Universal truth of operator statements via ideal membership

Clemens Hofstadler, Clemens G. Raab, Georg Regensburger Institute for Mathematics, University of Kassel

Seminar Algebra and Discrete Mathematics Linz, Austria, December 1, 2022

UN I KASSEL
V ERS I T A'

FШF
Der Wissenschaftsfonds.

Introduction

Goal Proving statements about matrices/linear operators automatically and efficiently!

Introduction

GoalProving statements about matrices/linear operators automatically and efficiently!
statement about
operators
statement
is true

Introduction

Goal

Proving statements about matrices/linear operators automatically and efficiently!

Introduction

GoalProving statements about matrices/linear operators automatically and efficiently!
statement about

Introduction

Goal Proving statements about matrices/linear operators automatically and efficiently!

Introduction

Goal Proving statements about matrices/linear operators automatically and efficiently!

Modelling operator statements

via
 many-sorted first-order logic

Many-sorted first-order logic

- First-order logic + sorts
- Same expressiveness as unsorted FO logic
- Computational advantages (sorts reduce \# of expressions)
- We use sorts to model domains and codomains

Linear operator statements

"Statements"

Linear operator statements

"Statements"

- $\bigwedge_{i} S_{i}=T_{i} \rightarrow P=Q$ (Raab, Regensburger, Hossein Poor, '19/'21)

Linear operator statements

"Statements"

- $\bigwedge_{i} S_{i}=T_{i} \rightarrow P=Q$ (Raab, Regensburger, Hossein Poor, '19/'21)
- First-order logic with equality as only predicate (today)

Linear operator statements

"Statements"

- $\bigwedge_{i} S_{i}=T_{i} \rightarrow P=Q$ (Raab, Regensburger, Hossein Poor, '19/'21)
- First-order logic with equality as only predicate (today)
"Linear operators"

Linear operator statements

"Statements"

- $\bigwedge_{i} S_{i}=\mathrm{T}_{\mathrm{i}} \rightarrow \mathrm{P}=\mathrm{Q}$ (Raab, Regensburger, Hossein Poor, '19/'21)
- First-order logic with equality as only predicate (today)
"Linear operators"

Linear operator statements

"Statements"

- $\bigwedge_{i} S_{i}=T_{i} \rightarrow P=Q$ (Raab, Regensburger, Hossein Poor, '19/'21)
- First-order logic with equality as only predicate (today)

"Linear operators"

Linear operator statements

"Statements"

- $\bigwedge_{i} S_{i}=T_{i} \rightarrow P=Q$ (Raab, Regensburger, Hossein Poor, '19/'21)
- First-order logic with equality as only predicate (today)
"Linear operators"

Linear operator statements

"Statements"

- $\bigwedge_{i} S_{i}=\mathrm{T}_{\mathrm{i}} \rightarrow \mathrm{P}=\mathrm{Q}$ (Raab, Regensburger, Hossein Poor, '19/'21)
- First-order logic with equality as only predicate (today)

"Linear operators"

Linear operator statements

"Statements"

- $\bigwedge_{i} S_{i}=\mathrm{T}_{\mathrm{i}} \rightarrow \mathrm{P}=\mathrm{Q}$ (Raab, Regensburger, Hossein Poor, '19/'21)
- First-order logic with equality as only predicate (today)

"Linear operators"

Linear operator statements

"Statements"

- $\bigwedge_{i} S_{i}=T_{i} \rightarrow P=Q$ (Raab, Regensburger, Hossein Poor, '19/'21)
- First-order logic with equality as only predicate (today)

"Linear operators"

Semicategory $=$ Category - identity morphisms

Signature

$$
\text { Var }=\left\{x_{1}, x_{2}, \ldots\right\} \ldots \text { variables }
$$

A signature is a tuple $\Sigma=(\mathrm{O}, \mathrm{C}, \mathrm{F}, \sigma)$ consisting of

- O... object symbols $\quad(u, v) \in O \times O \ldots$ sort
- C...constant symbols with $0_{u, v} \in C$ for $u, v \in O$;
- F. . . function symbols with,,$-+ \cdot \in F$;
- σ...sort function assigning all symbols their sort

Syntax

Terms of sort (u, v)

- variables $x \in \operatorname{Var}$ with $\sigma(x)=(u, v)$
- constants $c \in C$ with $\sigma(c)=(u, v)$
- $f\left(t_{1}, \ldots t_{n}\right)$ with $\sigma\left(t_{i}\right)=\left(u_{i}, v_{i}\right)$ and

$$
\sigma(f)=\left(u_{1}, v_{1}\right) \times \cdots \times\left(u_{n}, v_{n}\right) \rightarrow(u, v)
$$

Syntax

Terms of sort (u, v)

- variables $\chi \in \operatorname{Var}$ with $\sigma(x)=(u, v)$
- constants $\mathrm{c} \in \mathrm{C}$ with $\sigma(\mathrm{c})=(\mathrm{u}, \mathrm{v})$
- $f\left(t_{1}, \ldots t_{n}\right)$ with $\sigma\left(t_{i}\right)=\left(u_{i}, v_{i}\right)$ and

$$
\sigma(f)=\left(u_{1}, v_{1}\right) \times \cdots \times\left(u_{n}, v_{n}\right) \rightarrow(u, v)
$$

Formulas

- $s \approx t$ with terms s, t where $\sigma(s)=\sigma(t)$
- $\neg \varphi,(\varphi \wedge \psi),(\varphi \vee \psi),(\varphi \rightarrow \psi)$
- $\exists x: \varphi, \forall x: \varphi$

