Gröbner bases in the free algebra: Introduction

Why noncommutative Gröbner bases?

Why noncommutative Gröbner bases?

Ideal theoretic problems

- Ideal membership
- Elimination ideals
- Ideal/subalgebra intersections
- ...
(Mora '85, Borges, Borges '98, Nordbeck '98)

Why noncommutative Gröbner bases?

Ideal theoretic problems

- Ideal membership
- Elimination ideals
- Ideal/subalgebra intersections
- . .
(Mora '85, Borges, Borges '98, Nordbeck '98)

Studying finitely presented algebras
If $\mathcal{A}=\mathrm{K}\langle X \mid R\rangle$, then Gröbner bases allow to

- decide whether \mathcal{A} is trivial, commutative, finite dim.,...
- compute K-basis of \mathcal{A}
- decide word problem $\mathrm{f} \stackrel{?}{=} \mathrm{g}$ in \mathcal{A}

Why noncommutative Gröbner bases?

Ideal theoretic problems

- Ideal membership
- Elimination ideals
- Ideal/subalgebra intersections
- ...
(Mora '85, Borges, Borges '98, Nordbeck '98)

Studying operator statements

- Model lin. operators by noncomm. polies
- Simplify and prove operator statements
- Validity of first-order operator statements
nc ideal membership
(Helton, Stankus, Wavrik '98, Schmitz, Levandovskyy '20, Raab, Regensburger, Hossein Poor '21, H, Raab, Regensburger '22)

Studying finitely presented algebras
If $\mathcal{A}=\mathrm{K}\langle\mathrm{X} \mid \mathrm{R}\rangle$, then Gröbner bases allow to

- decide whether \mathcal{A} is trivial, commutative, finite dim.,...
- compute K-basis of \mathcal{A}
- decide word problem $\mathrm{f} \stackrel{\text { ? }}{=} \mathrm{g}$ in \mathcal{A}

Algebraic setting

Free monoid $\langle X\rangle$ (on $X=\left\{x_{1}, \ldots, x_{n}\right\}$)

- finite words (including empty word 1) over X
- concatenation $x_{1} \cdot x_{2}=x_{1} x_{2} \neq x_{2} x_{1}=x_{2} \cdot x_{1}$

Algebraic setting

Free monoid $\langle X\rangle$ (on $X=\left\{x_{1}, \ldots, x_{n}\right\}$)

- finite words (including empty word 1) over X
- concatenation $x_{1} \cdot x_{2}=x_{1} x_{2} \neq x_{2} x_{1}=x_{2} \cdot x_{1}$

Free algebra $\mathrm{K}\langle\mathrm{X}\rangle$ (over field K)

- K-vector space with basis $\langle\mathrm{X}\rangle$
- $c_{1} m_{1} \cdot c_{2} m_{2}=\left(c_{1} c_{2}\right)\left(m_{1} m_{2}\right)$, with $c_{i} \in K, m_{i} \in\langle X\rangle$

Algebraic setting

Free monoid $\langle X\rangle$ (on $X=\left\{x_{1}, \ldots, x_{n}\right\}$)

- finite words (including empty word 1) over X
- concatenation $x_{1} \cdot x_{2}=x_{1} x_{2} \neq x_{2} x_{1}=x_{2} \cdot x_{1}$

Free algebra $\mathrm{K}\langle\mathrm{X}\rangle$ (over field K)

- K-vector space with basis $\langle\mathrm{X}\rangle$
- $c_{1} m_{1} \cdot c_{2} m_{2}=\left(c_{1} c_{2}\right)\left(m_{1} m_{2}\right)$, with $c_{i} \in K, m_{i} \in\langle X\rangle$
- For $\mathrm{F} \subseteq \mathrm{K}\langle\mathrm{X}\rangle$,

$$
(F)=\left\{\sum a_{i} f_{i} b_{i} \mid a_{i}, b_{i} \in K\langle X\rangle, f_{i} \in F\right\}
$$

Algebraic setting

Free monoid $\langle X\rangle$ (on $X=\left\{x_{1}, \ldots, x_{n}\right\}$)

- finite words (including empty word 1) over X
- concatenation $x_{1} \cdot x_{2}=x_{1} x_{2} \neq x_{2} x_{1}=x_{2} \cdot x_{1}$

Free algebra $\mathrm{K}\langle\mathrm{X}\rangle$ (over field K)

- K-vector space with basis $\langle\mathrm{X}\rangle$
- $c_{1} m_{1} \cdot c_{2} m_{2}=\left(c_{1} c_{2}\right)\left(m_{1} m_{2}\right)$, with $c_{i} \in K, m_{i} \in\langle X\rangle$
- For $\mathrm{F} \subseteq \mathrm{K}\langle\mathrm{X}\rangle$,

$$
(F)=\left\{\sum a_{i} f_{i} b_{i} \mid a_{i}, b_{i} \in K\langle X\rangle, f_{i} \in F\right\}
$$

Caution If $|X|>1$, then $\mathrm{K}\langle X\rangle$ is not Noetherian!

