
Gröbner bases in the free algebra:
Introduction & advanced topics

Clemens Hofstadler · Institute of Mathematics · University of Kassel
Séminaire Calcul Formel
Limoges, France, January 12, 2023

0

Gröbner bases in the free algebra:
Introduction

Why noncommutative Gröbner bases?

Ideal theoretic problems

• Ideal membership

• Elimination ideals

• Ideal/subalgebra
intersections

• . . .

(Mora ’85, Borges, Borges ’98,
Nordbeck ’98)

Studying operator statements
• Model lin. operators

by noncomm. polies

• Simplify and prove
operator statements

• Validity of first-order
operator statements⇐⇒
nc ideal membership

(Helton, Stankus, Wavrik ’98, Schmitz,
Levandovskyy ’20, Raab, Regensburger,

Hossein Poor ’21, H, Raab, Regensburger ’22)

Studying finitely presented algebras
If A = K〈X | R〉, then Gröbner bases allow to

• decide whether A is trivial, commutative, finite dim.,. . .

• compute K-basis of A

• decide word problem f
?
= g in A

1

Why noncommutative Gröbner bases?

Ideal theoretic problems

• Ideal membership

• Elimination ideals

• Ideal/subalgebra
intersections

• . . .

(Mora ’85, Borges, Borges ’98,
Nordbeck ’98)

Studying operator statements
• Model lin. operators

by noncomm. polies

• Simplify and prove
operator statements

• Validity of first-order
operator statements⇐⇒
nc ideal membership

(Helton, Stankus, Wavrik ’98, Schmitz,
Levandovskyy ’20, Raab, Regensburger,

Hossein Poor ’21, H, Raab, Regensburger ’22)

Studying finitely presented algebras
If A = K〈X | R〉, then Gröbner bases allow to

• decide whether A is trivial, commutative, finite dim.,. . .

• compute K-basis of A

• decide word problem f
?
= g in A

1

Why noncommutative Gröbner bases?

Ideal theoretic problems

• Ideal membership

• Elimination ideals

• Ideal/subalgebra
intersections

• . . .

(Mora ’85, Borges, Borges ’98,
Nordbeck ’98)

Studying operator statements
• Model lin. operators

by noncomm. polies

• Simplify and prove
operator statements

• Validity of first-order
operator statements⇐⇒
nc ideal membership

(Helton, Stankus, Wavrik ’98, Schmitz,
Levandovskyy ’20, Raab, Regensburger,

Hossein Poor ’21, H, Raab, Regensburger ’22)

Studying finitely presented algebras
If A = K〈X | R〉, then Gröbner bases allow to

• decide whether A is trivial, commutative, finite dim.,. . .

• compute K-basis of A

• decide word problem f
?
= g in A

1

Why noncommutative Gröbner bases?

Ideal theoretic problems

• Ideal membership

• Elimination ideals

• Ideal/subalgebra
intersections

• . . .

(Mora ’85, Borges, Borges ’98,
Nordbeck ’98)

Studying operator statements
• Model lin. operators

by noncomm. polies

• Simplify and prove
operator statements

• Validity of first-order
operator statements⇐⇒
nc ideal membership

(Helton, Stankus, Wavrik ’98, Schmitz,
Levandovskyy ’20, Raab, Regensburger,

Hossein Poor ’21, H, Raab, Regensburger ’22)

Studying finitely presented algebras
If A = K〈X | R〉, then Gröbner bases allow to

• decide whether A is trivial, commutative, finite dim.,. . .

• compute K-basis of A

• decide word problem f
?
= g in A

1

Algebraic setting

Free monoid 〈X〉 (on X = {x1, . . . , xn})

• finite words (including empty word 1) over X

• concatenation x1 · x2 = x1x2 6= x2x1 = x2 · x1

Free algebra K〈X〉 (over field K)

• K-vector space with basis 〈X〉
• c1m1 · c2m2 = (c1c2)(m1m2), with ci ∈ K,mi ∈ 〈X〉
• For F ⊆ K〈X〉,

(F) =
{∑

aifibi | ai,bi ∈ K〈X〉, fi ∈ F
}

Caution If |X| > 1, then K〈X〉 is not Noetherian!

2

Algebraic setting

Free monoid 〈X〉 (on X = {x1, . . . , xn})

• finite words (including empty word 1) over X

• concatenation x1 · x2 = x1x2 6= x2x1 = x2 · x1

Free algebra K〈X〉 (over field K)

• K-vector space with basis 〈X〉
• c1m1 · c2m2 = (c1c2)(m1m2), with ci ∈ K,mi ∈ 〈X〉

• For F ⊆ K〈X〉,

(F) =
{∑

aifibi | ai,bi ∈ K〈X〉, fi ∈ F
}

Caution If |X| > 1, then K〈X〉 is not Noetherian!

2

Algebraic setting

Free monoid 〈X〉 (on X = {x1, . . . , xn})

• finite words (including empty word 1) over X

• concatenation x1 · x2 = x1x2 6= x2x1 = x2 · x1

Free algebra K〈X〉 (over field K)

• K-vector space with basis 〈X〉
• c1m1 · c2m2 = (c1c2)(m1m2), with ci ∈ K,mi ∈ 〈X〉
• For F ⊆ K〈X〉,

(F) =
{∑

aifibi | ai,bi ∈ K〈X〉, fi ∈ F
}

Caution If |X| > 1, then K〈X〉 is not Noetherian!