Syntax

Fix $\sigma(x)=(u, v), \quad \sigma(y)=(u, w), \quad \sigma(c)=(u, w)$

$$
x+y
$$

Syntax

Fix $\sigma(x)=(u, v), \quad \sigma(y)=(u, w), \quad \sigma(c)=(u, w)$

$$
x+y
$$

Syntax

Fix $\sigma(x)=(u, v), \quad \sigma(y)=(u, w), \quad \sigma(c)=(u, w)$

$$
\begin{aligned}
& x+y \\
& (c+y) \cdot o_{w, u}
\end{aligned}
$$

Syntax

Fix $\sigma(x)=(u, v), \quad \sigma(y)=(u, w), \quad \sigma(c)=(u, w)$

$$
x+y
$$

$(c+y) \cdot 0_{w, u} \quad$ term of sort (w, w)

Syntax

Fix $\sigma(x)=(u, v), \quad \sigma(y)=(u, w), \quad \sigma(c)=(u, w)$

$$
\begin{aligned}
& x+y \\
& (c+y) \cdot 0_{w, u} \quad \text { term of sort }(w, w) \\
& 0_{w, v} \cdot(c+c)
\end{aligned}
$$

Syntax

Fix $\sigma(x)=(u, v), \quad \sigma(y)=(u, w), \quad \sigma(c)=(u, w)$

$$
\begin{array}{ll}
x+y \\
(c+y) \cdot 0_{w, u} & \text { term of sort }(w, w) \\
0_{w, v} \cdot(c+c) & \text { ground term of sort }(u, v)
\end{array}
$$

Syntax

Fix $\sigma(x)=(u, v), \quad \sigma(y)=(u, w), \quad \sigma(c)=(u, w)$

$$
\begin{array}{ll}
x+y \\
(c+y) \cdot 0_{w, u} & \text { term of sort }(w, w) \\
0_{w, v} \cdot(c+c) & \text { ground term of sort }(u, v)
\end{array}
$$

$$
x \approx y
$$

Syntax

Fix $\sigma(x)=(u, v), \quad \sigma(y)=(u, w), \quad \sigma(c)=(u, w)$

$$
\begin{array}{ll}
x+y \\
(c+y) \cdot 0_{w, u} & \text { term of sort }(w, w) \\
0_{w, v} \cdot(c+c) & \text { ground term of sort }(u, v)
\end{array}
$$

$$
x \approx y
$$

Syntax

Fix $\sigma(x)=(u, v), \quad \sigma(y)=(u, w), \quad \sigma(c)=(u, w)$

$$
\begin{array}{ll}
x+y \\
(c+y) \cdot 0_{w, u} & \text { term of sort }(w, w) \\
0_{w, v} \cdot(c+c) & \text { ground term of sort }(u, v)
\end{array}
$$

$$
\begin{aligned}
& x \approx y \\
& \forall x: x \approx 0 \cdot(c+c)
\end{aligned}
$$

Syntax

Fix $\sigma(x)=(u, v), \quad \sigma(y)=(u, w), \quad \sigma(c)=(u, w)$

$$
\begin{aligned}
& x+y \\
& (c+y) \cdot 0_{w, u} \quad \text { term of sort }(w, w) \\
& 0_{w, v} \cdot(c+c) \quad \text { ground term of sort }(u, v) \\
& x \approx y \\
& \forall x: x \approx 0 \cdot(c+c) \quad \text { arithmetic sentence }
\end{aligned}
$$

Syntax

Fix $\sigma(x)=(u, v), \quad \sigma(y)=(u, w), \quad \sigma(c)=(u, w)$

$$
\begin{aligned}
& x+y \\
& (c+y) \cdot 0_{w, u} \quad \text { term of sort }(w, w) \\
& 0_{w, v} \cdot(c+c) \quad \text { ground term of sort }(u, v) \\
& x \approx y \\
& \forall x: x \approx 0 \cdot(c+c) \quad \text { arithmetic sentence } \\
& (c \not \approx \not \approx 0 \wedge c+(-c) \approx 0) \rightarrow-c \not \approx 0
\end{aligned}
$$

Syntax

Fix $\sigma(x)=(u, v), \quad \sigma(y)=(u, w), \quad \sigma(c)=(u, w)$

$$
\begin{aligned}
& x+y \\
& (c+y) \cdot 0_{w, u} \quad \text { term of sort }(w, w) \\
& 0_{w, v} \cdot(c+c) \quad \text { ground term of sort }(u, v) \\
& x \approx y \\
& \forall x: x \approx 0 \cdot(c+c) \quad \text { arithmetic sentence } \\
& (c \not \approx \nsim 0 \wedge c+(-c) \approx 0) \rightarrow-c \not \approx \nsim 0 \\
& \text { arithmetic ground sentence }
\end{aligned}
$$