Basic definitions

Momial order $=$ total, well-founded, compatible order \preceq on $\langle X\rangle$

Basic definitions
 $\mathrm{m} \preceq \mathrm{m}^{\prime} \Rightarrow \mathrm{amb} \preceq \mathrm{am}^{\prime} \mathrm{b}$

Momial order $=$ total, well-founded, compatible order \preceq on $\langle X\rangle$

Basic definitions

$$
m \preceq m^{\prime} \Rightarrow a m b \preceq a m^{\prime} b
$$

Momial order $=$ total, well-founded, compatible order \preceq on $\langle X\rangle$

$$
\Rightarrow \quad f=\frac{\operatorname{lt}(f)}{\operatorname{c} \cdot m}+\text { smaller terms }
$$

Basic definitions

$$
m \preceq m^{\prime} \Rightarrow a m b \preceq a m^{\prime} b
$$

Momial order $=$ total, well-founded, compatible order \preceq on $\langle X\rangle$

$$
\Rightarrow \quad \mathrm{f}=\underset{\operatorname{lc}(\mathrm{f}) \operatorname{lt} \cdot \mathrm{lm}(\mathrm{f})}{\frac{\operatorname{lt}(\mathrm{f})}{\mathrm{c} \cdot \mathrm{~m}}}+\text { smaller terms }
$$

Polynomial reduction
Let $f, g \in K\langle X\rangle$ with $g \neq 0$ and $G \subseteq K\langle X\rangle$.
Reduction by g : If $\exists \mathrm{a}, \mathrm{b} \in\langle X\rangle: \operatorname{lm}(\mathrm{agb})=\operatorname{lm}(\mathrm{f})$, then

$$
\mathrm{f} \rightarrow \rightarrow_{\mathrm{g}} \quad \mathrm{f}-\frac{\operatorname{lc}(\mathrm{f})}{\operatorname{lc}(\mathrm{g})} \cdot \mathrm{agb}
$$

Basic definitions

$$
m \preceq m^{\prime} \Rightarrow a m b \preceq a m^{\prime} b
$$

Momial order $=$ total, well-founded, compatible order \preceq on $\langle X\rangle$

$$
\Rightarrow \quad \mathrm{f}=\underset{\operatorname{lc}(\mathrm{f}) \operatorname{lm} \cdot \ln (\mathrm{f})}{\frac{\operatorname{lt}(\mathrm{f})}{\mathrm{c} \cdot \mathrm{~m}}}+\text { smaller terms }
$$

Polynomial reduction

Let $f, g \in K\langle X\rangle$ with $g \neq 0$ and $G \subseteq K\langle X\rangle$.
Reduction by $\mathrm{g}: ~ I f ~ \exists \mathrm{a}, \mathrm{b} \in\langle\mathrm{X}\rangle: \operatorname{lm}(\mathrm{agb})=\operatorname{lm}(\mathrm{f})$, then

$$
\mathrm{f} \rightarrow_{\mathrm{g}} \quad \mathrm{f}-\frac{\operatorname{lc}(\mathrm{f})}{\operatorname{lc}(\mathrm{g})} \cdot \mathrm{agb}
$$

Example: $\quad f=x y z y+x z, \quad g=y z-1$

Basic definitions

$$
m \preceq m^{\prime} \Rightarrow a m b \preceq a m^{\prime} b
$$

Momial order $=$ total, well-founded, compatible order \preceq on $\langle X\rangle$

$$
\Rightarrow \quad \mathrm{f}=\underset{\operatorname{lc}(\mathrm{f}) \operatorname{lm} \cdot \ln (\mathrm{f})}{\frac{\operatorname{lt}(\mathrm{f})}{\mathrm{c} \cdot \mathrm{~m}}}+\text { smaller terms }
$$

Polynomial reduction

Let $f, g \in K\langle X\rangle$ with $g \neq 0$ and $G \subseteq K\langle X\rangle$.
Reduction by $\mathrm{g}: ~ I f ~ \exists \mathrm{a}, \mathrm{b} \in\langle\mathrm{X}\rangle: \operatorname{lm}(\mathrm{agb})=\operatorname{lm}(\mathrm{f})$, then

$$
\mathrm{f} \rightarrow_{\mathrm{g}} \quad \mathrm{f}-\frac{\operatorname{lc}(\mathrm{f})}{\operatorname{lc}(\mathrm{g})} \cdot \mathrm{agb} .
$$

Example: $\quad f=x y z y+x z, \quad g=y z-1$

Basic definitions

$$
m \preceq m^{\prime} \Rightarrow a m b \preceq a m^{\prime} b
$$

Momial order $=$ total, well-founded, compatible order \preceq on $\langle X\rangle$

$$
\Rightarrow \quad \mathrm{f}=\underset{\operatorname{lc}(\mathrm{f}) \operatorname{lm} \cdot \ln (\mathrm{f})}{\frac{\operatorname{lt}(\mathrm{f})}{\mathrm{c} \cdot \mathrm{~m}}}+\text { smaller terms }
$$

Polynomial reduction

Let $f, g \in K\langle X\rangle$ with $g \neq 0$ and $G \subseteq K\langle X\rangle$.
Reduction by $\mathrm{g}: ~ I f ~ \exists \mathrm{a}, \mathrm{b} \in\langle\mathrm{X}\rangle: \operatorname{lm}(\mathrm{agb})=\operatorname{lm}(\mathrm{f})$, then

$$
\mathrm{f} \rightarrow_{\mathrm{g}} \quad \mathrm{f}-\frac{\operatorname{lc}(\mathrm{f})}{\operatorname{lc}(\mathrm{g})} \cdot \mathrm{agb} .
$$

