Gröbner bases in the free algebra: Introduction & advanced topics

Clemens Hofstadler · Institute of Mathematics · University of Kassel Séminaire Calcul Formel Limoges, France, January 12, 2023

U N I K A S S E L V E R S I T A T

Gröbner bases in the free algebra: Introduction

Ideal theoretic problems

- Ideal membership
- Elimination ideals
- Ideal/subalgebra intersections
- . . .

(Mora '85, Borges, Borges '98, Nordbeck '98)

Studying finitely presented algebras

If $\mathcal{A} = K\langle X | R \rangle$, then Gröbner bases allow to

- decide whether \mathcal{A} is trivial, commutative, finite dim.,...
- compute K-basis of A
- decide word problem $f \stackrel{?}{=} g$ in \mathcal{A}

Ideal theoretic problems

- Ideal membership
- Elimination ideals
- Ideal/subalgebra intersections

• . . .

(Mora '85, Borges, Borges '98, Nordbeck '98)

Studying operator statements

- Model lin. operators by noncomm. polies
- Simplify and prove operator statements
- Validity of first-order operator statements
 mc ideal membership

(Helton, Stankus, Wavrik '98, Schmitz, Levandovskyy '20, Raab, Regensburger, Hossein Poor '21, H, Raab, Regensburger '22)

Studying finitely presented algebras

If $\mathcal{A} = K\langle X | R \rangle$, then Gröbner bases allow to

- decide whether \mathcal{A} is trivial, commutative, finite dim.,...
- compute K-basis of A
- decide word problem $f \stackrel{?}{=} g$ in \mathcal{A}

Free monoid $\langle X \rangle$ (on $X = \{x_1, \ldots, x_n\}$)

- finite words (including empty word 1) over X
- concatenation $x_1 \cdot x_2 = x_1 x_2 \neq x_2 x_1 = x_2 \cdot x_1$

Free monoid $\langle X \rangle$ (on $X = \{x_1, \dots, x_n\}$)

- finite words (including empty word 1) over X
- concatenation $x_1 \cdot x_2 = x_1 x_2 \neq x_2 x_1 = x_2 \cdot x_1$

Free algebra $K\langle X \rangle$ (over field K)

- K-vector space with basis $\langle X \rangle$
- $c_1m_1 \cdot c_2m_2 = (c_1c_2)(m_1m_2)$, with $c_i \in K, m_i \in \langle X \rangle$

Free monoid $\langle X \rangle$ (on $X = \{x_1, \dots, x_n\}$)

- finite words (including empty word 1) over X
- concatenation $x_1 \cdot x_2 = x_1 x_2 \neq x_2 x_1 = x_2 \cdot x_1$

Free algebra $K\langle X \rangle$ (over field K)

- K-vector space with basis $\langle X \rangle$
- $c_1m_1 \cdot c_2m_2 = (c_1c_2)(m_1m_2)$, with $c_i \in K, m_i \in \langle X \rangle$

• For $F \subseteq K\langle X \rangle$,

$$(F) = \left\{ \sum a_i f_i b_i \mid a_i, b_i \in K \langle X \rangle, \ f_i \in F \right\}$$

Free monoid $\langle X \rangle$ (on $X = \{x_1, \ldots, x_n\}$)

- finite words (including empty word 1) over X
- concatenation $x_1 \cdot x_2 = x_1 x_2 \neq x_2 x_1 = x_2 \cdot x_1$

Free algebra $K\langle X \rangle$ (over field K)

- K-vector space with basis $\langle X \rangle$
- $c_1m_1 \cdot c_2m_2 = (c_1c_2)(m_1m_2)$, with $c_i \in K, m_i \in \langle X \rangle$

• For $F \subseteq K\langle X \rangle$,

$$(F) = \left\{ \sum a_i f_i b_i \mid a_i, b_i \in K \langle X \rangle, \, f_i \in F \right\}$$

Caution

If |X| > 1, then $K\langle X \rangle$ is not Noetherian!

Momial order = total, well-founded, compatible order \leq on $\langle X \rangle$

$$\begin{array}{l} \textbf{Basic definitions} \\ m \preceq m' \Rightarrow \ amb \preceq am'b \\ \hline \textbf{Momial order} = \ total, \ well-founded, \ \hline \textbf{compatible order} \preceq \ \textbf{on} \ \langle X \rangle \end{array}$$

Polynomial reduction

Let $f, g \in K\langle X \rangle$ with $g \neq 0$ and $G \subseteq K\langle X \rangle$.