Axioms of semicategories

$\mathcal{A}_{u, \mathfrak{u}^{\prime}, v, v^{\prime}}=\{$

$$
\begin{aligned}
& \forall \chi^{\left(v^{\prime}, v\right)}, \mathrm{y}^{\left(\mathrm{u}^{\prime}, v^{\prime}\right)}, \mathrm{z}^{\left(\mathrm{u}, \mathrm{u}^{\prime}\right)}: \quad \mathrm{x} \cdot(\mathrm{y} \cdot \mathrm{z}) \approx(\mathrm{x} \cdot \mathrm{y}) \cdot \mathrm{z}, \\
& \forall x^{(u, v)}, y^{(u, v)}, z^{(u, v)} \quad: \quad x+(y+z) \approx(x+y)+z \text {, } \\
& \forall \chi^{(u, v)} \\
& \forall x^{(u, v)} \\
& \text { : } \quad x+0_{u, v} \approx x \text {, } \\
& : \quad x+(-x) \approx 0_{u, v}, \\
& \forall \chi^{(u, v)}, y^{(u, v)} \\
& : \quad x+y \approx y+x \text {, } \\
& \forall x^{\left(v^{\prime}, v\right)}, \mathrm{y}^{\left(\mathrm{u}, \nu^{\prime}\right)}, \mathrm{z}^{\left(\mathrm{u}, v^{\prime}\right)}: \quad \mathrm{x} \cdot(\mathrm{y}+\mathrm{z}) \approx x \cdot \mathrm{y}+\mathrm{x} \cdot \mathrm{z} \text {, } \\
& \forall x^{\left(v^{\prime}, v\right)}, \mathrm{y}^{\left(v^{\prime}, v\right)}, z^{\left(u, v^{\prime}\right)} \quad:(x+y) \cdot z \approx x \cdot z+y \cdot z
\end{aligned}
$$

]
Axioms \mathcal{A} of semicategories are then

$$
\mathcal{A}=\bigcup_{\mathfrak{u}, \mathrm{u}^{\prime}, v, v^{\prime} \in \mathrm{O}} \mathcal{A}_{\mathrm{u}, \mathrm{u}^{\prime}, v, v^{\prime}}
$$

Semantics

Formulas are true or false w.r.t. interpretation \mathcal{J}
Interpretations are as in classical FO logic, except that they respect the sorts.

Semantics

Formulas are true or false w.r.t. interpretation \mathcal{J}
Interpretations are as in classical FO logic, except that they respect the sorts.

For example:

$$
\mathcal{J}(s \approx t)=T \quad \text { iff } \quad \mathcal{J}(s)=\mathcal{J}(t) \text { as elements in the domain }
$$

Semantics

Formulas are true or false w.r.t. interpretation \mathcal{J}
Interpretations are as in classical FO logic, except that they respect the sorts.

For example:

$$
\mathcal{J}(s \approx t)=T \quad \text { iff } \quad \mathcal{J}(s)=\mathcal{J}(t) \text { as elements in the domain }
$$

$$
\begin{array}{rll}
\varphi \text { valid } & \text { iff } \mathcal{J}(\varphi)=\top \text { for all } \mathcal{J} \\
\Psi \vDash \varphi \text { (sem. consequence) } & \text { iff } & \mathcal{J}(\Psi)=\top \Rightarrow \mathcal{J}(\varphi)=\top \text { for all } \mathcal{J}
\end{array}
$$

Semantics

Formulas are true or false w.r.t. interpretation \mathcal{J}
Interpretations are as in classical FO logic, except that they respect the sorts.

For example:

$$
\mathcal{J}(s \approx t)=T \quad \text { iff } \quad \mathcal{J}(s)=\mathcal{J}(t) \text { as elements in the domain }
$$

$$
\begin{array}{rll}
\varphi \text { valid } & \text { iff } \mathcal{J}(\varphi)=\top \text { for all } \mathcal{J} \\
\Psi \vDash \varphi \text { (sem. consequence) } & \text { iff } & \mathcal{J}(\Psi)=\top \Rightarrow \mathcal{J}(\varphi)=\top \text { for all } \mathcal{J}
\end{array}
$$

Universal truth of operator statement $\equiv \mathcal{A} \vDash \varphi$

Formal computation

Goal Prove semantic consequence via syntactic operations
Classically using some deductive system (e.g., Sequent calculus, Resolution, etc.)

Formal computation

Goal Prove semantic consequence via syntactic operations
Classically using some deductive system (e.g., Sequent calculus, Resolution, etc.)

$$
\Psi \vdash \varphi \text { (syn. consequence) iff } \quad \varphi \text { can be derived from } \Psi
$$

Formal computation

Goal Prove semantic consequence via syntactic operations
Classically using some deductive system (e.g., Sequent calculus, Resolution, etc.)

$$
\Psi \vdash \varphi \text { (syn. consequence) iff } \quad \varphi \text { can be derived from } \Psi
$$

Theorem $\Psi \vDash \varphi \quad$ iff $\quad \Psi \vdash \varphi$

Formal computation

Goal Prove semantic consequence via syntactic operations
Classically using some deductive system (e.g., Sequent calculus, Resolution, etc.)

Formal computation

Goal Prove semantic consequence via syntactic operations
Classically using some deductive system (e.g., Sequent calculus, Resolution, etc.)

