
Universal truth of operator statements
via ideal membership

Clemens Hofstadler, Clemens G. Raab, Georg Regensburger
Institute for Mathematics, University of Kassel

Seminar Algebra and Discrete Mathematics
Linz, Austria, December 1, 2022

0

Introduction

Goal Proving statements about matrices/linear operators
automatically and efficiently!

statement about
operators

first-order
formula

noncommutative
ideal memberships

statement
is true

semantic
consequence

memberships
hold

formal

computation

efficient

computation

1

Introduction

Goal Proving statements about matrices/linear operators
automatically and efficiently!

statement about
operators

first-order
formula

noncommutative
ideal memberships

statement
is true

semantic
consequence

memberships
hold

formal

computation

efficient

computation

1

Introduction

Goal Proving statements about matrices/linear operators
automatically and efficiently!

statement about
operators

first-order
formula

noncommutative
ideal memberships

statement
is true

semantic
consequence

memberships
hold

formal

computation

efficient

computation

1

Introduction

Goal Proving statements about matrices/linear operators
automatically and efficiently!

statement about
operators

first-order
formula

noncommutative
ideal memberships

statement
is true

semantic
consequence

memberships
hold

formal

computation

efficient

computation

1

Introduction

Goal Proving statements about matrices/linear operators
automatically and efficiently!

statement about
operators

first-order
formula

noncommutative
ideal memberships

statement
is true

semantic
consequence

memberships
hold

formal

computation

efficient

computation

1

Introduction

Goal Proving statements about matrices/linear operators
automatically and efficiently!

statement about
operators

first-order
formula

noncommutative
ideal memberships

statement
is true

semantic
consequence

memberships
hold

formal

computation

efficient

computation

1

Modelling operator statements
via

many-sorted first-order logic

Many-sorted first-order logic

• First-order logic + sorts

• Same expressiveness as unsorted FO logic

• Computational advantages (sorts reduce # of expressions)

• We use sorts to model domains and codomains

2

Linear operator statements

“Statements”

•
∧
i Si = Ti → P = Q (Raab, Regensburger, Hossein Poor, ’19/’21)

• First-order logic with equality as only predicate (today)

“Linear operators”

preadd.
Semicategories

Abelian
categoriesR-ModR-Mat

R

Semicategory = Category − identity morphisms

3

Linear operator statements

“Statements”

•
∧
i Si = Ti → P = Q (Raab, Regensburger, Hossein Poor, ’19/’21)

• First-order logic with equality as only predicate (today)

“Linear operators”

preadd.
Semicategories

Abelian
categoriesR-ModR-Mat

R

Semicategory = Category − identity morphisms

3

Linear operator statements

“Statements”

•
∧
i Si = Ti → P = Q (Raab, Regensburger, Hossein Poor, ’19/’21)

• First-order logic with equality as only predicate (today)

“Linear operators”

preadd.
Semicategories

Abelian
categoriesR-ModR-Mat

R

Semicategory = Category − identity morphisms

3

Linear operator statements

“Statements”

•
∧
i Si = Ti → P = Q (Raab, Regensburger, Hossein Poor, ’19/’21)

• First-order logic with equality as only predicate (today)

“Linear operators”

preadd.
Semicategories

Abelian
categoriesR-ModR-Mat

R

Semicategory = Category − identity morphisms

3

Linear operator statements

“Statements”

•
∧
i Si = Ti → P = Q (Raab, Regensburger, Hossein Poor, ’19/’21)

• First-order logic with equality as only predicate (today)

“Linear operators”

preadd.
Semicategories

Abelian
categoriesR-ModR-Mat

R

Semicategory = Category − identity morphisms

3

Linear operator statements

“Statements”

•
∧
i Si = Ti → P = Q (Raab, Regensburger, Hossein Poor, ’19/’21)

• First-order logic with equality as only predicate (today)

“Linear operators”

preadd.
Semicategories

Abelian
categoriesR-Mod

R-MatR

Semicategory = Category − identity morphisms

3

Linear operator statements

“Statements”

•
∧
i Si = Ti → P = Q (Raab, Regensburger, Hossein Poor, ’19/’21)

• First-order logic with equality as only predicate (today)

“Linear operators”

preadd.
Semicategories

Abelian
categories

R-ModR-MatR

Semicategory = Category − identity morphisms

3

Linear operator statements

“Statements”

•
∧
i Si = Ti → P = Q (Raab, Regensburger, Hossein Poor, ’19/’21)

• First-order logic with equality as only predicate (today)

“Linear operators”

preadd.
Semicategories

Abelian
categoriesR-ModR-MatR

Semicategory = Category − identity morphisms

3

Linear operator statements

“Statements”

•
∧
i Si = Ti → P = Q (Raab, Regensburger, Hossein Poor, ’19/’21)

• First-order logic with equality as only predicate (today)