Example:

$$
\begin{aligned}
& f=x y z y+x z, \quad g=y z-1 \\
& f \quad \rightarrow_{g} \quad f-x g y=x z+x y
\end{aligned}
$$

Basic definitions

$$
m \preceq m^{\prime} \Rightarrow a m b \preceq a m^{\prime} b
$$

Momial order $=$ total, well-founded, compatible order \preceq on $\langle X\rangle$

$$
\Rightarrow \quad f=\frac{\operatorname{lt}(\mathrm{f})}{\mathrm{c} \cdot \mathrm{~m}}+\mathrm{lc}(\mathrm{f}) \operatorname{lm}(\mathrm{f}) \mathrm{smaller} \text { terms }
$$

Polynomial reduction

Let $f, g \in K\langle X\rangle$ with $g \neq 0$ and $G \subseteq K\langle X\rangle$.
Reduction by g : If $\exists \mathrm{a}, \mathrm{b} \in\langle X\rangle: \operatorname{lm}(\mathrm{agb})=\operatorname{lm}(\mathrm{f})$, then

$$
\mathrm{f} \rightarrow_{\mathrm{g}} \quad \mathrm{f}-\frac{\operatorname{lc}(\mathrm{f})}{\operatorname{lc}(\mathrm{g})} \cdot \mathrm{agb} .
$$

Example:

$$
\begin{aligned}
& f=x y z y+x z, \quad g=y z-1 \\
& f \quad \rightarrow_{g} \quad f-x g y=x z+x y
\end{aligned}
$$

Reduction by G: $\mathrm{f} \rightarrow \mathrm{G} \mathrm{f}^{\prime}$

$$
\exists g \in G: f \rightarrow_{g} f^{\prime}
$$

Basic definitions

$$
m \preceq m^{\prime} \Rightarrow a m b \preceq a m^{\prime} b
$$

Momial order $=$ total, well-founded, compatible order \preceq on $\langle X\rangle$

$$
\Rightarrow \quad \mathrm{f}=\underset{\operatorname{lc}(\mathrm{f}) \operatorname{lm} \cdot \ln (\mathrm{f})}{\frac{\operatorname{lt}(\mathrm{f})}{\mathrm{c} \cdot \mathrm{~m}}}+\text { smaller terms }
$$

Polynomial reduction

Let $f, g \in K\langle X\rangle$ with $g \neq 0$ and $G \subseteq K\langle X\rangle$.
Reduction by g : If $\exists \mathrm{a}, \mathrm{b} \in\langle X\rangle: \operatorname{lm}(\mathrm{agb})=\operatorname{lm}(\mathrm{f})$, then

$$
\mathrm{f} \rightarrow_{\mathrm{g}} \quad \mathrm{f}-\frac{\operatorname{lc}(\mathrm{f})}{\operatorname{lc}(\mathrm{g})} \cdot \mathrm{agb} .
$$

Example:

$$
\begin{aligned}
& f=x y z y+x z, \quad g=y z-1 \\
& f \quad \rightarrow_{g} \quad f-x g y=x z+x y
\end{aligned}
$$

Reduction by $\mathrm{G}: ~ \mathrm{f} \rightarrow_{\mathrm{G}} \mathrm{f}^{\prime} \quad \Longleftrightarrow \quad \exists \mathrm{g} \in \mathrm{G}: \mathrm{f} \rightarrow_{\mathrm{g}} \mathrm{f}^{\prime}$
Observe Since \preceq is well-founded, \rightarrow_{G} is terminating.

Gröbner bases

Definition Generating set G of ideal $\mathrm{I} \subseteq \mathrm{K}\langle\mathrm{X}\rangle$ s.t. \rightarrow_{G} is confluent

Gröbner bases

Definition Generating set G of ideal $\mathrm{I} \subseteq \mathrm{K}\langle\mathrm{X}\rangle$ s.t. \rightarrow_{G} is confluent
Equiv. characterisations G is a Gröbner basis of I
$\Longleftrightarrow \mathrm{LM}(\mathrm{I})=\mathrm{LM}(\mathrm{G})$
$\Longleftrightarrow \mathrm{f} \in \mathrm{I}$ iff $\mathrm{f} \stackrel{*}{\longrightarrow}_{\mathrm{G}} 0$
$\Longleftrightarrow\left\{\mathrm{m}+\mathrm{I} \mid \mathrm{m}\right.$ is in normal form w.r.t. $\left.\rightarrow_{\mathrm{G}}\right\}$ is a K -basis of $\mathrm{K}\langle\mathrm{X}\rangle / \mathrm{I}$

Gröbner bases

Definition Generating set G of ideal $\mathrm{I} \subseteq \mathrm{K}\langle\mathrm{X}\rangle$ s.t. \rightarrow_{G} is confluent
Equiv. characterisations G is a Gröbner basis of I
$\Longleftrightarrow \mathrm{LM}(\mathrm{I})=\mathrm{LM}(\mathrm{G})$
$\Longleftrightarrow \mathrm{f} \in \mathrm{I}$ iff $\mathrm{f} \xrightarrow{*}_{\mathrm{G}} 0$
$\Longleftrightarrow\left\{\mathrm{m}+\mathrm{I} \mid \mathrm{m}\right.$ is in normal form w.r.t. $\left.\rightarrow_{\mathrm{G}}\right\}$ is a K -basis of $\mathrm{K}\langle\mathrm{X}\rangle / \mathrm{I}$

Applications

K-basis: K-basis of $K\langle X \mid R\rangle$ is given by K-basis of $K\langle X\rangle /(R)$
Commutativity: $K\langle X \mid R\rangle$ is comm. iff $\quad\left[x_{i}, x_{j}\right] \in(R)$ for all $i<j$
Algebraicity: $p \in K\langle X \mid R\rangle$ is alg. iff $(R+(p-y)) \cap K[y] \neq \emptyset$

Gröbner bases and the word problem

Caution Not all fin. gen. ideals in $\mathrm{K}\langle X\rangle$ have finite Gröbner bases!