Formal computation

Goal Prove semantic consequence via syntactic operations
Classically using some deductive system (e.g., Sequent calculus, Resolution, etc.)
$\Psi \vdash \varphi$ (syn. consequence) iff $\quad \varphi$ can be derived from Ψ syntactically

Theorem

Part II Derive analogous statement for $\Psi=\mathcal{A}$ with polynomial rhs

Expressing universal truth by

polynomial ideal memberships

Interlude: Noncommutative polynomials

Noncommutative polynomials $=$ elements in free algebra $\mathbb{Z}\langle X\rangle$

$$
=\sum_{i=1}^{d} c_{i} \cdot x_{i, 1} \ldots x_{i, k_{i}}
$$

Interlude: Noncommutative polynomials

Noncommutative polynomials $=$ elements in free algebra $\mathbb{Z}\langle X\rangle$

$$
=\sum_{i=1}^{d} c_{i} \cdot x_{i, 1} \ldots x_{i, k_{i}}
$$

For $\mathrm{F} \subseteq \mathbb{Z}\langle X\rangle$,

$$
(F)=\left\{\sum a_{i} f_{i} b_{i} \mid a_{i}, b_{i} \in \mathbb{Z}\langle X\rangle, f_{i} \in F\right\}
$$

Interlude: Noncommutative polynomials

Noncommutative polynomials $=$ elements in free algebra $\mathbb{Z}\langle X\rangle$

$$
=\sum_{i=1}^{d} c_{i} \cdot x_{i, 1} \ldots x_{i, k_{i}}
$$

For $F \subseteq \mathbb{Z}\langle X\rangle$,

$$
(F)=\left\{\sum a_{i} f_{i} b_{i} \mid a_{i}, b_{i} \in \mathbb{Z}\langle X\rangle, f_{i} \in F\right\}
$$

Ideal membership problem $p \stackrel{?}{\in}(F)$ is semi-decidable (e.g., using Gröbner bases)

From formulas to polynomials

Goal Translate $\mathcal{A} \vDash \varphi$ into polynomial predicate $\mathrm{I}(\varphi)$ (Idealisation)

From formulas to polynomials

Goal Translate $\mathcal{A} \vDash \varphi$ into polynomial predicate $\mathrm{I}(\varphi)$ (Idealisation)

Translating arithmetic ground terms is easy

$$
a \cdot(a+0)+(-b)+c \cdot d \quad \rightsquigarrow \quad a a-b+c d \in \mathbb{Z}\langle a, b, c, d\rangle
$$

From formulas to polynomials

Goal Translate $\mathcal{A} \vDash \varphi$ into polynomial predicate $\mathrm{I}(\varphi)$ (Idealisation)

Translating arithmetic ground terms is easy

$$
a \cdot(a+0)+(-b)+c \cdot d \quad \rightsquigarrow \quad a a-b+c d \in \mathbb{Z}\langle a, b, c, d\rangle
$$

...but what about

$$
\exists x: \mathrm{a}+\mathrm{b} \approx x \quad \rightsquigarrow \quad ?
$$

From formulas to polynomials

Goal Translate $\mathcal{A} \vDash \varphi$ into polynomial predicate $\mathrm{I}(\varphi)$ (Idealisation)

Translating arithmetic ground terms is easy

$$
a \cdot(a+0)+(-b)+c \cdot d \quad \rightsquigarrow \quad a a-b+c d \in \mathbb{Z}\langle a, b, c, d\rangle
$$

...but what about

$$
\begin{array}{rll}
\exists \mathrm{x}: \mathrm{a}+\mathrm{b} \approx \mathrm{x} & \rightsquigarrow ? \\
\mathrm{f}(\mathrm{a}, \mathrm{~b}) \approx \mathrm{f}(\mathrm{~b}, \mathrm{a}) & \rightsquigarrow ?
\end{array}
$$

From formulas to polynomials

Goal Translate $\mathcal{A} \vDash \varphi$ into polynomial predicate $\mathrm{I}(\varphi)$ (Idealisation)

Translating arithmetic ground terms is easy

$$
a \cdot(a+0)+(-b)+c \cdot d \quad \rightsquigarrow \quad a a-b+c d \in \mathbb{Z}\langle a, b, c, d\rangle
$$

...but what about

$$
\begin{array}{rll}
\exists \mathrm{x}: \mathrm{a}+\mathrm{b} \approx \mathrm{x} & \rightsquigarrow ? & \leftarrow \text { Herbrand's theorem } \\
\mathrm{f}(\mathrm{a}, \mathrm{~b}) \approx \mathrm{f}(\mathrm{~b}, \mathrm{a}) & \rightsquigarrow ? & \leftarrow \text { Ackermann's reduction }
\end{array}
$$

Herbrand's theorem

Goal Reduce validity of formula to validity of ground sentence
\rightsquigarrow eliminate quantifiers

Herbrand's theorem

Goal Reduce validity of formula to validity of ground sentence \rightsquigarrow eliminate quantifiers

Herbrand normal form : $\exists x_{1} \ldots x_{n}: \varphi^{*}$ with φ^{*} quantifier-free

Herbrand's theorem

Goal Reduce validity of formula to validity of ground sentence \rightsquigarrow eliminate quantifiers

Herbrand normal form : $\exists x_{1} \ldots x_{n}: \varphi^{*}$ with φ^{*} quantifier-free Herbrand expansion : $\mathrm{H}(\varphi)=\left\{\right.$ all ground instances of $\left.\varphi^{*}\right\}$

Herbrand's theorem

Goal Reduce validity of formula to validity of ground sentence \rightsquigarrow eliminate quantifiers

Herbrand normal form : $\exists x_{1} \ldots x_{n}: \varphi^{*}$ with φ^{*} quantifier-free Herbrand expansion : $\mathrm{H}(\varphi)=\left\{\right.$ all ground instances of $\left.\varphi^{*}\right\}$

Herbrand's theorem Let φ be in Herbrand normal form. Then φ is valid if and only if there exist $\varphi_{1}, \ldots, \varphi_{k} \in H(\varphi)$ such that $\varphi_{1} \vee \cdots \vee \varphi_{\mathrm{k}}$ is valid.