“Linear operators”

preadd.
Semicategories

Abelian
categoriesR-ModR-MatR

Semicategory = Category − identity morphisms

3

Linear operator statements

“Statements”

•
∧
i Si = Ti → P = Q (Raab, Regensburger, Hossein Poor, ’19/’21)

• First-order logic with equality as only predicate (today)

“Linear operators”

preadd.
Semicategories

Abelian
categoriesR-ModR-MatR

Semicategory = Category − identity morphisms
3

Signature

Var = {x1, x2, . . . } . . . variables

A signature is a tuple Σ = (O,C, F,σ) consisting of

• O. . . object symbols (u, v) ∈ O×O . . . sort

• C. . . constant symbols with 0u,v ∈ C for u, v ∈ O;
• F. . . function symbols with −, +, · ∈ F;
• σ. . . sort function assigning all symbols their sort

4

Syntax

Terms of sort (u, v)

• variables x ∈ Var with σ(x) = (u, v)

• constants c ∈ C with σ(c) = (u, v)

• f(t1, . . . tn) with σ(ti) = (ui, vi) and

σ(f) = (u1, v1)× · · · × (un, vn)→ (u, v)

Formulas

• s ≈ t with terms s, t where σ(s) = σ(t)

• ¬ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ→ ψ)

• ∃ x : ϕ, ∀ x : ϕ

5

Syntax

Terms of sort (u, v)

• variables x ∈ Var with σ(x) = (u, v)

• constants c ∈ C with σ(c) = (u, v)

• f(t1, . . . tn) with σ(ti) = (ui, vi) and

σ(f) = (u1, v1)× · · · × (un, vn)→ (u, v)

Formulas

• s ≈ t with terms s, t where σ(s) = σ(t)

• ¬ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ→ ψ)

• ∃ x : ϕ, ∀ x : ϕ

5

Syntax

Fix σ(x) = (u, v), σ(y) = (u,w), σ(c) = (u,w)

x+ y

x+ y

(c+ y) · 0w,u term of sort (w,w)

0w,v · (c+ c) ground term of sort (u, v)

x ≈ yx ≈ y

∀x : x ≈ 0 · (c+ c) arithmetic sentence

(c 6≈ 0 ∧ c + (−c) ≈ 0) → −c 6≈ 0

arithmetic ground sentence

6

Syntax

Fix σ(x) = (u, v), σ(y) = (u,w), σ(c) = (u,w)

x+ yx+ y

(c+ y) · 0w,u term of sort (w,w)

0w,v · (c+ c) ground term of sort (u, v)

x ≈ yx ≈ y

∀x : x ≈ 0 · (c+ c) arithmetic sentence

(c 6≈ 0 ∧ c + (−c) ≈ 0) → −c 6≈ 0

arithmetic ground sentence

6

Syntax

Fix σ(x) = (u, v), σ(y) = (u,w), σ(c) = (u,w)

x+ yx+ y

(c+ y) · 0w,u term of sort (w,w)

0w,v · (c+ c) ground term of sort (u, v)

x ≈ yx ≈ y

∀x : x ≈ 0 · (c+ c) arithmetic sentence

(c 6≈ 0 ∧ c + (−c) ≈ 0) → −c 6≈ 0

arithmetic ground sentence

6

Syntax

Fix σ(x) = (u, v), σ(y) = (u,w), σ(c) = (u,w)

x+ yx+ y

(c+ y) · 0w,u term of sort (w,w)

0w,v · (c+ c) ground term of sort (u, v)

x ≈ yx ≈ y

∀x : x ≈ 0 · (c+ c) arithmetic sentence

(c 6≈ 0 ∧ c + (−c) ≈ 0) → −c 6≈ 0

arithmetic ground sentence

6

Syntax

Fix σ(x) = (u, v), σ(y) = (u,w), σ(c) = (u,w)

x+ yx+ y

(c+ y) · 0w,u term of sort (w,w)

0w,v · (c+ c) ground term of sort (u, v)

x ≈ yx ≈ y

∀x : x ≈ 0 · (c+ c) arithmetic sentence

(c 6≈ 0 ∧ c + (−c) ≈ 0) → −c 6≈ 0

arithmetic ground sentence

6

Syntax

Fix σ(x) = (u, v), σ(y) = (u,w), σ(c) = (u,w)

x+ yx+ y

(c+ y) · 0w,u term of sort (w,w)

0w,v · (c+ c) ground term of sort (u, v)

x ≈ yx ≈ y

∀x : x ≈ 0 · (c+ c) arithmetic sentence

(c 6≈ 0 ∧ c + (−c) ≈ 0) → −c 6≈ 0

arithmetic ground sentence

6

Syntax

Fix σ(x) = (u, v), σ(y) = (u,w), σ(c) = (u,w)

x+ yx+ y

(c+ y) · 0w,u term of sort (w,w)