Gröbner bases and the word problem

Caution Not all fin. gen. ideals in $\mathrm{K}\langle X\rangle$ have finite Gröbner bases!
\Rightarrow Ideal membership (and many other problems) in $\mathrm{K}\langle X\rangle$ only semidecidable

Gröbner bases and the word problem

Caution Not all fin. gen. ideals in $\mathrm{K}\langle X\rangle$ have finite Gröbner bases!
\Rightarrow Ideal membership (and many other problems) in $\mathrm{K}\langle\mathrm{X}\rangle$ only semidecidable

Well-behaved special cases

- $\operatorname{dim}_{\mathrm{K}}(\mathrm{K}\langle\mathrm{X}\rangle / \mathrm{I})<\infty \Rightarrow$ every minimal GB of I is finite
- I homogeneous and finitely generated \Rightarrow ideal membership decidable
- Many infinite GBs are finitely parametrisable \Rightarrow ideal membership decidable
- Verifying ideal membership is always possible in finite time, and in practice this is often all we need.

Ambiguities \& S-polynomials

Overlap ambiguity

$$
\mathrm{f}--\mathrm{g} \in \operatorname{SPol}(\mathrm{f}, \mathrm{~g})
$$

Inclusion ambiguity

$$
\begin{array}{ll}
\mathrm{f}= & +\cdots \\
\mathrm{g}= & +\cdots
\end{array}
$$

$$
f=-g \in \operatorname{SPol}(f, g)
$$

Ambiguities \& S-polynomials

Overlap ambiguity

Inclusion ambiguity

$\square f-g \in \operatorname{SPol}(f, g)$

Remarks

- Central part has to be non-trivial (coprime criterion)
- S-polynomials are not unique but finite!

Ambiguities \& S-polynomials

Overlap ambiguity

Inclusion ambiguity

$$
\begin{array}{ll}
\mathrm{f}= & +\cdots \\
\mathrm{g}= & \\
& +\cdots
\end{array}
$$

$$
f-g \in \operatorname{SPol}(f, g)
$$

Remarks

- Central part has to be non-trivial (coprime criterion)
- S-polynomials are not unique but finite!
- xxyx and $x y$ have two ambiguities:

$x x y x$
$x y$

Ambiguities \& S-polynomials

Overlap ambiguity

Inclusion ambiguity

$$
\begin{array}{ll}
\mathrm{f}= & +\cdots \\
\mathrm{g}= & \\
& +\cdots
\end{array}
$$

$$
f-g \in \operatorname{SPol}(f, g)
$$

Remarks

- Central part has to be non-trivial (coprime criterion)
- S-polynomials are not unique but finite!
- xxyx and xy have two ambiguities:
- xyxy has an (overlap) ambiguity with itself:

Buchberger's algorithm

Diamond lemma (Bergman '78)
$\mathrm{G} \subseteq \mathrm{K}\langle\mathrm{X}\rangle$ is GB of $(\mathrm{G}) \quad$ iff $\quad \forall$ S-poly p of $\mathrm{G}: \mathrm{p} \xrightarrow{*}_{\mathrm{G}} 0$

Buchberger's algorithm

Diamond lemma (Bergman '78)

$$
\mathrm{G} \subseteq \mathrm{~K}\langle\mathrm{X}\rangle \text { is } \mathrm{GB} \text { of }(\mathrm{G}) \quad \text { iff } \quad \forall \text { S-poly } \mathrm{p} \text { of } \mathrm{G}: \mathrm{p} \stackrel{*}{G}_{\mathrm{G}} 0
$$

Buchberger's algorithm

Diamond lemma (Bergman '78)

$$
\mathrm{G} \subseteq \mathrm{~K}\langle X\rangle \text { is } \mathrm{GB} \text { of }(\mathrm{G}) \quad \text { iff } \quad \forall \text { S-poly } \mathrm{p} \text { of } \mathrm{G}: \mathrm{p} \xrightarrow{*} \mathrm{G} 0
$$

1. Selection: fair strategy "Every S-poly is selected eventually"

Buchberger's algorithm

Diamond lemma (Bergman '78)

$$
\mathrm{G} \subseteq \mathrm{~K}\langle X\rangle \text { is } \mathrm{GB} \text { of }(\mathrm{G}) \quad \text { iff } \quad \forall \text { S-poly } \mathrm{p} \text { of } \mathrm{G}: \mathrm{p} \xrightarrow{*}_{\mathrm{G}} 0
$$

1. Selection: fair strategy "Every S-poly is selected eventually"
2. Construction: form S-polynomials from ambiguities
3. Reduction: reduction using (partial) Gröbner basis