Herbrand's theorem

Goal Reduce validity of formula to validity of ground sentence \rightsquigarrow eliminate quantifiers

Herbrand normal form : $\exists x_{1} \ldots x_{n}: \varphi^{*}$ with φ^{*} quantifier-free Herbrand expansion : $\mathrm{H}(\varphi)=\left\{\right.$ all ground instances of $\left.\varphi^{*}\right\}$

Herbrand's theorem Let φ be in Herbrand normal form. Then φ is valid if and only if there exist $\varphi_{1}, \ldots, \varphi_{k} \in H(\varphi)$ such that $\varphi_{1} \vee \cdots \vee \varphi_{\mathrm{k}}$ is valid.

$$
\mathcal{A} \vDash \varphi \quad \text { iff } \quad \mathcal{A} \vDash \varphi_{1} \vee \cdots \vee \varphi_{k} .
$$

Herbrandisation

Goal Transform formula φ into Herbrand normal form

Herbrandisation

Goal Transform formula φ into Herbrand normal form
1 Bind any free variables by universal quantifier
2 Move all quantifiers to the front
3 Apply the following rules exhaustively

$$
\begin{aligned}
\forall y: \psi & \rightsquigarrow \psi[y \mapsto c] \\
\exists x_{1}, \ldots, x_{n} \forall y: \psi & \rightsquigarrow \exists x_{1}, \ldots, x_{n}: \psi\left[y \mapsto f\left(x_{1}, \ldots, x_{n}\right)\right]
\end{aligned}
$$

where c, f are new with the correct sort

Herbrandisation

Goal Transform formula φ into Herbrand normal form
1 Bind any free variables by universal quantifier
2 Move all quantifiers to the front
3 Apply the following rules exhaustively

$$
\begin{aligned}
\forall y: \psi & \rightsquigarrow \psi[y \mapsto c] \\
\exists x_{1}, \ldots, x_{n} \forall y: \psi & \rightsquigarrow \exists x_{1}, \ldots, x_{n}: \psi\left[y \mapsto f\left(x_{1}, \ldots, x_{n}\right)\right]
\end{aligned}
$$

where c, f are new with the correct sort

Proposition

$$
\mathcal{A} \vDash \varphi \quad \text { iff } \quad \mathcal{A} \vDash \varphi^{H}
$$

Ackermann's reduction

Goal Remove function symbol from quantifier-free formula φ

Ackermann's reduction

Goal Remove function symbol from quantifier-free formula φ
1 Flatten nested applications of f
2 Replace every instance $f\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}\right)$ by new constant $\mathrm{c}_{f, \mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}}$. Denote new formula by $\varphi^{\text {fiat }}$.

3 For all $c_{f, s_{1}, \ldots, s_{n}}$ and $c_{f, t_{1}, \ldots, t_{n}}$ form functional consistency constraint

$$
s_{1} \approx t_{1} \wedge \cdots \wedge s_{n} \approx t_{n} \rightarrow c_{f, s_{1}, \ldots, s_{n}} \approx c_{f, t_{1}, \ldots, t_{n}}
$$

$4 \varphi^{F C} \leftarrow$ Conjunction of all functional consistency constraints
$5 \quad \varphi^{\text {Ack }} \leftarrow\left(\varphi^{\mathrm{FC}} \rightarrow \varphi^{\text {fiat }}\right)$

Ackermann's reduction

Goal Remove function symbol from quantifier-free formula φ
1 Flatten nested applications of f
2 Replace every instance $f\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}\right)$ by new constant $\mathrm{c}_{f, \mathrm{t}_{1}, \ldots, \mathrm{t}_{n}}$. Denote new formula by $\varphi^{\text {fiat }}$.

3 For all $c_{f, s_{1}, \ldots, s_{n}}$ and $c_{f, t_{1}, \ldots, t_{n}}$ form functional consistency constraint

$$
s_{1} \approx t_{1} \wedge \cdots \wedge s_{n} \approx t_{n} \rightarrow c_{f, s_{1}, \ldots, s_{n}} \approx c_{f, t_{1}, \ldots, t_{n}}
$$

$4 \varphi^{F C} \leftarrow$ Conjunction of all functional consistency constraints
$5 \varphi^{\text {Ack }} \leftarrow\left(\varphi^{\text {FC }} \rightarrow \varphi^{\text {flat }}\right)$
Theorem $\quad \varphi$ valid iff $\quad \varphi^{\text {Ack }}$ valid

Ackermann's reduction

Goal Remove function symbol from quantifier-free formula φ
1 Flatten nested applications of f
2 Replace every instance $f\left(t_{1}, \ldots, t_{n}\right)$ by new constant $c_{f, t_{1}, \ldots, t_{n}}$. Denote new formula by $\varphi^{\text {flat }}$.

3 For all $c_{f, s_{1}, \ldots, s_{n}}$ and $c_{f, t_{1}, \ldots, t_{n}}$ form functional consistency constraint

$$
s_{1} \approx t_{1} \wedge \cdots \wedge s_{n} \approx t_{n} \rightarrow c_{f, s_{1}, \ldots, s_{n}} \approx c_{f, t_{1}, \ldots, t_{n}}
$$

$4 \varphi^{\mathrm{FC}} \leftarrow$ Conjunction of all functional consistency constraints
$5 \varphi^{\text {Ack }} \leftarrow\left(\varphi^{\mathrm{FC}} \rightarrow \varphi^{\text {flat }}\right)$

If non-arithmetic function symbol is removed, then

$$
\mathcal{A} \vDash \varphi \quad \text { iff } \quad \mathcal{A} \vDash \varphi^{\text {Ack }}
$$

Idealisation

Goal Translate $\mathcal{A} \vDash \varphi$ into polynomial predicate $\mathrm{I}(\varphi)$

Idealisation

Goal Translate $\mathcal{A} \vDash \varphi$ into polynomial predicate $\mathrm{I}(\varphi)$
Suffices to discuss arithmetic ground sentences
arb. formula $\xrightarrow{\text { Herbrand }}$ ground sent. $\xrightarrow{\text { Ackermann }}$ arith. ground sent.