0w,v · (c+ c) ground term of sort (u, v)

x ≈ y

x ≈ y

∀x : x ≈ 0 · (c+ c) arithmetic sentence

(c 6≈ 0 ∧ c + (−c) ≈ 0) → −c 6≈ 0

arithmetic ground sentence

6

Syntax

Fix σ(x) = (u, v), σ(y) = (u,w), σ(c) = (u,w)

x+ yx+ y

(c+ y) · 0w,u term of sort (w,w)

0w,v · (c+ c) ground term of sort (u, v)

x ≈ yx ≈ y

∀x : x ≈ 0 · (c+ c) arithmetic sentence

(c 6≈ 0 ∧ c + (−c) ≈ 0) → −c 6≈ 0

arithmetic ground sentence

6

Syntax

Fix σ(x) = (u, v), σ(y) = (u,w), σ(c) = (u,w)

x+ yx+ y

(c+ y) · 0w,u term of sort (w,w)

0w,v · (c+ c) ground term of sort (u, v)

x ≈ yx ≈ y

∀x : x ≈ 0 · (c+ c) arithmetic sentence

(c 6≈ 0 ∧ c + (−c) ≈ 0) → −c 6≈ 0

arithmetic ground sentence

6

Syntax

Fix σ(x) = (u, v), σ(y) = (u,w), σ(c) = (u,w)

x+ yx+ y

(c+ y) · 0w,u term of sort (w,w)

0w,v · (c+ c) ground term of sort (u, v)

x ≈ yx ≈ y

∀x : x ≈ 0 · (c+ c) arithmetic sentence

(c 6≈ 0 ∧ c + (−c) ≈ 0) → −c 6≈ 0

arithmetic ground sentence

6

Syntax

Fix σ(x) = (u, v), σ(y) = (u,w), σ(c) = (u,w)

x+ yx+ y

(c+ y) · 0w,u term of sort (w,w)

0w,v · (c+ c) ground term of sort (u, v)

x ≈ yx ≈ y

∀x : x ≈ 0 · (c+ c) arithmetic sentence

(c 6≈ 0 ∧ c + (−c) ≈ 0) → −c 6≈ 0

arithmetic ground sentence

6

Syntax

Fix σ(x) = (u, v), σ(y) = (u,w), σ(c) = (u,w)

x+ yx+ y

(c+ y) · 0w,u term of sort (w,w)

0w,v · (c+ c) ground term of sort (u, v)

x ≈ yx ≈ y

∀x : x ≈ 0 · (c+ c) arithmetic sentence

(c 6≈ 0 ∧ c + (−c) ≈ 0) → −c 6≈ 0

arithmetic ground sentence

6

Axioms of semicategories

Au,u ′,v,v ′ = {

∀x(v′,v),y(u
′,v′), z(u,u′) : x · (y · z) ≈ (x · y) · z,

∀x(u,v),y(u,v), z(u,v) : x+ (y+ z) ≈ (x+ y) + z,

∀x(u,v) : x+ 0u,v ≈ x,
∀x(u,v) : x+ (−x) ≈ 0u,v,

∀x(u,v),y(u,v) : x+ y ≈ y+ x,

∀x(v′,v),y(u,v′), z(u,v′) : x · (y+ z) ≈ x · y+ x · z,
∀x(v′,v),y(v

′,v), z(u,v′) : (x+ y) · z ≈ x · z+ y · z

}

Axioms A of semicategories are then

A =
⋃

u,u ′,v,v ′∈O
Au,u ′,v,v ′

7

Semantics

Formulas are true or false w.r.t. interpretation I

Interpretations are as in classical FO logic, except that they respect
the sorts.

For example:

I(s ≈ t) = > iff I(s) = I(t) as elements in the domain

ϕ valid iff I(ϕ) = > for all I

Ψ � ϕ (sem. consequence) iff I(Ψ) = >⇒ I(ϕ) = > for all I

Universal truth of operator statement ≡ A � ϕ

8

Semantics

Formulas are true or false w.r.t. interpretation I

Interpretations are as in classical FO logic, except that they respect
the sorts.

For example:

I(s ≈ t) = > iff I(s) = I(t) as elements in the domain

ϕ valid iff I(ϕ) = > for all I

Ψ � ϕ (sem. consequence) iff I(Ψ) = >⇒ I(ϕ) = > for all I

Universal truth of operator statement ≡ A � ϕ

8

Semantics

Formulas are true or false w.r.t. interpretation I

Interpretations are as in classical FO logic, except that they respect
the sorts.

For example:

I(s ≈ t) = > iff I(s) = I(t) as elements in the domain

ϕ valid iff I(ϕ) = > for all I

Ψ � ϕ (sem. consequence) iff I(Ψ) = >⇒ I(ϕ) = > for all I

Universal truth of operator statement ≡ A � ϕ

8

Semantics

Formulas are true or false w.r.t. interpretation I

Interpretations are as in classical FO logic, except that they respect
the sorts.