2

Algebraic setting

Free monoid 〈X〉 (on X = {x1, . . . , xn})

• finite words (including empty word 1) over X

• concatenation x1 · x2 = x1x2 6= x2x1 = x2 · x1

Free algebra K〈X〉 (over field K)

• K-vector space with basis 〈X〉
• c1m1 · c2m2 = (c1c2)(m1m2), with ci ∈ K,mi ∈ 〈X〉
• For F ⊆ K〈X〉,

(F) =
{∑

aifibi | ai,bi ∈ K〈X〉, fi ∈ F
}

Caution If |X| > 1, then K〈X〉 is not Noetherian!
2

Basic definitions

Momial order = total, well-founded, compatible order � on 〈X〉

⇒ f = c · m + smaller terms
lm(f)

lt(f)

lc(f)
Polynomial reduction

Let f,g ∈ K〈X〉 with g 6= 0 and G ⊆ K〈X〉.

Reduction by g: If ∃a,b ∈ 〈X〉 : lm(agb) = lm(f), then

f →g f −
lc(f)
lc(g)

· agb.

Example: f = xyzy+ xz, g = yz− 1234568

f →g f− xgy = xz+ xy

Reduction by G: f→G f
′ ⇐⇒ ∃g ∈ G : f→g f

′

Observe Since � is well-founded, →G is terminating.

3

Basic definitions

Momial order = total, well-founded,

m � m ′ ⇒ amb � am ′b

compatible order � on 〈X〉

⇒ f = c · m + smaller terms
lm(f)

lt(f)

lc(f)
Polynomial reduction

Let f,g ∈ K〈X〉 with g 6= 0 and G ⊆ K〈X〉.

Reduction by g: If ∃a,b ∈ 〈X〉 : lm(agb) = lm(f), then

f →g f −
lc(f)
lc(g)

· agb.

Example: f = xyzy+ xz, g = yz− 1234568

f →g f− xgy = xz+ xy

Reduction by G: f→G f
′ ⇐⇒ ∃g ∈ G : f→g f

′

Observe Since � is well-founded, →G is terminating.

3

Basic definitions

Momial order = total, well-founded,

m � m ′ ⇒ amb � am ′b

compatible order � on 〈X〉

⇒ f = c · m + smaller terms
lm(f)

lt(f)

lc(f)

Polynomial reduction

Let f,g ∈ K〈X〉 with g 6= 0 and G ⊆ K〈X〉.

Reduction by g: If ∃a,b ∈ 〈X〉 : lm(agb) = lm(f), then

f →g f −
lc(f)
lc(g)

· agb.

Example: f = xyzy+ xz, g = yz− 1234568

f →g f− xgy = xz+ xy

Reduction by G: f→G f
′ ⇐⇒ ∃g ∈ G : f→g f

′

Observe Since � is well-founded, →G is terminating.

3

Basic definitions

Momial order = total, well-founded,

m � m ′ ⇒ amb � am ′b

compatible order � on 〈X〉

⇒ f = c · m + smaller terms
lm(f)

lt(f)

lc(f)
Polynomial reduction

Let f,g ∈ K〈X〉 with g 6= 0 and G ⊆ K〈X〉.

Reduction by g: If ∃a,b ∈ 〈X〉 : lm(agb) = lm(f), then

f →g f −
lc(f)
lc(g)

· agb.

Example: f = xyzy+ xz, g = yz− 1234568

f →g f− xgy = xz+ xy

Reduction by G: f→G f
′ ⇐⇒ ∃g ∈ G : f→g f

′

Observe Since � is well-founded, →G is terminating.

3

Basic definitions

Momial order = total, well-founded,

m � m ′ ⇒ amb � am ′b

compatible order � on 〈X〉

⇒ f = c · m + smaller terms
lm(f)

lt(f)

lc(f)
Polynomial reduction

Let f,g ∈ K〈X〉 with g 6= 0 and G ⊆ K〈X〉.

Reduction by g: If ∃a,b ∈ 〈X〉 : lm(agb) = lm(f), then

f →g f −
lc(f)
lc(g)

· agb.

Example: f = xyzy+ xz, g = yz− 1234568

f →g f− xgy = xz+ xy

Reduction by G: f→G f
′ ⇐⇒ ∃g ∈ G : f→g f

′

Observe Since � is well-founded, →G is terminating.

3

Basic definitions

Momial order = total, well-founded,

m � m ′ ⇒ amb � am ′b

compatible order � on 〈X〉

⇒ f = c · m + smaller terms
lm(f)

lt(f)

lc(f)
Polynomial reduction

Let f,g ∈ K〈X〉 with g 6= 0 and G ⊆ K〈X〉.

Reduction by g: If ∃a,b ∈ 〈X〉 : lm(agb) = lm(f), then

f →g f −
lc(f)
lc(g)

· agb.

Example: f = xyzy+ xz, g = yz− 1234568

f →g f− xgy = xz+ xy

Reduction by G: f→G f
′ ⇐⇒ ∃g ∈ G : f→g f

′

Observe Since � is well-founded, →G is terminating.

3

Basic definitions

Momial order = total, well-founded,

m � m ′ ⇒ amb � am ′b

compatible order � on 〈X〉

⇒ f = c · m + smaller terms
lm(f)

lt(f)

lc(f)
Polynomial reduction

Let f,g ∈ K〈X〉 with g 6= 0 and G ⊆ K〈X〉.