Reduction by g: If $\exists a, b \in \langle X \rangle : \operatorname{lm}(agb) = \operatorname{lm}(f)$, then

$$f \rightarrow_g f - \frac{\operatorname{lc}(f)}{\operatorname{lc}(g)} \cdot agb$$

$$\begin{split} \mathfrak{m} \leq \mathfrak{m}' \Rightarrow \ \mathfrak{amb} \leq \mathfrak{am'b} \\ \hline \mathsf{Momial order} &= \ \mathsf{total}, \ \mathsf{well-founded}, \ \overbrace{\mathsf{compatible} \ \mathsf{order} \ \preceq \ \mathsf{on} \ \langle X \rangle} \\ & \mathsf{lt}(\mathsf{f}) \\ \Rightarrow \ \mathsf{f} &= \underbrace{\mathsf{c} \cdot \mathfrak{m}}_{lc(\mathsf{f})} + \ \mathsf{smaller terms} \\ \hline \mathsf{lc}(\mathsf{f}) \ \operatorname{lm}(\mathsf{f}) \end{split}$$

Polynomial reduction

Let $f, g \in K\langle X \rangle$ with $g \neq 0$ and $G \subseteq K\langle X \rangle$. Reduction by g: If $\exists a, b \in \langle X \rangle : lm(agb) = lm(f)$, then $f \rightarrow_g f - \frac{lc(f)}{lc(g)} \cdot agb$. Example: $f = xyzy + xz, \quad g = yz - 1$

$$\begin{split} \mathfrak{m} \leq \mathfrak{m}' \Rightarrow \ \mathfrak{amb} \leq \mathfrak{am'b} \\ \hline \mathsf{Momial order} &= \ \mathsf{total}, \ \mathsf{well-founded}, \ \overbrace{\mathsf{compatible} \ \mathsf{order} \ \preceq \ \mathsf{on} \ \langle X \rangle} \\ & \mathsf{lt}(\mathsf{f}) \\ \Rightarrow \ \mathsf{f} &= \underbrace{\mathsf{c} \cdot \mathfrak{m}}_{lc(\mathsf{f})} + \ \mathsf{smaller terms} \\ \hline \mathsf{lc}(\mathsf{f}) \ \operatorname{lm}(\mathsf{f}) \end{split}$$

Polynomial reduction

Let $f, g \in K\langle X \rangle$ with $g \neq 0$ and $G \subseteq K\langle X \rangle$. Reduction by g: If $\exists a, b \in \langle X \rangle : lm(agb) = lm(f)$, then $f \rightarrow_g f - \frac{lc(f)}{lc(g)} \cdot agb$. Example: $f = xyzy + xz, \quad g = yz - 1$

$$\begin{split} \mathfrak{m} \leq \mathfrak{m}' \Rightarrow \ \mathfrak{amb} \leq \mathfrak{am'b} \\ \hline \mathsf{Momial order} &= \ \mathsf{total}, \ \mathsf{well-founded}, \ \overbrace{\mathsf{compatible} \ \mathsf{order} \ \preceq \ \mathsf{on} \ \langle X \rangle} \\ & \mathsf{lt}(\mathsf{f}) \\ \Rightarrow \ \mathsf{f} &= \underbrace{\mathsf{c} \cdot \mathfrak{m}}_{\mathsf{lc}(\mathsf{f})} \ \mathsf{hm}(\mathsf{f})}_{\mathsf{lm}(\mathsf{f})} + \ \mathsf{smaller terms} \end{split}$$

Polynomial reduction

Let $f, g \in K\langle X \rangle$ with $g \neq 0$ and $G \subseteq K\langle X \rangle$. Reduction by g: If $\exists a, b \in \langle X \rangle : lm(agb) = lm(f)$, then $f \rightarrow_g f - \frac{lc(f)}{lc(g)} \cdot agb$.