For example:

I(s ≈ t) = > iff I(s) = I(t) as elements in the domain

ϕ valid iff I(ϕ) = > for all I

Ψ � ϕ (sem. consequence) iff I(Ψ) = >⇒ I(ϕ) = > for all I

Universal truth of operator statement ≡ A � ϕ

8

Formal computation

Goal Prove semantic consequence via syntactic operations

Classically using some deductive system (e.g., Sequent calculus,
Resolution, etc.)

Ψ ` ϕ (syn. consequence) iff ϕ can be derived from Ψ

syntactically

Theorem Ψ � ϕ iff Ψ ` ϕ

Correctness

Completeness

Part II Derive analogous statement for Ψ = A with polynomial rhs

9

Formal computation

Goal Prove semantic consequence via syntactic operations

Classically using some deductive system (e.g., Sequent calculus,
Resolution, etc.)

Ψ ` ϕ (syn. consequence) iff ϕ can be derived from Ψ

syntactically

Theorem Ψ � ϕ iff Ψ ` ϕ

Correctness

Completeness

Part II Derive analogous statement for Ψ = A with polynomial rhs

9

Formal computation

Goal Prove semantic consequence via syntactic operations

Classically using some deductive system (e.g., Sequent calculus,
Resolution, etc.)

Ψ ` ϕ (syn. consequence) iff ϕ can be derived from Ψ

syntactically

Theorem Ψ � ϕ iff Ψ ` ϕ

Correctness

Completeness

Part II Derive analogous statement for Ψ = A with polynomial rhs

9

Formal computation

Goal Prove semantic consequence via syntactic operations

Classically using some deductive system (e.g., Sequent calculus,
Resolution, etc.)

Ψ ` ϕ (syn. consequence) iff ϕ can be derived from Ψ

syntactically

Theorem Ψ � ϕ iff Ψ ` ϕ

Correctness

Completeness

Part II Derive analogous statement for Ψ = A with polynomial rhs

9

Formal computation

Goal Prove semantic consequence via syntactic operations

Classically using some deductive system (e.g., Sequent calculus,
Resolution, etc.)

Ψ ` ϕ (syn. consequence) iff ϕ can be derived from Ψ

syntactically

Theorem Ψ � ϕ iff Ψ ` ϕ

Correctness

Completeness

Part II Derive analogous statement for Ψ = A with polynomial rhs

9

Formal computation

Goal Prove semantic consequence via syntactic operations

Classically using some deductive system (e.g., Sequent calculus,
Resolution, etc.)

Ψ ` ϕ (syn. consequence) iff ϕ can be derived from Ψ

syntactically

Theorem Ψ � ϕ iff Ψ ` ϕ

Correctness

Completeness

Part II Derive analogous statement for Ψ = A with polynomial rhs

9

Expressing universal truth
by

polynomial ideal memberships

Interlude: Noncommutative polynomials

Noncommutative polynomials = elements in free algebra Z〈X〉

=
∑d
i=1 ci · xi,1 . . . xi,ki

For F ⊆ Z〈X〉,

(F) =
{∑

aifibi | ai,bi ∈ Z〈X〉, fi ∈ F
}

Ideal membership problem p
?
∈ (F) is semi-decidable

(e.g., using Gröbner bases)

10

Interlude: Noncommutative polynomials

Noncommutative polynomials = elements in free algebra Z〈X〉

=
∑d
i=1 ci · xi,1 . . . xi,ki

For F ⊆ Z〈X〉,

(F) =
{∑

aifibi | ai,bi ∈ Z〈X〉, fi ∈ F
}

Ideal membership problem p
?
∈ (F) is semi-decidable

(e.g., using Gröbner bases)

10

Interlude: Noncommutative polynomials

Noncommutative polynomials = elements in free algebra Z〈X〉

=
∑d
i=1 ci · xi,1 . . . xi,ki

For F ⊆ Z〈X〉,

(F) =
{∑

aifibi | ai,bi ∈ Z〈X〉, fi ∈ F
}

Ideal membership problem p
?
∈ (F) is semi-decidable

(e.g., using Gröbner bases)

10

From formulas to polynomials

Goal Translate A � ϕ into polynomial predicate I(ϕ) (Idealisation)

Translating arithmetic ground terms is easy

a · (a+ 0) + (−b) + c · d aa− b+ cd ∈ Z〈a,b, c,d〉

...but what about

∃x : a+ b ≈ x ?

← Herbrand’s theorem

f(a,b) ≈ f(b,a) ?