Reduction by g: If ∃a,b ∈ 〈X〉 : lm(agb) = lm(f), then

f →g f −
lc(f)
lc(g)

· agb.

Example: f = xyzy+ xz, g = yz− 1234568

f →g f− xgy = xz+ xy

Reduction by G: f→G f
′ ⇐⇒ ∃g ∈ G : f→g f

′

Observe Since � is well-founded, →G is terminating.

3

Basic definitions

Momial order = total, well-founded,

m � m ′ ⇒ amb � am ′b

compatible order � on 〈X〉

⇒ f = c · m + smaller terms
lm(f)

lt(f)

lc(f)
Polynomial reduction

Let f,g ∈ K〈X〉 with g 6= 0 and G ⊆ K〈X〉.

Reduction by g: If ∃a,b ∈ 〈X〉 : lm(agb) = lm(f), then

f →g f −
lc(f)
lc(g)

· agb.

Example: f = xyzy+ xz, g = yz− 1234568

f →g f− xgy = xz+ xy

Reduction by G: f→G f
′ ⇐⇒ ∃g ∈ G : f→g f

′

Observe Since � is well-founded, →G is terminating.

3

Basic definitions

Momial order = total, well-founded,

m � m ′ ⇒ amb � am ′b

compatible order � on 〈X〉

⇒ f = c · m + smaller terms
lm(f)

lt(f)

lc(f)
Polynomial reduction

Let f,g ∈ K〈X〉 with g 6= 0 and G ⊆ K〈X〉.

Reduction by g: If ∃a,b ∈ 〈X〉 : lm(agb) = lm(f), then

f →g f −
lc(f)
lc(g)

· agb.

Example: f = xyzy+ xz, g = yz− 1234568

f →g f− xgy = xz+ xy

Reduction by G: f→G f
′ ⇐⇒ ∃g ∈ G : f→g f

′

Observe Since � is well-founded, →G is terminating.
3

Gröbner bases

Definition Generating set G of ideal I ⊆ K〈X〉 s.t. →G is confluent

Equiv. characterisations G is a Gröbner basis of I

⇐⇒ LM(I) = LM(G)⇐⇒ f ∈ I iff f
∗→G 0⇐⇒ {m+ I | m is in normal form w.r.t.→G} is a K-basis of K〈X〉/I

Applications

K-basis: K-basis of K〈X | R〉 is given by K-basis of K〈X〉/(R)

Commutativity: K〈X | R〉 is comm. iff [xi, xj] ∈ (R) for all i < j

Algebraicity: p ∈ K〈X | R〉 is alg. iff (R+ (p− y)) ∩ K[y] 6= ∅

4

Gröbner bases

Definition Generating set G of ideal I ⊆ K〈X〉 s.t. →G is confluent

Equiv. characterisations G is a Gröbner basis of I

⇐⇒ LM(I) = LM(G)⇐⇒ f ∈ I iff f
∗→G 0⇐⇒ {m+ I | m is in normal form w.r.t.→G} is a K-basis of K〈X〉/I

Applications

K-basis: K-basis of K〈X | R〉 is given by K-basis of K〈X〉/(R)

Commutativity: K〈X | R〉 is comm. iff [xi, xj] ∈ (R) for all i < j

Algebraicity: p ∈ K〈X | R〉 is alg. iff (R+ (p− y)) ∩ K[y] 6= ∅

4

Gröbner bases

Definition Generating set G of ideal I ⊆ K〈X〉 s.t. →G is confluent

Equiv. characterisations G is a Gröbner basis of I

⇐⇒ LM(I) = LM(G)⇐⇒ f ∈ I iff f
∗→G 0⇐⇒ {m+ I | m is in normal form w.r.t.→G} is a K-basis of K〈X〉/I

Applications

K-basis: K-basis of K〈X | R〉 is given by K-basis of K〈X〉/(R)

Commutativity: K〈X | R〉 is comm. iff [xi, xj] ∈ (R) for all i < j

Algebraicity: p ∈ K〈X | R〉 is alg. iff (R+ (p− y)) ∩ K[y] 6= ∅

4

Gröbner bases and the word problem

Caution Not all fin. gen. ideals in K〈X〉 have finite Gröbner bases!

⇒ Ideal membership (and many other problems) in K〈X〉
only semidecidable

Well-behaved special cases

• dimK(K〈X〉/I) <∞ ⇒ every minimal GB of I is finite

• I homogeneous and finitely generated ⇒ ideal membership
decidable

• Many infinite GBs are finitely parametrisable ⇒ ideal membership
decidable

• Verifying ideal membership is always possible in finite time, and in
practice this is often all we need.

5

Gröbner bases and the word problem

Caution Not all fin. gen. ideals in K〈X〉 have finite Gröbner bases!

⇒ Ideal membership (and many other problems) in K〈X〉
only semidecidable

Well-behaved special cases

• dimK(K〈X〉/I) <∞ ⇒ every minimal GB of I is finite

• I homogeneous and finitely generated ⇒ ideal membership
decidable

• Many infinite GBs are finitely parametrisable ⇒ ideal membership
decidable

• Verifying ideal membership is always possible in finite time, and in
practice this is often all we need.

5

Gröbner bases and the word problem

Caution Not all fin. gen. ideals in K〈X〉 have finite Gröbner bases!