Example:

$$f = xyzy + xz, \quad g = yz - 1$$

$$f \rightarrow_g \quad f - xgy = xz + xy$$

$$\begin{split} \mathfrak{m} \leq \mathfrak{m}' \Rightarrow \ \mathfrak{amb} \leq \mathfrak{am'b} \\ \hline \mathsf{Momial order} &= \ \mathsf{total}, \ \mathsf{well-founded}, \ \overbrace{\mathsf{compatible} \ \mathsf{order} \ \preceq \ \mathsf{on} \ \langle X \rangle \\ & \ \mathsf{lt}(\mathsf{f}) \\ \Rightarrow \ \mathsf{f} &= \underbrace{\mathsf{c} \cdot \mathfrak{m}}_{\mathsf{lc}(\mathsf{f})} \ \mathsf{hm}(\mathsf{f}) + \ \mathsf{smaller terms} \end{split}$$

Polynomial reduction

Let $f, g \in K\langle X \rangle$ with $g \neq 0$ and $G \subseteq K\langle X \rangle$. Reduction by g: If $\exists a, b \in \langle X \rangle$: $\operatorname{Im}(agb) = \operatorname{Im}(f)$, then $f \to_g f - \frac{\operatorname{lc}(f)}{\operatorname{lc}(g)} \cdot agb$. Example: $f = xyzy + xz, \quad g = yz - 1$ $f \to_g f - xgy = xz + xy$ Reduction by G: $f \to_G f' \iff \exists q \in G : f \to_q f'$

 $\mathfrak{m} \prec \mathfrak{m}' \Rightarrow \mathfrak{amb} \prec \mathfrak{am'b}$ Momial order = total, well-founded, compatible order \leq on $\langle X \rangle$ lt(f) \Rightarrow f = **c m** + smaller terms lc(f) lm(f)

Polynomial reduction

Let $f, g \in \overline{K\langle X \rangle}$ with $g \neq 0$ and $\overline{G \subseteq K\langle X \rangle}$. Reduction by g: If $\exists a, b \in \langle X \rangle$: $\operatorname{Im}(agb) = \operatorname{Im}(f)$, then

$$f \longrightarrow_g f - \frac{\operatorname{lc}(f)}{\operatorname{lc}(g)} \cdot \mathfrak{a}g\mathfrak{b}.$$

Example:

$$= xyzy + xz, \quad g = yz - I$$

$$\rightarrow_g \quad f - xgy = xz + xy$$

Reduction by G: $f \rightarrow_G f' \iff \exists g \in G : f \rightarrow_g f'$

Observe Since \leq is well-founded, \rightarrow_{G} is terminating.

Gröbner bases

Gröbner bases

Definition Generating set G of ideal $I \subseteq K\langle X \rangle$ s.t. \rightarrow_G is confluent

Equiv. characterisations G is a Gröbner basis of I

- $\iff LM(I) = LM(G)$
- \iff f \in I iff f $\xrightarrow{*}_{G} 0$

 \iff {m+I | m is in normal form w.r.t. \rightarrow_{G} } is a K-basis of K $\langle X \rangle$ /I

Gröbner bases

Definition Generating set G of ideal I $\subseteq K\langle X \rangle$ s.t. \rightarrow_G is confluent

Equiv. characterisations G is a Gröbner basis of I

- $\iff LM(I) = LM(G)$
- \longleftrightarrow f \in I iff f $\xrightarrow{*}_{G}$ 0

 \iff {m + I | m is in normal form w.r.t. \rightarrow_{G} } is a K-basis of K(X)/I

Applications

K-basis: K-basis of $K\langle X \mid R \rangle$ is given by K-basis of $K\langle X \rangle / (R)$ <u>Commutativity</u>: $K\langle X | R \rangle$ is comm. iff $[x_i, x_i] \in (R)$ for all i < jAlgebraicity: $p \in K\langle X \mid R \rangle$ is alg. iff $(R + (p - y)) \cap K[y] \neq \emptyset$

Gröbner bases and the word problem

Caution Not all fin. gen. ideals in $K\langle X \rangle$ have finite Gröbner bases!

Gröbner bases and the word problem

Caution Not all fin. gen. ideals in $K\langle X \rangle$ have finite Gröbner bases!

 $\Rightarrow \mbox{ Ideal membership (and many other problems) in } K\langle X\rangle $$ only semidecidable $$$

Gröbner bases and the word problem

Caution Not all fin. gen. ideals in $K\langle X \rangle$ have finite Gröbner bases!