Software

- Bergman: Gröbner bases in noncommutative algebras and in modules over them (Backelin et al. '06)
- Letterplace: Singular package for noncommutative Gröbner bases (+ cofactor repr.) in free algebras, finitely presented algebras, and modules. Allows computations over \mathbb{Z} (Levandovsky, La Scala '09)
- Magma: Noncommutative F4 algorithm (Steel ~ 09)
- NCAlgebra: Mathematica package for simplification and reduction modulo noncommutative Gröbner bases (Hetton, Stankus '01)
- GBNP: GAP package for noncommutative Gröbner bases for free and path algebras (Cohen, Gijsbers '03)
- OperatorGB: Mathematica and SageMath package for noncommutative Gröbner bases (+ cofactor repr.) and for automatically proving operator statements (H., Rabb, Regensburger '19)
- SignatureGB (soon): SAGEMATH package for noncommutative signature Gröbner bases

Gröbner bases in the free algebra: Advanced topics

Hot topics

Hot topics

Efficient computation

\rightsquigarrow Linear algebra reductions
(Steel ~'09, Xiu '12)
\rightsquigarrow Signature-based
algorithms (H., Verron '22)

Hot topics

Efficient computation

\rightsquigarrow Linear algebra reductions
(Steel ~'09, Xiu '12)
\rightsquigarrow Signature-based algorithms (H., Verron '22)

Expanding applicability
\rightsquigarrow Coefficient rings
(Mikhalev, Zolotykh '98,
Levandovskyy, Metzlaff, Abou Zeid '20)

Linear algebra reductions - F4

Idea Use linear algebra for polynomial reduction!

Linear algebra reductions - F4

Idea Use linear algebra for polynomial reduction!

$$
\mathrm{f} \rightarrow_{\mathrm{a}, \mathrm{~g}, \mathrm{~b}} \mathrm{f}^{\prime} \quad \Longleftrightarrow \quad\binom{-\mathrm{f}}{-\mathrm{agb}-}
$$

Linear algebra reductions - F4

Idea Use linear algebra for polynomial reduction!

$$
\mathrm{f} \rightarrow_{\mathrm{a}, \mathrm{~g}, \mathrm{~b}} \mathrm{f}^{\prime} \quad \Longleftrightarrow \quad\binom{-\mathrm{f}-}{-\mathrm{agb}-} \stackrel{\text { RRef }}{\rightsquigarrow}\binom{\mathrm{f}-}{-\mathrm{f}^{\prime}-}
$$

Linear algebra reductions - F4

Idea Use linear algebra for polynomial reduction!

$$
\mathrm{f} \rightarrow \mathrm{a}, \mathrm{~g}, \mathrm{~b} \mathrm{f}^{\prime} \quad \Longleftrightarrow \quad\binom{-\mathrm{f}-}{-\mathrm{agb}-} \stackrel{\text { RRef }}{\rightsquigarrow}\binom{-\mathrm{f}-}{-\mathrm{f}^{\prime}-}
$$

- Allows to reduce many S-polies simultaneously

1 Say we want to reduce $\left\{p_{1}, \ldots, p_{m}\right\}$
2 Find multiples of reducers needed for reductions (Symbolic preprocessing) \rightsquigarrow $\left\{a_{1} g_{1} b_{1}, \ldots, a_{k} g_{k} b_{k}\right\}$
3 Form Macaulay style matrix \& row-reduce
4 Rows with new leading monomials get added to Gröbner basis

Linear algebra reductions - F4

Idea Use linear algebra for polynomial reduction!

$$
f \rightarrow_{\mathrm{a}, \mathrm{~g}, \mathrm{~b}} \mathrm{f}^{\prime} \quad \Longleftrightarrow \quad\left(\begin{array}{cc}
- & \mathrm{f}- \\
-\mathrm{agb}-
\end{array}\right) \stackrel{\text { RRef }}{\rightsquigarrow}\binom{-\mathrm{f}-}{-\mathrm{f}^{\prime}-}
$$

- Allows to reduce many S-polies simultaneously

1 Say we want to reduce $\left\{p_{1}, \ldots, p_{m}\right\}$
2 Find multiples of reducers needed for reductions (Symbolic preprocessing) \rightsquigarrow $\left\{a_{1} g_{1} b_{1}, \ldots, a_{k} g_{k} b_{k}\right\}$

$$
\left(\begin{array}{cccc}
* & \cdots & \cdots & * \\
\vdots & & & \vdots \\
* & \cdots & \cdots & * \\
\hline * & \cdots & \cdots & * \\
\vdots & & & \vdots \\
* & \cdots & \cdots & *
\end{array}\right)
$$

3 Form Macaulay style matrix \& row-reduce
4 Rows with new leading monomials get added to Gröbner basis

Linear algebra reductions - F4

Idea Use linear algebra for polynomial reduction!

$$
f \rightarrow_{\mathrm{a}, \mathrm{~g}, \mathrm{~b}} \mathrm{f}^{\prime} \quad \Longleftrightarrow \quad\left(\begin{array}{cc}
- & \mathrm{f}- \\
-\mathrm{agb}-
\end{array}\right) \stackrel{\text { RRef }}{\rightsquigarrow}\binom{-\mathrm{f}-}{-\mathrm{f}^{\prime}-}
$$