⇒ Ideal membership (and many other problems) in K〈X〉
only semidecidable

Well-behaved special cases

• dimK(K〈X〉/I) <∞ ⇒ every minimal GB of I is finite

• I homogeneous and finitely generated ⇒ ideal membership
decidable

• Many infinite GBs are finitely parametrisable ⇒ ideal membership
decidable

• Verifying ideal membership is always possible in finite time, and in
practice this is often all we need.

5

Ambiguities & S-polynomials

Overlap ambiguity
f =
g = + · · ·

+ · · ·
f − g ∈ SPol(f,g)

Inclusion ambiguity

g =
f =

+ · · ·
+ · · ·

f − g ∈ SPol(f,g)

Remarks

• Central part has to be non-trivial (coprime criterion)

• S-polynomials are not unique but finite!

• xxyx and xy have two ambiguities: xxxy
xy

xyx x
xy

• xyxy has an (overlap) ambiguity with itself: xyxy
xyxy

6

Ambiguities & S-polynomials

Overlap ambiguity
f =
g = + · · ·

+ · · ·
f − g ∈ SPol(f,g)

Inclusion ambiguity

g =
f =

+ · · ·
+ · · ·

f − g ∈ SPol(f,g)

Remarks

• Central part has to be non-trivial (coprime criterion)

• S-polynomials are not unique but finite!

• xxyx and xy have two ambiguities: xxxy
xy

xyx x
xy

• xyxy has an (overlap) ambiguity with itself: xyxy
xyxy

6

Ambiguities & S-polynomials

Overlap ambiguity
f =
g = + · · ·

+ · · ·
f − g ∈ SPol(f,g)

Inclusion ambiguity

g =
f =

+ · · ·
+ · · ·

f − g ∈ SPol(f,g)

Remarks

• Central part has to be non-trivial (coprime criterion)

• S-polynomials are not unique but finite!

• xxyx and xy have two ambiguities: xxxy
xy

xyx x
xy

• xyxy has an (overlap) ambiguity with itself: xyxy
xyxy

6

Ambiguities & S-polynomials

Overlap ambiguity
f =
g = + · · ·

+ · · ·
f − g ∈ SPol(f,g)

Inclusion ambiguity

g =
f =

+ · · ·
+ · · ·

f − g ∈ SPol(f,g)

Remarks

• Central part has to be non-trivial (coprime criterion)

• S-polynomials are not unique but finite!

• xxyx and xy have two ambiguities: xxxy
xy

xyx x
xy

• xyxy has an (overlap) ambiguity with itself: xyxy
xyxy

6

Buchberger’s algorithm

Diamond lemma (Bergman ’78)

G ⊆ K〈X〉 is GB of (G) iff ∀ S-poly p of G : p
∗→G 0

Gröbner basis

f1, . . . , fr ∈ K〈X〉

New polynomial
from pair

Reduction

6= 0
1 = 0

1 2

3

gi

gj

1. Selection: fair strategy “Every S-poly is selected eventually”

2. Construction: form S-polynomials from ambiguities

3. Reduction: reduction using (partial) Gröbner basis

7

Buchberger’s algorithm

Diamond lemma (Bergman ’78)

G ⊆ K〈X〉 is GB of (G) iff ∀ S-poly p of G : p
∗→G 0

Gröbner basis

f1, . . . , fr ∈ K〈X〉

New polynomial
from pair

Reduction

6= 0
1 = 0

1 2

3

gi

gj

1. Selection: fair strategy “Every S-poly is selected eventually”

2. Construction: form S-polynomials from ambiguities

3. Reduction: reduction using (partial) Gröbner basis

7

Buchberger’s algorithm

Diamond lemma (Bergman ’78)

G ⊆ K〈X〉 is GB of (G) iff ∀ S-poly p of G : p
∗→G 0

Gröbner basis

f1, . . . , fr ∈ K〈X〉

New polynomial
from pair

Reduction

6= 0
1 = 0

1 2

3

gi

gj

1. Selection: fair strategy “Every S-poly is selected eventually”

2. Construction: form S-polynomials from ambiguities

3. Reduction: reduction using (partial) Gröbner basis

7

Buchberger’s algorithm

Diamond lemma (Bergman ’78)

G ⊆ K〈X〉 is GB of (G) iff ∀ S-poly p of G : p
∗→G 0

Gröbner basis

f1, . . . , fr ∈ K〈X〉

New polynomial
from pair

Reduction

6= 0
1 = 0

1 2

3

gi

gj

1. Selection: fair strategy “Every S-poly is selected eventually”

2. Construction: form S-polynomials from ambiguities

3. Reduction: reduction using (partial) Gröbner basis
7

Software
• Bergman: Gröbner bases in noncommutative algebras and in

modules over them (Backelin et al. ’06)

• Letterplace: Singular package for noncommutative Gröbner bases
(+ cofactor repr.) in free algebras, finitely presented algebras, and
modules. Allows computations over Z (Levandovskyy, La Scala ’09)

• Magma: Noncommutative F4 algorithm (Steel ∼’09)

• NCAlgebra: Mathematica package for simplification and
reduction modulo noncommutative Gröbner bases (Helton, Stankus ’01)

• GBNP: GAP package for noncommutative Gröbner bases for free
and path algebras (Cohen, Gijsbers ’03)

• OperatorGB: Mathematica and SageMath package for
noncommutative Gröbner bases (+ cofactor repr.) and for
automatically proving operator statements (H., Raab, Regensburger ’19)

• SignatureGB (soon): SageMath package for noncommutative
signature Gröbner bases