 $\Rightarrow \mbox{ Ideal membership (and many other problems) in K \langle X \rangle} \\ \mbox{ only semidecidable }$

Well-behaved special cases

- $\dim_{\mathsf{K}}(\mathsf{K}\langle X\rangle/I) < \infty \Rightarrow$ every minimal GB of I is finite
- I homogeneous and finitely generated \Rightarrow ideal membership decidable
- Many infinite GBs are finitely parametrisable \Rightarrow ideal membership decidable
- Verifying ideal membership is always possible in finite time, and in practice this is often all we need.

- Central part has to be non-trivial (coprime criterion)
- S-polynomials are not unique but finite!

- Central part has to be non-trivial (coprime criterion)
- S-polynomials are not unique but finite!
- xxyx and xy have two ambiguities: xxyx xyx xyy xy

- Central part has to be non-trivial (coprime criterion)
- S-polynomials are not unique but finite!
- xxyx and xy have two ambiguities: xxyx xyy xy
 xyxy has an (overlap) ambiguity with itself: xyxy xyyy

Diamond lemma (Bergman '78)

 $G \subseteq K\langle X \rangle \text{ is GB of } (G) \quad \text{ iff } \quad \forall \text{ S-poly } p \text{ of } G : p \xrightarrow{*}_{G} 0$

Diamond lemma (Bergman '78)

 $G\subseteq K\langle X\rangle \text{ is GB of }(G) \quad \text{ iff } \ \forall \text{ S-poly }p \text{ of }G:p\overset{*}{\to}_G 0$

Diamond lemma (Bergman '78)

 $G\subseteq K\langle X\rangle \text{ is GB of }(G) \quad \text{ iff } \ \forall \text{ S-poly }p \text{ of }G:p\overset{*}{\to}_G 0$

1. Selection: fair strategy "Every S-poly is selected eventually"

Diamond lemma (Bergman '78)

 $G\subseteq K\langle X\rangle \text{ is GB of }(G) \quad \text{ iff } \ \forall \text{ S-poly }p \text{ of }G:p\overset{*}{\to}_G 0$

- **1.** Selection: fair strategy "Every S-poly is selected eventually"
- 2. Construction: form S-polynomials from ambiguities
- 3. Reduction: reduction using (partial) Gröbner basis

Software

- Bergman: Gröbner bases in noncommutative algebras and in modules over them (Backelin et al. '06)
- Letterplace: SINGULAR package for noncommutative Gröbner bases (+ cofactor repr.) in free algebras, finitely presented algebras, and modules. Allows computations over Z (Levandovskyy, La Scala '09)
- Magma: Noncommutative F4 algorithm (Steel ~'09)
- NCAlgebra: MATHEMATICA package for simplification and reduction modulo noncommutative Gröbner bases (Helton, Stankus '01)
- GBNP: GAP package for noncommutative Gröbner bases for free and path algebras (Cohen, Gijsbers '03)
- OperatorGB: MATHEMATICA and SAGEMATH package for noncommutative Gröbner bases (+ cofactor repr.) and for automatically proving operator statements (H., Raab, Regensburger '19)
- SignatureGB (soon): SAGEMATH package for noncommutative signature Gröbner bases

Gröbner bases in the free algebra: Advanced topics

Hot topics

Hot topics

Efficient computation

- $\rightsquigarrow~$ Linear algebra reductions
 - (Steel $\sim\!'09,~Xiu~'12)$
- → Signature-based algorithms (H., Verron '22)

Hot topics

Efficient computation

- → Linear algebra reductions
 - (Steel $\sim\!'09,~Xiu~'12)$
- → Signature-based algorithms (H., Verron '22)

Expanding applicability

→ Coefficient rings

(Mikhalev, Zolotykh '98,

Levandovskyy, Metzlaff, Abou Zeid

'20)

Idea Use linear algebra for polynomial reduction!

$$f \rightarrow_{a,g,b} f' \qquad \Longleftrightarrow \qquad \begin{pmatrix} - & f & - \\ - & agb & - \end{pmatrix}$$

Idea Use linear algebra for polynomial reduction!

$$f \rightarrow_{a,g,b} f' \qquad \Longleftrightarrow \qquad \begin{pmatrix} - & f & - \\ - & agb & - \end{pmatrix} \stackrel{\text{RRef}}{\rightarrow} \begin{pmatrix} - & f & - \\ - & f' & - \end{pmatrix}$$