- Allows to reduce many S-polies simultaneously

1 Say we want to reduce $\left\{p_{1}, \ldots, p_{m}\right\}$
2 Find multiples of reducers needed for reductions (Symbolic preprocessing) \rightsquigarrow $\left\{a_{1} g_{1} b_{1}, \ldots, a_{k} g_{k} b_{k}\right\}$
3 Form Macaulay style matrix \& row-reduce
4 Rows with new leading monomials get added to Gröbner basis

$$
\begin{aligned}
& \left(\begin{array}{cccc|c}
* & \cdots & \cdots & * & p_{1} \\
\vdots & & & \vdots & \vdots \\
* & \cdots & \cdots & * & p_{m} \\
* & \cdots & \cdots & * & a_{1} g_{1} b_{1} \\
\vdots & & & \vdots \\
* & \cdots & \cdots & *
\end{array}\right) \\
& a_{k} g_{k} b_{k}
\end{aligned}\left(\begin{array}{cccc}
1 & * & \cdots & * \\
& \ddots & \ddots & \vdots \\
& & \ddots & * \\
& & & 1
\end{array}\right)
$$

Linear algebra reductions - F4

Idea Use linear algebra for polynomial reduction!

$$
f \rightarrow_{\mathrm{a}, \mathrm{~g}, \mathrm{~b}} \mathrm{f}^{\prime} \quad \Longleftrightarrow \quad\left(\begin{array}{cc}
- & \mathrm{f}- \\
-\mathrm{agb}-
\end{array}\right) \stackrel{\text { RRef }}{\rightsquigarrow}\binom{-\mathrm{f}-}{-\mathrm{f}^{\prime}-}
$$

- Allows to reduce many S-polies simultaneously

1 Say we want to reduce $\left\{p_{1}, \ldots, p_{m}\right\}$
2 Find multiples of reducers needed for reductions (Symbolic preprocessing) \rightsquigarrow $\left\{a_{1} g_{1} b_{1}, \ldots, a_{k} g_{k} b_{k}\right\}$
3 Form Macaulay style matrix \& row-reduce
4 Rows with new leading monomials get added to Gröbner basis

- Exploit efficient (sparse) linear algebra techniques and matrix structure

$$
\left(\begin{array}{cccc|c}
* & \cdots & \cdots & * & p_{1} \\
\vdots & & & \vdots & \vdots \\
* & \cdots & \cdots & * & p_{m} \\
* & \cdots & \cdots & * & a_{1} g_{1} b_{1} \\
\vdots & & & \vdots & \vdots \\
* & \cdots & \cdots & * & a_{k} g_{k} b_{k}
\end{array}\right.
$$

$$
\begin{gathered}
\\
\\
\left(\begin{array}{cccc}
1 & * & \cdots & * \\
& \ddots & \ddots & \vdots \\
& & \ddots & * \\
& & & 1
\end{array}\right)
\end{gathered}
$$

Signature-based algorithms - F5, GVW

Observation A lot of time is spent on zero reductions.
Goal Detect such useless computations!

Signature-based algorithms - F5, GVW

Observation A lot of time is spent on zero reductions.
Goal Detect such useless computations! \Rightarrow Signatures

Signature-based algorithms - F5, GVW

Observation A lot of time is spent on zero reductions.
Goal Detect such useless computations! \Rightarrow Signatures

Setting

- Given $f_{1}, \ldots, f_{r} \in K\langle X\rangle$ generating ideal $I=\left(f_{1}, \ldots, f_{r}\right)$
- Free $\mathrm{K}\langle\mathrm{X}\rangle$-bimodule $\Sigma=\bigoplus_{i=1}^{r} \mathrm{~K}\langle\mathrm{X}\rangle \otimes \mathrm{K}\langle\mathrm{X}\rangle$ with basis $\varepsilon_{1}, \ldots, \varepsilon_{r}$
- $\mathrm{K}\langle X\rangle$-bimodule homomorphism ${ }^{-}: \Sigma \rightarrow \mathrm{I}, \varepsilon_{i} \mapsto \mathrm{f}_{\mathrm{i}}$

Signature-based algorithms - F5, GVW

Observation A lot of time is spent on zero reductions.
Goal Detect such useless computations! \Rightarrow Signatures

Setting

- Given $f_{1}, \ldots, f_{r} \in K\langle X\rangle$ generating ideal $I=\left(f_{1}, \ldots, f_{r}\right)$
- Free $\mathrm{K}\langle\mathrm{X}\rangle$-bimodule $\Sigma=\bigoplus_{i=1}^{r} \mathrm{~K}\langle\mathrm{X}\rangle \otimes \mathrm{K}\langle\mathrm{X}\rangle$ with basis $\varepsilon_{1}, \ldots, \varepsilon_{r}$
- $\mathrm{K}\langle X\rangle$-bimodule homomorphism ${ }^{-}: \Sigma \rightarrow \mathrm{I}, \varepsilon_{i} \mapsto \mathrm{f}_{\mathrm{i}}$

Signature of $\alpha \in \Sigma \quad \operatorname{sig}(\alpha)=$ leading monomial of α (w.r.t. module order)

Signature-based algorithms - F5, GVW

Observation A lot of time is spent on zero reductions.
Goal Detect such useless computations! \Rightarrow Signatures