8

Gröbner bases in the free algebra:
Advanced topics

Hot topics

Efficient computation
 Linear algebra reductions

(Steel ∼’09, Xiu ’12)

 Signature-based
algorithms (H., Verron ’22)

Expanding applicability
 Coefficient rings

(Mikhalev, Zolotykh ’98,

Levandovskyy, Metzlaff, Abou Zeid

’20)

9

Hot topics

Efficient computation
 Linear algebra reductions

(Steel ∼’09, Xiu ’12)

 Signature-based
algorithms (H., Verron ’22)

Expanding applicability
 Coefficient rings

(Mikhalev, Zolotykh ’98,

Levandovskyy, Metzlaff, Abou Zeid

’20)

9

Hot topics

Efficient computation
 Linear algebra reductions

(Steel ∼’09, Xiu ’12)

 Signature-based
algorithms (H., Verron ’22)

Expanding applicability
 Coefficient rings

(Mikhalev, Zolotykh ’98,

Levandovskyy, Metzlaff, Abou Zeid

’20)

9

Linear algebra reductions – F4

Idea Use linear algebra for polynomial reduction!

f →a,g,b f ′ ⇐⇒ (
f
agb

)
RRef

(
f
f ′

)
• Allows to reduce many S-polies simultaneously

1 Say we want to reduce {p1, . . . ,pm}

2 Find multiples of reducers needed for
reductions (Symbolic preprocessing)
{a1g1b1, . . . ,akgkbk}

3 Form Macaulay style matrix & row-reduce
4 Rows with new leading monomials get

added to Gröbner basis

• Exploit efficient (sparse) linear algebra
techniques and matrix structure

∗ · · · · · · ∗ p1...

...
...

∗ · · · · · · ∗ pm
∗ · · · · · · ∗ a1g1b1...

...
...

∗ · · · · · · ∗ akgkbky RRef
1 ∗ · · · ∗

. . .
. . .

...
. . . ∗

1

10

Linear algebra reductions – F4

Idea Use linear algebra for polynomial reduction!

f →a,g,b f ′ ⇐⇒ (
f
agb

)

RRef

(
f
f ′

)
• Allows to reduce many S-polies simultaneously

1 Say we want to reduce {p1, . . . ,pm}

2 Find multiples of reducers needed for
reductions (Symbolic preprocessing)
{a1g1b1, . . . ,akgkbk}

3 Form Macaulay style matrix & row-reduce
4 Rows with new leading monomials get

added to Gröbner basis

• Exploit efficient (sparse) linear algebra
techniques and matrix structure

∗ · · · · · · ∗ p1...

...
...

∗ · · · · · · ∗ pm
∗ · · · · · · ∗ a1g1b1...

...
...

∗ · · · · · · ∗ akgkbky RRef
1 ∗ · · · ∗

. . .
. . .

...
. . . ∗

1

10

Linear algebra reductions – F4

Idea Use linear algebra for polynomial reduction!

f →a,g,b f ′ ⇐⇒ (
f
agb

)
RRef

(
f
f ′

)

• Allows to reduce many S-polies simultaneously

1 Say we want to reduce {p1, . . . ,pm}

2 Find multiples of reducers needed for
reductions (Symbolic preprocessing)
{a1g1b1, . . . ,akgkbk}

3 Form Macaulay style matrix & row-reduce
4 Rows with new leading monomials get

added to Gröbner basis

• Exploit efficient (sparse) linear algebra
techniques and matrix structure

∗ · · · · · · ∗ p1...

...
...

∗ · · · · · · ∗ pm
∗ · · · · · · ∗ a1g1b1...

...
...

∗ · · · · · · ∗ akgkbky RRef
1 ∗ · · · ∗

. . .
. . .

...
. . . ∗

1

10

Linear algebra reductions – F4

Idea Use linear algebra for polynomial reduction!

f →a,g,b f ′ ⇐⇒ (
f
agb

)
RRef

(
f
f ′

)
• Allows to reduce many S-polies simultaneously

1 Say we want to reduce {p1, . . . ,pm}

2 Find multiples of reducers needed for
reductions (Symbolic preprocessing)
{a1g1b1, . . . ,akgkbk}

3 Form Macaulay style matrix & row-reduce
4 Rows with new leading monomials get

added to Gröbner basis

• Exploit efficient (sparse) linear algebra
techniques and matrix structure

∗ · · · · · · ∗ p1...

...
...

∗ · · · · · · ∗ pm
∗ · · · · · · ∗ a1g1b1...

...
...

∗ · · · · · · ∗ akgkbky RRef
1 ∗ · · · ∗

. . .
. . .

...
. . . ∗

1

10

Linear algebra reductions – F4

Idea Use linear algebra for polynomial reduction!

f →a,g,b f ′ ⇐⇒ (
f
agb

)
RRef

(
f
f ′

)
• Allows to reduce many S-polies simultaneously

1 Say we want to reduce {p1, . . . ,pm}

2 Find multiples of reducers needed for
reductions (Symbolic preprocessing)
{a1g1b1, . . . ,akgkbk}

3 Form Macaulay style matrix & row-reduce
4 Rows with new leading monomials get

added to Gröbner basis

• Exploit efficient (sparse) linear algebra
techniques and matrix structure

∗ · · · · · · ∗ p1...

...
...

∗ · · · · · · ∗ pm
∗ · · · · · · ∗ a1g1b1...

...
...

∗ · · · · · · ∗ akgkbk

y RRef
1 ∗ · · · ∗

. . .
. . .