← Ackermann’s reduction

11

From formulas to polynomials

Goal Translate A � ϕ into polynomial predicate I(ϕ) (Idealisation)

Translating arithmetic ground terms is easy

a · (a+ 0) + (−b) + c · d aa− b+ cd ∈ Z〈a,b, c,d〉

...but what about

∃x : a+ b ≈ x ?

← Herbrand’s theorem

f(a,b) ≈ f(b,a) ?

← Ackermann’s reduction

11

From formulas to polynomials

Goal Translate A � ϕ into polynomial predicate I(ϕ) (Idealisation)

Translating arithmetic ground terms is easy

a · (a+ 0) + (−b) + c · d aa− b+ cd ∈ Z〈a,b, c,d〉

...but what about

∃x : a+ b ≈ x ?

← Herbrand’s theorem

f(a,b) ≈ f(b,a) ?

← Ackermann’s reduction

11

From formulas to polynomials

Goal Translate A � ϕ into polynomial predicate I(ϕ) (Idealisation)

Translating arithmetic ground terms is easy

a · (a+ 0) + (−b) + c · d aa− b+ cd ∈ Z〈a,b, c,d〉

...but what about

∃x : a+ b ≈ x ?

← Herbrand’s theorem

f(a,b) ≈ f(b,a) ?

← Ackermann’s reduction

11

From formulas to polynomials

Goal Translate A � ϕ into polynomial predicate I(ϕ) (Idealisation)

Translating arithmetic ground terms is easy

a · (a+ 0) + (−b) + c · d aa− b+ cd ∈ Z〈a,b, c,d〉

...but what about

∃x : a+ b ≈ x ? ← Herbrand’s theorem

f(a,b) ≈ f(b,a) ? ← Ackermann’s reduction

11

Herbrand’s theorem

Goal Reduce validity of formula to validity of ground sentence
 eliminate quantifiers

Herbrand normal form : ∃x1 . . . xn : ϕ∗ with ϕ∗ quantifier-free

Herbrand expansion : H(ϕ) = { all ground instances of ϕ∗ }

Herbrand’s theorem Let ϕ be in Herbrand normal form. Then
ϕ is valid if and only if there exist ϕ1, . . . ,ϕk ∈ H(ϕ) such that
ϕ1 ∨ · · ·∨ϕk is valid.

Corollary A � ϕ iff A � ϕ1 ∨ · · ·∨ϕk.

12

Herbrand’s theorem

Goal Reduce validity of formula to validity of ground sentence
 eliminate quantifiers

Herbrand normal form : ∃x1 . . . xn : ϕ∗ with ϕ∗ quantifier-free

Herbrand expansion : H(ϕ) = { all ground instances of ϕ∗ }

Herbrand’s theorem Let ϕ be in Herbrand normal form. Then
ϕ is valid if and only if there exist ϕ1, . . . ,ϕk ∈ H(ϕ) such that
ϕ1 ∨ · · ·∨ϕk is valid.

Corollary A � ϕ iff A � ϕ1 ∨ · · ·∨ϕk.

12

Herbrand’s theorem

Goal Reduce validity of formula to validity of ground sentence
 eliminate quantifiers

Herbrand normal form : ∃x1 . . . xn : ϕ∗ with ϕ∗ quantifier-free

Herbrand expansion : H(ϕ) = { all ground instances of ϕ∗ }

Herbrand’s theorem Let ϕ be in Herbrand normal form. Then
ϕ is valid if and only if there exist ϕ1, . . . ,ϕk ∈ H(ϕ) such that
ϕ1 ∨ · · ·∨ϕk is valid.

Corollary A � ϕ iff A � ϕ1 ∨ · · ·∨ϕk.

12

Herbrand’s theorem

Goal Reduce validity of formula to validity of ground sentence
 eliminate quantifiers

Herbrand normal form : ∃x1 . . . xn : ϕ∗ with ϕ∗ quantifier-free

Herbrand expansion : H(ϕ) = { all ground instances of ϕ∗ }

Herbrand’s theorem Let ϕ be in Herbrand normal form. Then
ϕ is valid if and only if there exist ϕ1, . . . ,ϕk ∈ H(ϕ) such that
ϕ1 ∨ · · ·∨ϕk is valid.

Corollary A � ϕ iff A � ϕ1 ∨ · · ·∨ϕk.

12

Herbrand’s theorem

Goal Reduce validity of formula to validity of ground sentence
 eliminate quantifiers

Herbrand normal form : ∃x1 . . . xn : ϕ∗ with ϕ∗ quantifier-free

Herbrand expansion : H(ϕ) = { all ground instances of ϕ∗ }

Herbrand’s theorem Let ϕ be in Herbrand normal form. Then
ϕ is valid if and only if there exist ϕ1, . . . ,ϕk ∈ H(ϕ) such that
ϕ1 ∨ · · ·∨ϕk is valid.

Corollary A � ϕ iff A � ϕ1 ∨ · · ·∨ϕk.