Idealisation

Goal Translate $\mathcal{A} \vDash \varphi$ into polynomial predicate $\mathrm{I}(\varphi)$
Suffices to discuss arithmetic ground sentences

$$
\text { arb. formula } \xrightarrow{\text { Herbrand }} \text { ground sent. } \xrightarrow{\text { Ackermann }} \text { arith. ground sent. }
$$

Every φ is logically equivalent to a formula of the form

$$
\operatorname{CNF}(\varphi)=\bigwedge_{i}(\underbrace{\bigvee_{j} s_{i, j} \not \approx \mathrm{t}_{i, \mathrm{j}} \vee \bigvee_{k} p_{i, k} \approx \mathrm{q}_{i, k}}_{\text {clause }})
$$

Idealisation

Goal Translate $\mathcal{A} \vDash \varphi$ into polynomial predicate $\mathrm{I}(\varphi)$
Suffices to discuss arithmetic ground sentences

$$
\text { arb. formula } \xrightarrow{\text { Herbrand }} \text { ground sent. } \xrightarrow{\text { Ackermann }} \text { arith. ground sent. }
$$

Every φ is logically equivalent to a formula of the form

Idealisation

$$
\operatorname{CNF}(\varphi)=\bigwedge_{i}(\underbrace{\bigvee_{j} s_{i, j} \not \approx \mathrm{t}_{i, j} \vee \bigvee_{k} p_{i, k} \approx \mathrm{q}_{i, k}}_{\text {clause }})
$$

clause:

$$
\mathrm{I}\left(\mathrm{C}_{i}\right): \equiv \mathrm{p}_{\mathrm{i}, \mathrm{k}}-\mathrm{q}_{\mathrm{i}, \mathrm{k}} \in\left(s_{i, 1}-\mathrm{t}_{\mathrm{i}, 1}, \ldots, s_{i, n}-\mathrm{t}_{i, n}\right) \text { for some } k
$$

Idealisation

Goal Translate $\mathcal{A} \vDash \varphi$ into polynomial predicate $\mathrm{I}(\varphi)$
Suffices to discuss arithmetic ground sentences

$$
\text { arb. formula } \xrightarrow{\text { Herbrand }} \text { ground sent. } \xrightarrow{\text { Ackermann }} \text { arith. ground sent. }
$$

Every φ is logically equivalent to a formula of the form

Idealisation

$$
\operatorname{CNF}(\varphi)=\bigwedge_{i}(\underbrace{\bigvee_{j} s_{i, j} \not \approx \mathrm{t}_{i, j} \vee \bigvee_{k} p_{i, k} \approx \mathrm{q}_{i, k}}_{\text {clause }})
$$

clause:

$$
\mathrm{I}\left(\mathrm{C}_{\mathrm{i}}\right): \equiv \mathrm{p}_{\mathrm{i}, \mathrm{k}}-\mathrm{q}_{\mathrm{i}, \mathrm{k}} \in\left(s_{i, 1}-\mathrm{t}_{\mathrm{i}, 1}, \ldots, \mathrm{~s}_{i, n}-\mathrm{t}_{i, n}\right) \text { for some } \mathrm{k}
$$

arith. ground sentence: $\mathrm{I}(\varphi): \equiv \bigwedge_{\substack{\mathrm{C} \text { clause } \\ \text { of } \mathrm{CNF}(\varphi)}} \mathrm{I}(\mathrm{C})$

Main result

Theorem Let φ be an arithmetic ground sentence. Then

$$
\mathcal{A} \vDash \varphi \quad \text { iff } \quad \mathrm{I}(\varphi)=\mathrm{T} .
$$

Main result

Theorem Let φ be an arithmetic ground sentence. Then

$$
\mathcal{A} \vDash \varphi \quad \text { iff } \quad \mathrm{I}(\varphi)=T .
$$

Proof:
" \Leftarrow ": Reduce to (Raab, Regensburger, Hossein Poor, '19/'21)

Main result

Theorem Let φ be an arithmetic ground sentence. Then

$$
\mathcal{A} \vDash \varphi \quad \text { iff } \quad \mathrm{I}(\varphi)=\mathrm{T} .
$$

Proof:
" \Leftarrow ": Reduce to (Raab, Regensburger, Hossein Poor, '19/'21)
" \Rightarrow ": Use $\mathcal{A} \vDash \varphi$ iff $\mathcal{A} \vdash \varphi$ and show that sequent rules respect idealisation.

Main result

Theorem Let φ be an arithmetic ground sentence. Then

$$
\mathcal{A} \vDash \varphi \quad \text { iff } \quad \mathrm{I}(\varphi)=T .
$$

Proof:
" \Leftarrow ": Reduce to (Raab, Regensburger, Hossein Poor, '19/'21)
" \Rightarrow ": Use $\mathcal{A} \vDash \varphi$ iff $\mathcal{A} \vdash \varphi$ and show that sequent rules respect idealisation.