...
. . . ∗

1

10

Linear algebra reductions – F4

Idea Use linear algebra for polynomial reduction!

f →a,g,b f ′ ⇐⇒ (
f
agb

)
RRef

(
f
f ′

)
• Allows to reduce many S-polies simultaneously

1 Say we want to reduce {p1, . . . ,pm}

2 Find multiples of reducers needed for
reductions (Symbolic preprocessing)
{a1g1b1, . . . ,akgkbk}

3 Form Macaulay style matrix & row-reduce
4 Rows with new leading monomials get

added to Gröbner basis

• Exploit efficient (sparse) linear algebra
techniques and matrix structure

∗ · · · · · · ∗ p1...

...
...

∗ · · · · · · ∗ pm
∗ · · · · · · ∗ a1g1b1...

...
...

∗ · · · · · · ∗ akgkbky RRef
1 ∗ · · · ∗

. . .
. . .

...
. . . ∗

1

10

Linear algebra reductions – F4

Idea Use linear algebra for polynomial reduction!

f →a,g,b f ′ ⇐⇒ (
f
agb

)
RRef

(
f
f ′

)
• Allows to reduce many S-polies simultaneously

1 Say we want to reduce {p1, . . . ,pm}

2 Find multiples of reducers needed for
reductions (Symbolic preprocessing)
{a1g1b1, . . . ,akgkbk}

3 Form Macaulay style matrix & row-reduce
4 Rows with new leading monomials get

added to Gröbner basis

• Exploit efficient (sparse) linear algebra
techniques and matrix structure

∗ · · · · · · ∗ p1...

...
...

∗ · · · · · · ∗ pm
∗ · · · · · · ∗ a1g1b1...

...
...

∗ · · · · · · ∗ akgkbky RRef
1 ∗ · · · ∗

. . .
. . .

...
. . . ∗

1

10

Signature-based algorithms – F5, GVW

Observation A lot of time is spent on zero reductions.

Goal Detect such useless computations!

⇒ Signatures

Setting

• Given f1, . . . , fr ∈ K〈X〉 generating ideal I = (f1, . . . , fr)

• Free K〈X〉-bimodule Σ =
⊕r

i=1 K〈X〉 ⊗ K〈X〉 with basis ε1, . . . , εr
• K〈X〉-bimodule homomorphism · : Σ→ I, εi 7→ fi

Signature of α ∈ Σ sig(α) = leading monomial of α
(w.r.t. module order)

Sig-based algorithms work with pairs (sig(α), f) where α = f

Regular operations

σ � µ ⇒ (σ, f)± (µ,g) =: (σ, f± g) (sig. preserved)⇒ regular reductions & S-polynomials

11

Signature-based algorithms – F5, GVW

Observation A lot of time is spent on zero reductions.

Goal Detect such useless computations! ⇒ Signatures

Setting

• Given f1, . . . , fr ∈ K〈X〉 generating ideal I = (f1, . . . , fr)

• Free K〈X〉-bimodule Σ =
⊕r

i=1 K〈X〉 ⊗ K〈X〉 with basis ε1, . . . , εr
• K〈X〉-bimodule homomorphism · : Σ→ I, εi 7→ fi

Signature of α ∈ Σ sig(α) = leading monomial of α
(w.r.t. module order)

Sig-based algorithms work with pairs (sig(α), f) where α = f

Regular operations

σ � µ ⇒ (σ, f)± (µ,g) =: (σ, f± g) (sig. preserved)⇒ regular reductions & S-polynomials

11

Signature-based algorithms – F5, GVW

Observation A lot of time is spent on zero reductions.

Goal Detect such useless computations! ⇒ Signatures

Setting

• Given f1, . . . , fr ∈ K〈X〉 generating ideal I = (f1, . . . , fr)

• Free K〈X〉-bimodule Σ =
⊕r

i=1 K〈X〉 ⊗ K〈X〉 with basis ε1, . . . , εr
• K〈X〉-bimodule homomorphism · : Σ→ I, εi 7→ fi

Signature of α ∈ Σ sig(α) = leading monomial of α
(w.r.t. module order)

Sig-based algorithms work with pairs (sig(α), f) where α = f

Regular operations

σ � µ ⇒ (σ, f)± (µ,g) =: (σ, f± g) (sig. preserved)⇒ regular reductions & S-polynomials

11

Signature-based algorithms – F5, GVW

Observation A lot of time is spent on zero reductions.

Goal Detect such useless computations! ⇒ Signatures

Setting

• Given f1, . . . , fr ∈ K〈X〉 generating ideal I = (f1, . . . , fr)

• Free K〈X〉-bimodule Σ =
⊕r

i=1 K〈X〉 ⊗ K〈X〉 with basis ε1, . . . , εr
• K〈X〉-bimodule homomorphism · : Σ→ I, εi 7→ fi

Signature of α ∈ Σ sig(α) = leading monomial of α
(w.r.t. module order)

Sig-based algorithms work with pairs (sig(α), f) where α = f

Regular operations

σ � µ ⇒ (σ, f)± (µ,g) =: (σ, f± g) (sig. preserved)⇒ regular reductions & S-polynomials

11

Signature-based algorithms – F5, GVW

Observation A lot of time is spent on zero reductions.