Setting

- Given $f_{1}, \ldots, f_{r} \in K\langle X\rangle$ generating ideal $I=\left(f_{1}, \ldots, f_{r}\right)$
- Free $\mathrm{K}\langle X\rangle$-bimodule $\Sigma=\bigoplus_{i=1}^{r} \mathrm{~K}\langle X\rangle \otimes \mathrm{K}\langle X\rangle$ with basis $\varepsilon_{1}, \ldots, \varepsilon_{r}$
- K $\langle X\rangle$-bimodule homomorphism ${ }^{-}: \Sigma \rightarrow \mathrm{I}, \varepsilon_{i} \mapsto \mathrm{f}_{\mathrm{i}}$

Signature of $\alpha \in \Sigma \quad \operatorname{sig}(\alpha)=$ leading monomial of α (w.r.t. module order)

Sig-based algorithms work with pairs $(\operatorname{sig}(\alpha), f)$ where $\bar{\alpha}=f$

Signature-based algorithms - F5, GVW

Observation A lot of time is spent on zero reductions.
Goal Detect such useless computations! \Rightarrow Signatures

Setting

- Given $f_{1}, \ldots, f_{r} \in K\langle X\rangle$ generating ideal $I=\left(f_{1}, \ldots, f_{r}\right)$
- Free $\mathrm{K}\langle X\rangle$-bimodule $\Sigma=\bigoplus_{i=1}^{r} \mathrm{~K}\langle X\rangle \otimes \mathrm{K}\langle X\rangle$ with basis $\varepsilon_{1}, \ldots, \varepsilon_{r}$
- $\mathrm{K}\langle X\rangle$-bimodule homomorphism ${ }^{-}: \Sigma \rightarrow \mathrm{I}, \varepsilon_{i} \mapsto \mathrm{f}_{\mathrm{i}}$

Signature of $\alpha \in \Sigma \quad \operatorname{sig}(\alpha)=$ leading monomial of α (w.r.t. module order)

Sig-based algorithms work with pairs $(\operatorname{sig}(\alpha), f)$ where $\bar{\alpha}=f$

Regular operations

$$
\begin{aligned}
\sigma \succ \mu & \Rightarrow(\sigma, f) \pm(\mu, g)=:(\sigma, f \pm \mathrm{g}) \text { (sig. preserved) } \\
& \Rightarrow \text { regular reductions \& S-polynomials }
\end{aligned}
$$

Buchberger's algorithm with signatures

$$
\underbrace{\left(\varepsilon_{1}, \boldsymbol{f}_{1}\right), \ldots,\left(\varepsilon_{r}, f_{r}\right)}_{\substack{\text { Sig-Gröbner } \\ \text { basis }}} \underbrace{\left(\sigma_{i}, g_{i}\right)}_{(1)} \underbrace{\text { New polynomial }}_{\text {(} \left.\sigma_{j}, \boldsymbol{g}_{j}\right)} \text { (2) }
$$

1. Selection: fair strategy
2. Construction: regular S-polynomials
3. Reduction: regular reductions using (partial) Sig-Gröbner basis

Buchberger's algorithm with signatures

1. Selection: fair strategy
2. Construction: regular S-polynomials
3. Reduction: regular reductions using (partial) Sig-Gröbner basis

Buchberger's algorithm with signatures

1. Selection: fair strategy
2. Construction: regular S-polynomials
3. Reduction: regular reductions using (partial) Sig-Gröbner basis

Buchberger's algorithm with signatures

Output Signature Gröbner basis, allowing to recover

- a Gröbner basis of the ideal (+ cofactor representations)
- a Gröbner basis of the syzygy module

Remarks

- Termination is very rare - even less common than standard noncommutative GB algorithms
- Algorithm terminates iff ideal admits finite signature Gröbner basis
- Experimental data suggests performance improvement

Noncommutative Gröbner bases over rings

Setting
$R\langle X\rangle \ldots$ free algebra over comm. PID (e.g. $R=\mathbb{Z}$)

Noncommutative Gröbner bases over rings

Setting
$R\langle X\rangle \ldots$ free algebra over comm. PID (e.g. $R=\mathbb{Z}$)

Reductions

As in the field case, but now also considering coefficients, that is

$$
\mathrm{f} \rightarrow_{\mathrm{g}} \mathrm{f}^{\prime} \Longleftrightarrow \exists \mathrm{a}, \mathrm{~b} \in\langle\mathrm{X}\rangle: \operatorname{lm}(\mathrm{f})=\operatorname{lm}(\mathrm{agb}) \& \operatorname{lc}(\mathrm{~g}) \mid \operatorname{lc}(\mathrm{f})
$$

Noncommutative Gröbner bases over rings

Setting
$R\langle X\rangle \ldots$ free algebra over comm. PID (e.g. $R=\mathbb{Z}$)

Reductions

As in the field case, but now also considering coefficients, that is

$$
\mathrm{f} \rightarrow \mathrm{~g} \mathrm{f}^{\prime} \Longleftrightarrow \exists \mathrm{a}, \mathrm{~b} \in\langle\mathrm{X}\rangle: \operatorname{lm}(\mathrm{f})=\operatorname{lm}(\mathrm{agb}) \& \operatorname{lc}(\mathrm{~g}) \mid \operatorname{lc}(\mathrm{f})
$$

Gröbner bases

Different notions, but most relevant are strong Gröbner bases.
Definition: $\quad G \subseteq I$ s.t. $f \xrightarrow{*}_{G} 0$ for all $f \in I$

Problems over rings

Observation
S-polynomials are not enough!