Advantages

- Axioms \mathcal{A} are treated implicitly.
- Proof is independent of sorts, and thus, holds in all settings.
- Exploit efficient polynomial routines.

Semi-decision procedure

Input: signature Σ, formula φ
Output: T if and only if $\mathcal{A} \vDash \varphi$; otherwise infinite loop
$1 \varphi^{H} \leftarrow$ Herband normal form of φ
$2 \varphi_{1}, \varphi_{2}, \cdots \leftarrow$ an enumeration of $\mathrm{H}\left(\varphi^{\mathrm{H}}\right)$
$3 \mathrm{n} \leftarrow 1$
$4 \psi_{n} \leftarrow \bigvee_{i=1}^{n} \varphi_{i}$
$5 \psi_{n}^{\text {Ack }} \leftarrow$ remove all non-arithmetic function symbols from ψ_{n} using Ackermann's reduction.

6 If $\mathrm{I}\left(\psi_{n}^{\text {Ack }}\right)=T$, return T. Otherwise, increase n by 1 and go to step 4 .

Semi-decision procedure

Input: signature Σ, formula φ
Output: T if and only if $\mathcal{A} \vDash \varphi$; otherwise infinite loop
$1 \varphi^{H} \leftarrow$ Herband normal form of φ
$2 \varphi_{1}, \varphi_{2}, \cdots \leftarrow$ an enumeration of $\mathrm{H}\left(\varphi^{\mathrm{H}}\right)$
$3 \mathrm{n} \leftarrow 1$
$4 \psi_{n} \leftarrow \bigvee_{i=1}^{n} \varphi_{i}$
$5 \psi_{n}^{\text {Ack }} \leftarrow$ remove all non-arithmetic function symbols from ψ_{n} using Ackermann's reduction.

6 Fork $\leftarrow 1, \ldots, n$
If $\mathrm{I}\left(\psi_{k}^{\text {Ack }}\right)=T$ can be verified with n operations, return T.
7 Increase \mathfrak{n} by 1 and go to step 4 .

Computational aspects

- Efficiency of the procedure \approx good enumeration of $\mathrm{H}\left(\varphi^{\mathrm{H}}\right)$
- Expert knowledge
- "Polynomial unification"
- Avoid CNF blowup by incremental computation

$$
\mathrm{I}(\gamma)=\perp
$$

- Treat simple subformulas separately

Applications

Used to automatically (im)prove statements in the field of

- generalized inverses
- Moore-Penrose inverses (K. Bernauer)

Applications

(Extract from Handbook of Linear Algebra)

5.7 Pseudo-Inverse

Definitions:

A Moore-Penrose pseudo-inverse of a matrix $A \in \mathbb{C}^{m \times n}$ is a matrix $A^{\dagger} \in \mathbb{C}^{n \times m}$ that satisfies the following four Penrose conditions:

$$
A A^{\dagger} A=A ; \quad A^{\dagger} A A^{\dagger}=A^{\dagger} ; \quad\left(A A^{\dagger}\right)^{*}=A A^{\dagger} ; \quad\left(A^{\dagger} A\right)^{*}=A^{\dagger} A
$$

Facts:

All the following facts except those with a specific reference can be found in [Gra83, pp. 105-141] or [RM71, pp. 44-67].

1. Every $A \in \mathbb{C}^{m \times n}$ has a unique pseudo-inverse A^{\dagger}.
2. If $A \in \mathbb{R}^{m \times n}$, then A^{\dagger} is real.
3. If $A \in \mathbb{C}^{m \times n}$ of rank r has a full rank decomposition $A=B C$, where $B \in \mathbb{C}^{m \times r}$ and $C \in \mathbb{C}^{r \times n}$, then A^{\dagger} can be evaluated using $A^{\dagger}=C^{*}\left(B^{*} A C^{*}\right)^{-1} B^{*}$.
4. [LH95, p. 38] If $A \in \mathbb{C}^{m \times n}$ of rank $r \leq \min \{m, n\}$ has an SVD $A=U \Sigma V^{*}$, then its pseudo-inverse is $A^{\dagger}=V \Sigma^{\dagger} U^{*}$, where

$$
\Sigma^{\dagger}=\operatorname{diag}\left(1 / \sigma_{1}, \ldots, 1 / \sigma_{r}, 0, \ldots, 0\right) \in \mathbb{R}^{n \times m}
$$

10. $\left(A^{\dagger}\right)^{*}=\left(A^{*}\right)^{\dagger} ; \quad\left(A^{\dagger}\right)^{\dagger}=A$.
11. If A is a nonsingular square matrix, then $A^{\dagger}=A^{-1}$.
12. If U has orthonormal columns or orthonormal rows, then $U^{\dagger}=U^{*}$.
13. If $A=A^{*}$ and $A=A^{2}$, then $A^{\dagger}=A$.
14. $A^{\dagger}=A^{*}$ if and only if $A^{*} A$ is idempotent.
15. If A is normal and k is a positive integer, then $A A^{\dagger}=A^{\dagger} A$ and $\left(A^{k}\right)^{\dagger}=\left(A^{\dagger}\right)^{k}$.
16. If $U \in \mathbb{C}^{m \times n}$ is of rank n and satisfies $U^{\dagger}=U^{*}$, then U has orthonormal columns.
17. If $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$ are unitary matrices, then $(U A V)^{\dagger}=V^{*} A^{\dagger} U^{*}$.
18. $A^{\dagger}=\left(A^{*} A\right)^{\dagger} A^{*}=A^{*}\left(A A^{*}\right)^{\dagger}$. In particular,