12

Herbrandisation

Goal Transform formula ϕ into Herbrand normal form

1 Bind any free variables by universal quantifier

2 Move all quantifiers to the front

3 Apply the following rules exhaustively

∀y : ψ ψ[y 7→ c]

∃x1, . . . , xn∀y : ψ ∃x1, . . . , xn : ψ[y 7→ f(x1, . . . , xn)]

where c, f are new with the correct sort

Proposition A � ϕ iff A � ϕH

13

Herbrandisation

Goal Transform formula ϕ into Herbrand normal form

1 Bind any free variables by universal quantifier

2 Move all quantifiers to the front

3 Apply the following rules exhaustively

∀y : ψ ψ[y 7→ c]

∃x1, . . . , xn∀y : ψ ∃x1, . . . , xn : ψ[y 7→ f(x1, . . . , xn)]

where c, f are new with the correct sort

Proposition A � ϕ iff A � ϕH

13

Herbrandisation

Goal Transform formula ϕ into Herbrand normal form

1 Bind any free variables by universal quantifier

2 Move all quantifiers to the front

3 Apply the following rules exhaustively

∀y : ψ ψ[y 7→ c]

∃x1, . . . , xn∀y : ψ ∃x1, . . . , xn : ψ[y 7→ f(x1, . . . , xn)]

where c, f are new with the correct sort

Proposition A � ϕ iff A � ϕH

13

Ackermann’s reduction

Goal Remove function symbol f from quantifier-free formula ϕ

1 Flatten nested applications of f

2 Replace every instance f(t1, . . . , tn) by new constant cf,t1,...,tn . Denote
new formula by ϕflat.

3 For all cf,s1,...,sn and cf,t1,...,tn form functional consistency constraint

s1 ≈ t1 ∧ · · ·∧ sn ≈ tn → cf,s1,...,sn ≈ cf,t1,...,tn

4 ϕFC ← Conjunction of all functional consistency constraints

5 ϕAck ← (
ϕFC → ϕflat

)
Theorem ϕ valid iff ϕAck valid

Corollary If non-arithmetic function symbol is removed, then

A � ϕ iff A � ϕAck

14

Ackermann’s reduction

Goal Remove function symbol f from quantifier-free formula ϕ

1 Flatten nested applications of f

2 Replace every instance f(t1, . . . , tn) by new constant cf,t1,...,tn . Denote
new formula by ϕflat.

3 For all cf,s1,...,sn and cf,t1,...,tn form functional consistency constraint

s1 ≈ t1 ∧ · · ·∧ sn ≈ tn → cf,s1,...,sn ≈ cf,t1,...,tn

4 ϕFC ← Conjunction of all functional consistency constraints

5 ϕAck ← (
ϕFC → ϕflat

)

Theorem ϕ valid iff ϕAck valid

Corollary If non-arithmetic function symbol is removed, then

A � ϕ iff A � ϕAck

14

Ackermann’s reduction

Goal Remove function symbol f from quantifier-free formula ϕ

1 Flatten nested applications of f

2 Replace every instance f(t1, . . . , tn) by new constant cf,t1,...,tn . Denote
new formula by ϕflat.

3 For all cf,s1,...,sn and cf,t1,...,tn form functional consistency constraint

s1 ≈ t1 ∧ · · ·∧ sn ≈ tn → cf,s1,...,sn ≈ cf,t1,...,tn

4 ϕFC ← Conjunction of all functional consistency constraints

5 ϕAck ← (
ϕFC → ϕflat

)
Theorem ϕ valid iff ϕAck valid

Corollary If non-arithmetic function symbol is removed, then

A � ϕ iff A � ϕAck

14

Ackermann’s reduction

Goal Remove function symbol f from quantifier-free formula ϕ

1 Flatten nested applications of f

2 Replace every instance f(t1, . . . , tn) by new constant cf,t1,...,tn . Denote
new formula by ϕflat.

3 For all cf,s1,...,sn and cf,t1,...,tn form functional consistency constraint

s1 ≈ t1 ∧ · · ·∧ sn ≈ tn → cf,s1,...,sn ≈ cf,t1,...,tn

4 ϕFC ← Conjunction of all functional consistency constraints

5 ϕAck ← (
ϕFC → ϕflat

)
Theorem ϕ valid iff ϕAck valid

Corollary If non-arithmetic function symbol is removed, then

A � ϕ iff A � ϕAck

14

Idealisation

Goal Translate A � ϕ into polynomial predicate I(ϕ)

Suffices to discuss arithmetic ground sentences

arb. formula Herbrand−−−−−→ ground sent. Ackermann−−−−−−→ arith. ground sent.