Use linear algebra for polynomial reduction!

$$f \rightarrow_{\alpha,g,b} f' \qquad \Longleftrightarrow \qquad \begin{pmatrix} - & f & - \\ - & agb & - \end{pmatrix} \stackrel{\mathsf{RRef}}{\underset{\longrightarrow}{\to}} \begin{pmatrix} - & f & - \\ - & f' & - \end{pmatrix}$$

- Allows to reduce many S-polies simultaneously
 - 1 Say we want to reduce $\{p_1,\ldots,p_m\}$
 - 2 Find multiples of reducers needed for reductions (Symbolic preprocessing) ~→ {a1g1b1,...,akgkbk}
 - 3 Form Macaulay style matrix & row-reduce
 - 4 Rows with new leading monomials get added to Gröbner basis

Use linear algebra for polynomial reduction!

$$f \rightarrow_{\alpha,g,b} f' \quad \iff \quad \begin{pmatrix} - & f & - \\ - & agb & - \end{pmatrix} \stackrel{\mathsf{RRef}}{\sim} \begin{pmatrix} - & f & - \\ - & f' & - \end{pmatrix}$$

• Allows to reduce many S-polies simultaneously

- 1 Say we want to reduce $\{p_1,\ldots,p_m\}$
- 2 Find multiples of reducers needed for reductions (Symbolic preprocessing) ~→ {a₁g₁b₁,..., a_kg_kb_k}
- 3 Form Macaulay style matrix & row-reduce
- 4 Rows with new leading monomials get added to Gröbner basis

Use linear algebra for polynomial reduction!

$$f \rightarrow_{\alpha,g,b} f' \qquad \Longleftrightarrow \qquad \begin{pmatrix} - & f & - \\ - & agb & - \end{pmatrix} \stackrel{\text{RRef}}{\leadsto} \begin{pmatrix} - & f & - \\ - & f' & - \end{pmatrix}$$

Allows to reduce many S-polies simultaneously

- 1 Say we want to reduce $\{p_1,\ldots,p_m\}$
- 2 Find multiples of reducers needed for reductions (Symbolic preprocessing) ↔ {a1g1b1,..., akgkbk}
- 3 Form Macaulay style matrix & row-reduce
- 4 Rows with new leading monomials get added to Gröbner basis

Use linear algebra for polynomial reduction!

$$f \rightarrow_{a,g,b} f' \quad \iff \quad \begin{pmatrix} - & f & - \\ - & agb & - \end{pmatrix} \stackrel{\mathsf{RRef}}{\leadsto} \begin{pmatrix} - & f & - \\ - & f' & - \end{pmatrix}$$

Allows to reduce many S-polies simultaneously

- **1** Say we want to reduce $\{p_1, \ldots, p_m\}$
- 2 Find multiples of reducers needed for reductions (Symbolic preprocessing) ~→ {a₁g₁b₁,..., a_kg_kb_k}
- 3 Form Macaulay style matrix & row-reduce
- 4 Rows with new leading monomials get added to Gröbner basis
- Exploit efficient (sparse) linear algebra techniques and matrix structure

Observation A lot of time is spent on zero reductions.

Observation A lot of time is spent on zero reductions.

Observation A lot of time is spent on zero reductions.

Setting

- Given $f_1,\ldots,f_r\in K\langle X\rangle$ generating ideal $I=(f_1,\ldots,f_r)$
- Free K(X)-bimodule $\Sigma = \bigoplus_{i=1}^r K\langle X\rangle \otimes K\langle X\rangle$ with basis $\epsilon_1,\ldots,\epsilon_r$
- K(X)-bimodule homomorphism $\ \bar{\cdot}:\Sigma\to I, \epsilon_{\mathbf{i}}\mapsto f_{\mathbf{i}}$

Observation A lot of time is spent on zero reductions.

Setting

- Given $f_1,\ldots,f_r\in K\langle X\rangle$ generating ideal $I=(f_1,\ldots,f_r)$
- Free K(X)-bimodule $\Sigma = \bigoplus_{i=1}^r K\langle X\rangle \otimes K\langle X\rangle$ with basis $\epsilon_1,\ldots,\epsilon_r$
- $K\langle X \rangle$ -bimodule homomorphism $\overline{\cdot} : \Sigma \to I, \epsilon_i \mapsto f_i$

Observation A lot of time is spent on zero reductions.