Goal Detect such useless computations! ⇒ Signatures

Setting

• Given f1, . . . , fr ∈ K〈X〉 generating ideal I = (f1, . . . , fr)

• Free K〈X〉-bimodule Σ =
⊕r

i=1 K〈X〉 ⊗ K〈X〉 with basis ε1, . . . , εr
• K〈X〉-bimodule homomorphism · : Σ→ I, εi 7→ fi

Signature of α ∈ Σ sig(α) = leading monomial of α
(w.r.t. module order)

Sig-based algorithms work with pairs (sig(α), f) where α = f

Regular operations

σ � µ ⇒ (σ, f)± (µ,g) =: (σ, f± g) (sig. preserved)⇒ regular reductions & S-polynomials

11

Signature-based algorithms – F5, GVW

Observation A lot of time is spent on zero reductions.

Goal Detect such useless computations! ⇒ Signatures

Setting

• Given f1, . . . , fr ∈ K〈X〉 generating ideal I = (f1, . . . , fr)

• Free K〈X〉-bimodule Σ =
⊕r

i=1 K〈X〉 ⊗ K〈X〉 with basis ε1, . . . , εr
• K〈X〉-bimodule homomorphism · : Σ→ I, εi 7→ fi

Signature of α ∈ Σ sig(α) = leading monomial of α
(w.r.t. module order)

Sig-based algorithms work with pairs (sig(α), f) where α = f

Regular operations

σ � µ ⇒ (σ, f)± (µ,g) =: (σ, f± g) (sig. preserved)⇒ regular reductions & S-polynomials

11

Buchberger’s algorithm with signatures

Sig-Gröbner
basis

(ε1, f1), . . . , (εr, fr)

New polynomial
from pair

Reduction

6= 0
1

Syzygy basis

= 0

= 0

1 2

3

(σi,gi)

(σj,gj)

Elimination criteria

1. Selection: fair strategy

2. Construction: regular S-polynomials

3. Reduction: regular reductions using (partial) Sig-Gröbner basis

12

Buchberger’s algorithm with signatures

Sig-Gröbner
basis

(ε1, f1), . . . , (εr, fr)

New polynomial
from pair

Reduction

6= 0
1Syzygy basis

= 0= 0

1 2

3

(σi,gi)

(σj,gj)

Elimination criteria

1. Selection: fair strategy

2. Construction: regular S-polynomials

3. Reduction: regular reductions using (partial) Sig-Gröbner basis

12

Buchberger’s algorithm with signatures

Sig-Gröbner
basis

(ε1, f1), . . . , (εr, fr)

New polynomial
from pair

Reduction

6= 0

1

Syzygy basis
= 0= 0

1 2

3

(σi,gi)

(σj,gj)

Elimination criteria

1. Selection: fair strategy

2. Construction: regular S-polynomials

3. Reduction: regular reductions using (partial) Sig-Gröbner basis

12

Buchberger’s algorithm with signatures

Output Signature Gröbner basis, allowing to recover

• a Gröbner basis of the ideal (+ cofactor representations)

• a Gröbner basis of the syzygy module

Remarks

• Termination is very rare – even less common than standard
noncommutative GB algorithms

• Algorithm terminates iff ideal admits finite signature Gröbner
basis

• Experimental data suggests performance improvement

13

Noncommutative Gröbner bases over rings

Setting

R〈X〉. . . free algebra over comm. PID (e.g. R = Z)

Reductions

As in the field case, but now also considering coefficients, that is

f→g f
′ ⇐⇒ ∃a,b ∈ 〈X〉 : lm(f) = lm(agb) & lc(g) | lc(f)

Gröbner bases

Different notions, but most relevant are strong Gröbner bases.

Definition: G ⊆ I s.t. f ∗→G 0 for all f ∈ I

14

Noncommutative Gröbner bases over rings

Setting

R〈X〉. . . free algebra over comm. PID (e.g. R = Z)

Reductions

As in the field case, but now also considering coefficients, that is

f→g f
′ ⇐⇒ ∃a,b ∈ 〈X〉 : lm(f) = lm(agb) & lc(g) | lc(f)

Gröbner bases

Different notions, but most relevant are strong Gröbner bases.

Definition: G ⊆ I s.t. f ∗→G 0 for all f ∈ I

14

Noncommutative Gröbner bases over rings

Setting

R〈X〉. . . free algebra over comm. PID (e.g. R = Z)

Reductions

As in the field case, but now also considering coefficients, that is

f→g f
′ ⇐⇒ ∃a,b ∈ 〈X〉 : lm(f) = lm(agb) & lc(g) | lc(f)

Gröbner bases

Different notions, but most relevant are strong Gröbner bases.

Definition: G ⊆ I s.t. f ∗→G 0 for all f ∈ I

14

Problems over rings

Observation S-polynomials are not enough!

Example Consider I = (f = 3x,g = 2y) ⊆ Z〈x,y, z〉

• {f,g} not a strong GB: xy = fy− xg ∈ I is not reducible

• Adding SPol(f,g) = 0 does not help

• Look at gcd(lc(f), lc(g)) ⇒ GPol(f,g) = xy

• {f,g, xy} still no strong GB: xzny = fzny− xzny ∈ I not reducible

⇒ need to look at all combinations f lm(g) ± lm(f) g

Problem SPol(f,g) and GPol(f,g) are infinite⇒ can only compute up to some degree bound

15

Problems over rings

Observation S-polynomials are not enough!