Every ϕ is logically equivalent to a formula of the form

CNF(ϕ) =
∧
i

(∨
j

si,j 6≈ ti,j ∨
∨
k

pi,k ≈ qi,k︸ ︷︷ ︸
clause

)
Idealisation

clause:

I(Ci) :≡ pi,k − qi,k ∈ (si,1 − ti,1, . . . , si,n − ti,n) for some k

arith. ground sentence: I(ϕ) :≡
∧

C clause
of CNF(ϕ)

I(C)

15

Idealisation

Goal Translate A � ϕ into polynomial predicate I(ϕ)

Suffices to discuss arithmetic ground sentences

arb. formula Herbrand−−−−−→ ground sent. Ackermann−−−−−−→ arith. ground sent.

Every ϕ is logically equivalent to a formula of the form

CNF(ϕ) =
∧
i

(∨
j

si,j 6≈ ti,j ∨
∨
k

pi,k ≈ qi,k︸ ︷︷ ︸
clause

)
Idealisation

clause:

I(Ci) :≡ pi,k − qi,k ∈ (si,1 − ti,1, . . . , si,n − ti,n) for some k

arith. ground sentence: I(ϕ) :≡
∧

C clause
of CNF(ϕ)

I(C)

15

Idealisation

Goal Translate A � ϕ into polynomial predicate I(ϕ)

Suffices to discuss arithmetic ground sentences

arb. formula Herbrand−−−−−→ ground sent. Ackermann−−−−−−→ arith. ground sent.

Every ϕ is logically equivalent to a formula of the form

CNF(ϕ) =
∧
i

(∨
j

si,j 6≈ ti,j ∨
∨
k

pi,k ≈ qi,k︸ ︷︷ ︸
clause

)

Idealisation

clause:

I(Ci) :≡ pi,k − qi,k ∈ (si,1 − ti,1, . . . , si,n − ti,n) for some k

arith. ground sentence: I(ϕ) :≡
∧

C clause
of CNF(ϕ)

I(C)

15

Idealisation

Goal Translate A � ϕ into polynomial predicate I(ϕ)

Suffices to discuss arithmetic ground sentences

arb. formula Herbrand−−−−−→ ground sent. Ackermann−−−−−−→ arith. ground sent.

Every ϕ is logically equivalent to a formula of the form

CNF(ϕ) =
∧
i

(∨
j

si,j 6≈ ti,j ∨
∨
k

pi,k ≈ qi,k︸ ︷︷ ︸
clause

)
Idealisation

clause:

I(Ci) :≡ pi,k − qi,k ∈ (si,1 − ti,1, . . . , si,n − ti,n) for some k

arith. ground sentence: I(ϕ) :≡
∧

C clause
of CNF(ϕ)

I(C)

15

Idealisation

Goal Translate A � ϕ into polynomial predicate I(ϕ)

Suffices to discuss arithmetic ground sentences

arb. formula Herbrand−−−−−→ ground sent. Ackermann−−−−−−→ arith. ground sent.

Every ϕ is logically equivalent to a formula of the form

CNF(ϕ) =
∧
i

(∨
j

si,j 6≈ ti,j ∨
∨
k

pi,k ≈ qi,k︸ ︷︷ ︸
clause

)
Idealisation

clause:

I(Ci) :≡ pi,k − qi,k ∈ (si,1 − ti,1, . . . , si,n − ti,n) for some k

arith. ground sentence: I(ϕ) :≡
∧

C clause
of CNF(ϕ)

I(C)

15

Main result

Theorem Let ϕ be an arithmetic ground sentence. Then

A � ϕ iff I(ϕ) = >.

Proof:

“⇐”: Reduce to (Raab, Regensburger, Hossein Poor, ’19/’21)

“⇒”: Use A � ϕ iff A ` ϕ and show that sequent rules respect
idealisation.

Advantages

• Axioms A are treated implicitly.

• Proof is independent of sorts, and thus, holds in all settings.

• Exploit efficient polynomial routines.

16

Main result

Theorem Let ϕ be an arithmetic ground sentence. Then

A � ϕ iff I(ϕ) = >.
Proof:

“⇐”: Reduce to (Raab, Regensburger, Hossein Poor, ’19/’21)

“⇒”: Use A � ϕ iff A ` ϕ and show that sequent rules respect
idealisation.

Advantages

• Axioms A are treated implicitly.

• Proof is independent of sorts, and thus, holds in all settings.

• Exploit efficient polynomial routines.

16

Main result

Theorem Let ϕ be an arithmetic ground sentence. Then

A � ϕ iff I(ϕ) = >.
Proof:

“⇐”: Reduce to (Raab, Regensburger, Hossein Poor, ’19/’21)

“⇒”: Use A � ϕ iff A ` ϕ and show that sequent rules respect
idealisation.

Advantages

• Axioms A are treated implicitly.

• Proof is independent of sorts, and thus, holds in all settings.

• Exploit efficient polynomial routines.