Setting

- Given $f_1,\ldots,f_r\in K\langle X\rangle$ generating ideal $I=(f_1,\ldots,f_r)$
- Free K(X)-bimodule $\Sigma = \bigoplus_{i=1}^r K\langle X\rangle \otimes K\langle X\rangle$ with basis $\epsilon_1,\ldots,\epsilon_r$
- $K\langle X \rangle$ -bimodule homomorphism $\overline{\cdot} : \Sigma \to I, \epsilon_i \mapsto f_i$

Sig-based algorithms work with pairs $(sig(\alpha), f)$ where $\overline{\alpha} = f$

Observation A lot of time is spent on zero reductions.

Setting

- Given $f_1,\ldots,f_r\in K\langle X\rangle$ generating ideal $I=(f_1,\ldots,f_r)$
- Free K(X)-bimodule $\Sigma = \bigoplus_{i=1}^r K\langle X\rangle \otimes K\langle X\rangle$ with basis $\epsilon_1,\ldots,\epsilon_r$
- $K\langle X \rangle$ -bimodule homomorphism $\overline{\cdot} : \Sigma \to I, \epsilon_i \mapsto f_i$

 $\begin{array}{lll} \mbox{Signature of } \alpha \in \Sigma & \mbox{sig}(\alpha) \ = \ \mbox{leading monomial of } \alpha \\ & (\mbox{w.r.t. module order}) \end{array}$

Sig-based algorithms work with pairs $(\operatorname{sig}(\alpha),f)$ where $\overline{\alpha}=f$

Regular operations

 $\sigma\succ\mu \Rightarrow \ (\sigma,f)\pm(\mu,g) \eqqcolon (\sigma,f\pm g) \ \text{(sig. preserved)}$

 \Rightarrow regular reductions & S-polynomials

- 1. Selection: fair strategy
- 2. Construction: regular S-polynomials
- 3. Reduction: regular reductions using (partial) Sig-Gröbner basis

- 1. Selection: fair strategy
- 2. Construction: regular S-polynomials
- 3. Reduction: regular reductions using (partial) Sig-Gröbner basis

- **1.** Selection: fair strategy
- 2. Construction: regular S-polynomials
- 3. Reduction: regular reductions using (partial) Sig-Gröbner basis

Signature Gröbner basis, allowing to recover

- a Gröbner basis of the ideal (+ cofactor representations)
- a Gröbner basis of the syzygy module

- Termination is very rare even less common than standard noncommutative GB algorithms
- Algorithm terminates iff ideal admits finite signature Gröbner basis
- Experimental data suggests performance improvement

Noncommutative Gröbner bases over rings

Setting

 $R\langle X \rangle$... free algebra over comm. PID (e.g. $R = \mathbb{Z}$)

Noncommutative Gröbner bases over rings

Setting

 $R\langle X \rangle$... free algebra over comm. PID (e.g. $R = \mathbb{Z}$)

Reductions

As in the field case, but now also considering coefficients, that is $f \rightarrow_g f' \iff \exists a, b \in \langle X \rangle : lm(f) = lm(agb) \& lc(g) | lc(f)$

Noncommutative Gröbner bases over rings

Setting

 $R\langle X \rangle$... free algebra over comm. PID (e.g. $R = \mathbb{Z}$)

Reductions

As in the field case, but now also considering coefficients, that is

$$f \to_{g} f' \quad \iff \quad \exists a, b \in \langle X \rangle : \operatorname{lm}(f) = \operatorname{lm}(agb) \And \operatorname{lc}(g) \mid \operatorname{lc}(f)$$

Gröbner bases

Different notions, but most relevant are strong Gröbner bases. Definition: $G \subseteq I$ s.t. $f \xrightarrow{*}_{G} 0$ for all $f \in I$

Observation S-polynomials are not enough!

Observation S-polynomials are not enough!

Consider
$$I = (f = 3x, g = 2y) \subseteq \mathbb{Z}\langle x, y, z \rangle$$

Observation S-polynomials are not enough!

$$\begin{array}{ll} \mbox{Example} & \mbox{Consider I} = (f = 3x, g = 2y) \subseteq \mathbb{Z} \langle x, y, z \rangle \end{array}$$

• $\{f,g\}$ not a strong GB: $xy = fy - xg \in I$ is not reducible

Observation S-polynomials are not enough!