Problems over rings

Observation S-polynomials are not enough!

Example Consider $I=(f=3 x, g=2 y) \subseteq \mathbb{Z}\langle x, y, z\rangle$

Problems over rings

Observation S-polynomials are not enough!

Example Consider $I=(f=3 x, g=2 y) \subseteq \mathbb{Z}\langle x, y, z\rangle$

- $\{f, g\}$ not a strong GB: $x y=f y-x g \in I$ is not reducible

Problems over rings

Observation S-polynomials are not enough!

Example Consider $I=(f=3 x, g=2 y) \subseteq \mathbb{Z}\langle x, y, z\rangle$

- $\{\mathrm{f}, \mathrm{g}\}$ not a strong GB: $x \mathrm{y}=\mathrm{fy}-\mathrm{xg} \in \mathrm{I}$ is not reducible
- Adding $\operatorname{SPol}(f, g)=0$ does not help

Problems over rings

Observation S-polynomials are not enough!

Example Consider $I=(f=3 x, g=2 y) \subseteq \mathbb{Z}\langle x, y, z\rangle$

- $\{\mathrm{f}, \mathrm{g}\}$ not a strong GB: $x \mathrm{y}=\mathrm{fy}-\mathrm{xg} \in \mathrm{I}$ is not reducible
- Adding $\operatorname{SPol}(f, g)=0$ does not help
- Look at $\operatorname{gcd}(\operatorname{lc}(f), \operatorname{lc}(\mathrm{g})) \Rightarrow \operatorname{GPol}(\mathrm{f}, \mathrm{g})=x y$

Problems over rings

Observation S-polynomials are not enough!

Example Consider $I=(f=3 x, g=2 y) \subseteq \mathbb{Z}\langle x, y, z\rangle$

- $\{\mathrm{f}, \mathrm{g}\}$ not a strong GB : $\mathrm{xy}=\mathrm{fy}-\mathrm{xg} \in \mathrm{I}$ is not reducible
- Adding $\operatorname{SPol}(\mathrm{f}, \mathrm{g})=0$ does not help
- Look at $\operatorname{gcd}(\operatorname{lc}(f), \operatorname{lc}(\mathrm{g})) \Rightarrow \operatorname{GPol}(\mathrm{f}, \mathrm{g})=x y$
- $\{f, g, x y\}$ still no strong $G B: x z^{n} y=f z^{n} y-x z^{n} y \in I$ not reducible

Problems over rings

Observation S-polynomials are not enough!

Example Consider $I=(f=3 x, g=2 y) \subseteq \mathbb{Z}\langle x, y, z\rangle$

- $\{\mathrm{f}, \mathrm{g}\}$ not a strong GB: $x \mathrm{y}=\mathrm{fy}-\mathrm{xg} \in \mathrm{I}$ is not reducible
- Adding $\operatorname{SPol}(\mathrm{f}, \mathrm{g})=0$ does not help
- Look at $\operatorname{gcd}(\operatorname{lc}(f), \operatorname{lc}(g)) \Rightarrow \operatorname{GPol}(f, g)=x y$
- $\{f, g, x y\}$ still no strong $G B: x z^{n} y=f z^{n} y-x z^{n} y \in I$ not reducible
\Rightarrow need to look at all combinations $\mathrm{f} \quad \operatorname{lm}(\mathrm{g}) \pm \operatorname{lm}(\mathrm{f}) _\mathrm{g}$

Problems over rings

Observation S-polynomials are not enough!

Example Consider $I=(f=3 x, g=2 y) \subseteq \mathbb{Z}\langle x, y, z\rangle$

- $\{\mathrm{f}, \mathrm{g}\}$ not a strong GB: $x \mathrm{y}=\mathrm{fy}-\mathrm{xg} \in \mathrm{I}$ is not reducible
- Adding $\operatorname{SPol}(f, g)=0$ does not help
- Look at $\operatorname{gcd}(\operatorname{lc}(f), \operatorname{lc}(g)) \Rightarrow \operatorname{GPol}(f, g)=x y$
- $\{f, g, x y\}$ still no strong $G B: x z^{n} y=f z^{n} y-x z^{n} y \in I$ not reducible
\Rightarrow need to look at all combinations $\mathrm{f} \quad \operatorname{lm}(\mathrm{g}) \pm \operatorname{lm}(\mathrm{f}) \quad \mathrm{g}$
Problem SPol(f, g) and GPol(f,g) are infinite \Rightarrow can only compute up to some degree bound

Buchberger's algorithm over rings

1. Selection: fair strategy
2. Construction: S- and G-polynomials up to degree bound
3. Reduction: reduction using (partial) Gröbner basis

Conclusion

Introduction

- Very similar to commutative Gröbner bases
- No termination guarantee \rightsquigarrow Problems only semidecidable
- Many well-behaved special cases

Conclusion

Introduction

- Very similar to commutative Gröbner bases
- No termination guarantee \rightsquigarrow Problems only semidecidable
- Many well-behaved special cases

Advanced topics

- Linear algebra reductions \rightsquigarrow Performance improvement
- Signature-based algorithms
- Add module perspective to polynomials
- Gröbner basis of ideal + syzygy module
- Elimination criteria \rightsquigarrow Performance improvement
- Gröbner bases over rings
- Infinitely many S- \& G-polynomials