16

Main result

Theorem Let ϕ be an arithmetic ground sentence. Then

A � ϕ iff I(ϕ) = >.
Proof:

“⇐”: Reduce to (Raab, Regensburger, Hossein Poor, ’19/’21)

“⇒”: Use A � ϕ iff A ` ϕ and show that sequent rules respect
idealisation.

Advantages

• Axioms A are treated implicitly.

• Proof is independent of sorts, and thus, holds in all settings.

• Exploit efficient polynomial routines.
16

Semi-decision procedure

Input: signature Σ, formula ϕ
Output: > if and only if A � ϕ; otherwise infinite loop

1 ϕH ← Herband normal form of ϕ

2 ϕ1,ϕ2, · · ·← an enumeration of H(ϕH)

3 n← 1

4 ψn ← ∨n
i=1ϕi

5 ψAck
n ← remove all non-arithmetic function symbols from ψn using

Ackermann’s reduction.

6 If I(ψAck
n) = >, return >. Otherwise, increase n by 1 and go to step 4.

17

Semi-decision procedure

Input: signature Σ, formula ϕ
Output: > if and only if A � ϕ; otherwise infinite loop

1 ϕH ← Herband normal form of ϕ

2 ϕ1,ϕ2, · · ·← an enumeration of H(ϕH)

3 n← 1

4 ψn ← ∨n
i=1ϕi

5 ψAck
n ← remove all non-arithmetic function symbols from ψn using

Ackermann’s reduction.

6 For k← 1, . . . ,n
If I(ψAck

k) = > can be verified with n operations, return >.

7 Increase n by 1 and go to step 4.

17

Computational aspects

• Efficiency of the procedure ≈ good enumeration of H(ϕH)
◦ Expert knowledge
◦ “Polynomial unification”

• Avoid CNF blowup by incremental computation
I(γ) = ⊥

I(α1 ∨ γ) = > I(β1 ∨ γ) = ⊥

I(α1 ∨ α2 ∨ γ)

= >
I(α1 ∨ β2 ∨ γ)

= >
I(β1 ∨ α2 ∨ γ)

= >
I(β1 ∨ β2 ∨ γ)

= >

. .

• Treat simple subformulas separately

18

Applications

Used to automatically (im)prove statements in the field of

• generalized inverses
◦ Moore-Penrose inverses (K. Bernauer)

19

Applications

(Extract from Handbook of Linear Algebra)

20

Applications

Used to automatically (im)prove statements in the field of

• Generalized inverses
◦ Moore-Penrose inverses (K. Bernauer)

◦ Reverse order law (with D. Cvetković-Ilić and J. Milošević)

• Solvability of systems of equations

21

Applications

Used to automatically (im)prove statements in the field of

• Generalized inverses
◦ Moore-Penrose inverses (K. Bernauer)
◦ Reverse order law (with D. Cvetković-Ilić and J. Milošević)

• Solvability of systems of equations

21

Applications

Used to automatically (im)prove statements in the field of

• Generalized inverses
◦ Moore-Penrose inverses (K. Bernauer)
◦ Reverse order law (with D. Cvetković-Ilić and J. Milošević)

• Solvability of systems of equations

21

Applications

(Milošević, ’20)

22

23

Applications

Used to automatically (im)prove statements in the field of

• Generalized inverses
◦ Moore-Penrose inverses (K. Bernauer)
◦ Reverse order law (with D. Cvetković-Ilić and J. Milošević)

• Solvability of systems of equations

• Homological algebra

◦ Diagram lemmas

A B C D E

A ′ B ′ C ′ D ′ E ′

f g h j

f ′ g ′ h ′ j ′

α β γ δ ε

24

Applications

Used to automatically (im)prove statements in the field of

• Generalized inverses
◦ Moore-Penrose inverses (K. Bernauer)
◦ Reverse order law (with D. Cvetković-Ilić and J. Milošević)

• Solvability of systems of equations

• Homological algebra
◦ Diagram lemmas

A B C D E

A ′ B ′ C ′ D ′ E ′

f g h j

f ′ g ′ h ′ j ′

α β γ δ ε

24

Applications

Used to automatically (im)prove statements in the field of

• Generalized inverses
◦ Moore-Penrose inverses (K. Bernauer)
◦ Reverse order law (with D. Cvetković-Ilić and J. Milošević)

• Solvability of systems of equations

• Homological algebra
◦ Diagram lemmas A B C D E

A ′ B ′ C ′ D ′ E ′

f g h j

f ′ g ′ h ′ j ′

α β γ δ ε

24

Summary & Outlook

Summary

• Model operator statements via many-sorted logic

• Translate validity of operator statement into finitely many
polynomial ideal memberships

• Tools: Herbrand’s theorem + Ackermann’s reduction

Outlook

• Producing proofs

• (Better) heuristics for finding good instantiations

• More advanced computational techniques (DPLL-style,
techniques from SMT)

• Further applications
25