 $\begin{array}{ll} \mbox{Example} & \mbox{Consider I} = (f = 3x, g = 2y) \subseteq \mathbb{Z} \langle x, y, z \rangle \end{array}$

- $\{f,g\}$ not a strong GB: $xy = fy xg \in I$ is not reducible
- Adding Pol(f, g) = 0 does not help

Observation S-polynomials are not enough!

 $\begin{array}{ll} \mathsf{Example} & \mathsf{Consider} \ \mathrm{I} = (\mathrm{f} = 3\mathrm{x}, \mathrm{g} = 2\mathrm{y}) \subseteq \mathbb{Z} \langle \mathrm{x}, \mathrm{y}, z \rangle \end{array}$

- {f, g} not a strong GB: $xy = fy xg \in I$ is not reducible
- Adding SPol(f, g) = 0 does not help
- Look at $gcd(lc(f), lc(g)) \Rightarrow GPol(f, g) = xy$

Observation S-polynomials are not enough!

 $\begin{array}{ll} \mathsf{Example} & \mathsf{Consider} \ \mathrm{I} = (\mathsf{f} = 3\mathsf{x}, \mathsf{g} = 2\mathsf{y}) \subseteq \mathbb{Z} \langle \mathsf{x}, \mathsf{y}, z \rangle \end{array}$

- {f, g} not a strong GB: $xy = fy xg \in I$ is not reducible
- Adding Pol(f,g) = 0 does not help
- Look at $gcd(lc(f), lc(g)) \Rightarrow GPol(f, g) = xy$
- $\{f, g, xy\}$ still no strong GB: $xz^ny = fz^ny xz^ny \in I$ not reducible

Observation S-polynomials are not enough!

 $\begin{tabular}{ll} \hline {\sf Example} & {\sf Consider} \ {\rm I} = ({\tt f} = 3{\tt x}, {\tt g} = 2{\tt y}) \subseteq \mathbb{Z} \langle {\tt x}, {\tt y}, {\tt z} \rangle \end{tabular}$

- {f, g} not a strong GB: $xy = fy xg \in I$ is not reducible
- Adding SPol(f, g) = 0 does not help
- Look at $gcd(lc(f), lc(g)) \Rightarrow GPol(f, g) = xy$
- $\{f, g, xy\}$ still no strong GB: $xz^ny = fz^ny xz^ny \in I$ not reducible
- $\Rightarrow\,$ need to look at all combinations $\,f$ $\ln(g)\,\pm\,\ln(f)$ g

Observation S-polynomials are not enough!

Example Consider I = $(f = 3x, g = 2y) \subseteq \mathbb{Z}\langle x, y, z \rangle$

- $\{f, g\}$ not a strong GB: $xy = fy xg \in I$ is not reducible
- Adding SPol(f, q) = 0 does not help
- Look at $gcd(lc(f), lc(g)) \Rightarrow GPol(f, g) = xy$
- {f, q, xy} still no strong GB: $xz^ny = fz^ny xz^ny \in I$ not reducible
- \Rightarrow need to look at all combinations f $= \ln(g) \pm \ln(f) = g$

- **Problem** SPol(f, g) and GPol(f, g) are infinite
 - \Rightarrow can only compute up to some degree bound

Buchberger's algorithm over rings

- 1. Selection: fair strategy
- 2. Construction: S- and G-polynomials up to degree bound
- 3. Reduction: reduction using (partial) Gröbner basis

Conclusion

Introduction

- Very similar to commutative Gröbner bases
- No termination guarantee \rightsquigarrow Problems only semidecidable
- Many well-behaved special cases

Conclusion

Introduction

- Very similar to commutative Gröbner bases
- No termination guarantee ~>> Problems only semidecidable
- Many well-behaved special cases

Advanced topics

- Linear algebra reductions ~>> Performance improvement
- Signature-based algorithms
 - Add module perspective to polynomials
 - Gröbner basis of ideal + syzygy module
 - Elimination criteria ~ Performance improvement
- Gröbner bases over rings
 - Infinitely many S- & G-polynomials