Example Consider I = (f = 3x,g = 2y) ⊆ Z〈x,y, z〉

• {f,g} not a strong GB: xy = fy− xg ∈ I is not reducible

• Adding SPol(f,g) = 0 does not help

• Look at gcd(lc(f), lc(g)) ⇒ GPol(f,g) = xy

• {f,g, xy} still no strong GB: xzny = fzny− xzny ∈ I not reducible

⇒ need to look at all combinations f lm(g) ± lm(f) g

Problem SPol(f,g) and GPol(f,g) are infinite⇒ can only compute up to some degree bound

15

Problems over rings

Observation S-polynomials are not enough!

Example Consider I = (f = 3x,g = 2y) ⊆ Z〈x,y, z〉

• {f,g} not a strong GB: xy = fy− xg ∈ I is not reducible

• Adding SPol(f,g) = 0 does not help

• Look at gcd(lc(f), lc(g)) ⇒ GPol(f,g) = xy

• {f,g, xy} still no strong GB: xzny = fzny− xzny ∈ I not reducible

⇒ need to look at all combinations f lm(g) ± lm(f) g

Problem SPol(f,g) and GPol(f,g) are infinite⇒ can only compute up to some degree bound

15

Problems over rings

Observation S-polynomials are not enough!

Example Consider I = (f = 3x,g = 2y) ⊆ Z〈x,y, z〉

• {f,g} not a strong GB: xy = fy− xg ∈ I is not reducible

• Adding SPol(f,g) = 0 does not help

• Look at gcd(lc(f), lc(g)) ⇒ GPol(f,g) = xy

• {f,g, xy} still no strong GB: xzny = fzny− xzny ∈ I not reducible

⇒ need to look at all combinations f lm(g) ± lm(f) g

Problem SPol(f,g) and GPol(f,g) are infinite⇒ can only compute up to some degree bound

15

Problems over rings

Observation S-polynomials are not enough!

Example Consider I = (f = 3x,g = 2y) ⊆ Z〈x,y, z〉

• {f,g} not a strong GB: xy = fy− xg ∈ I is not reducible

• Adding SPol(f,g) = 0 does not help

• Look at gcd(lc(f), lc(g)) ⇒ GPol(f,g) = xy

• {f,g, xy} still no strong GB: xzny = fzny− xzny ∈ I not reducible

⇒ need to look at all combinations f lm(g) ± lm(f) g

Problem SPol(f,g) and GPol(f,g) are infinite⇒ can only compute up to some degree bound

15

Problems over rings

Observation S-polynomials are not enough!

Example Consider I = (f = 3x,g = 2y) ⊆ Z〈x,y, z〉

• {f,g} not a strong GB: xy = fy− xg ∈ I is not reducible

• Adding SPol(f,g) = 0 does not help

• Look at gcd(lc(f), lc(g)) ⇒ GPol(f,g) = xy

• {f,g, xy} still no strong GB: xzny = fzny− xzny ∈ I not reducible

⇒ need to look at all combinations f lm(g) ± lm(f) g

Problem SPol(f,g) and GPol(f,g) are infinite⇒ can only compute up to some degree bound

15

Problems over rings

Observation S-polynomials are not enough!

Example Consider I = (f = 3x,g = 2y) ⊆ Z〈x,y, z〉

• {f,g} not a strong GB: xy = fy− xg ∈ I is not reducible

• Adding SPol(f,g) = 0 does not help

• Look at gcd(lc(f), lc(g)) ⇒ GPol(f,g) = xy

• {f,g, xy} still no strong GB: xzny = fzny− xzny ∈ I not reducible

⇒ need to look at all combinations f lm(g) ± lm(f) g

Problem SPol(f,g) and GPol(f,g) are infinite⇒ can only compute up to some degree bound

15

Problems over rings

Observation S-polynomials are not enough!

Example Consider I = (f = 3x,g = 2y) ⊆ Z〈x,y, z〉

• {f,g} not a strong GB: xy = fy− xg ∈ I is not reducible

• Adding SPol(f,g) = 0 does not help

• Look at gcd(lc(f), lc(g)) ⇒ GPol(f,g) = xy

• {f,g, xy} still no strong GB: xzny = fzny− xzny ∈ I not reducible

⇒ need to look at all combinations f lm(g) ± lm(f) g

Problem SPol(f,g) and GPol(f,g) are infinite⇒ can only compute up to some degree bound

15

Buchberger’s algorithm over rings

strong
Gröbner basis

f1, . . . , fr ∈ R〈X〉

New polynomial
from pair

Reduction

6= 0
1 = 0

1 2

3

gi

gj

1. Selection: fair strategy

2. Construction: S- and G-polynomials up to degree bound

3. Reduction: reduction using (partial) Gröbner basis

16

Conclusion

Introduction

• Very similar to commutative Gröbner bases

• No termination guarantee Problems only semidecidable

• Many well-behaved special cases

Advanced topics

• Linear algebra reductions Performance improvement
• Signature-based algorithms

◦ Add module perspective to polynomials
◦ Gröbner basis of ideal + syzygy module
◦ Elimination criteria Performance improvement

• Gröbner bases over rings
◦ Infinitely many S- & G-polynomials

17

Conclusion

Introduction

• Very similar to commutative Gröbner bases

• No termination guarantee Problems only semidecidable

• Many well-behaved special cases

Advanced topics

• Linear algebra reductions Performance improvement
• Signature-based algorithms

◦ Add module perspective to polynomials
◦ Gröbner basis of ideal + syzygy module
◦ Elimination criteria Performance improvement

• Gröbner bases over rings
◦ Infinitely many S- & G-polynomials

17