Applications

Used to automatically (im)prove statements in the field of

- Generalized inverses
- Moore-Penrose inverses (K. Bernauer)

Applications

Used to automatically (im)prove statements in the field of

- Generalized inverses
- Moore-Penrose inverses (K. Bernauer)
- Reverse order law (with D. Cvetković-llić and J. Milošević)

Applications

Used to automatically (im)prove statements in the field of

- Generalized inverses
- Moore-Penrose inverses (K. Bernauer)
- Reverse order law (with D. Cvetković-llić and J. Milošević)
- Solvability of systems of equations

Applications

(Milošević, '20)

Theorem 2.2 Let a_{i}, b_{i}, c_{i} be elements of $a \operatorname{ring} \mathcal{R}$ with a unit such that a_{i}, b_{i} are regular and $a_{i} a_{i}^{-} c_{i} b_{i}^{-} b_{i}=c_{i}$ for $i=\overline{1,3}$. Additionally, let $s=a_{2} l_{a_{1}}, j=a_{3} l_{a_{1}}, m=j l_{s}, t=r_{b_{1}} b_{2}, k=r_{b_{1}} b_{3}, n=$ $r_{t} k, p=a_{3} l_{a_{2}}, q=r_{b_{2}} b_{3}$ and $s, j, m, t, k, n, r_{m} p, q l_{n}, r_{r_{m} p} r_{m} j, q l_{k} l_{n} \in \mathcal{R}^{-}$. The following are equivalent:
(i) The system of equations (11) is consistent.
(ii) The conditions

$$
\begin{aligned}
& r_{s}\left(c_{2}-a_{2} a_{1}^{-} c_{1} b_{1}^{-} b_{2}\right) l_{t}=0 \\
& r_{r_{m}} r_{m} j\left(r_{r_{m}} r_{m} j\right)^{-} r_{r_{m} p} r_{m} e l_{n}\left(q l_{n}\right)^{-} q l_{n}=r_{r_{m} p} r_{m} e l_{n} \\
& r_{m} j j^{-} e l_{k} l_{n}\left(q l_{k} l_{n}\right)^{-} q l_{k} l_{n}=r_{m} e l_{k} l_{n}
\end{aligned}
$$

are satisfied, where $e=c_{3}-j s^{-} c_{2} t^{-} k-a_{3} a_{2}^{-} r_{s} c_{2} t^{-} k-j s^{-} c_{2} l_{t} b_{2}^{-} b_{3}-\left(a_{3}-j s^{-} a_{2}\right) a_{1}^{-} c_{1} b_{1}^{-}\left(b_{3}-\right.$ $\left.b_{2} t^{-} k\right)$.
(iii) The conditions

$$
\begin{aligned}
& r_{s}\left(c_{2}-a_{2} a_{1}^{-} c_{1} b_{1}^{-} b_{2}\right) l_{t}=0 \\
& r_{j}\left(c_{3}-a_{3} a_{1}^{-} c_{1} b_{1}^{-} b_{3}\right) l_{k}=0 \\
& r_{m}\left(c_{3}-j s^{-} c_{2} l_{t} b_{2}^{-} b_{3}-\left(a_{3}-j s^{-} a_{2}\right) a_{1}^{-} c_{1} b_{1}^{-} b_{3}\right) l_{k} l_{n} l_{q l_{k} l_{n}}=0 \\
& r_{r_{r} p} r_{m j} r_{r_{m} p} r_{m}\left(c_{3}-a_{3} a_{2}^{-} r_{s} c_{2} t^{-} k-a_{3} a_{1}^{-} c_{1} b_{1}^{-}\left(b_{3}-b_{2} t^{-} k\right)\right) l_{n}=0 \\
& r_{r_{m} p} r_{m}\left(c_{3}-j s^{-} c_{2} t^{-} k-a_{3} a_{2}^{-} r_{s} c_{2} t^{-} k-j s^{-} c_{2} l_{t} b_{2}^{-} b_{3}\right. \\
& \left.-\left(a_{3}-j s^{-} a_{2}\right) a_{1}^{-} c_{1} b_{1}^{-}\left(b_{3}-b_{2} t^{-} k\right)\right) l_{n} l_{q} l_{n}=0 .
\end{aligned}
$$

$$
\begin{aligned}
& z_{1}=c_{1} f+g^{-} r_{s} c_{2} t^{-} t+a_{1} l_{a_{2}}\left(r_{m} p\right)^{-} r_{m}\left[e-j\left(r_{r_{m} p} r_{m} j\right)^{-} r_{r_{m} p} r_{m} e\right. \\
& -j l_{r_{m} p r_{m} j} s^{-} u_{3} b_{1}^{-}\left(1-b_{2} t^{-} r_{b_{1}}\right) r_{\left.q l_{k} l_{n} q-\left(1-j\left(r_{r_{m} p} r_{m} j\right)^{-} r_{r_{m} p} r_{m}\right) e l_{k} l_{n}\left(q l_{k} l_{n}\right)^{-} q\right] l_{n} k^{-} t . t a n d r} \\
& +a_{1} a_{1}^{-} l_{g} u_{1} t t^{-}-a_{1} l_{a_{2}}\left(r_{m} p\right)^{-} r_{m} p\left(1-l_{a_{1}} s^{-} a_{2}\right) a_{1}^{-} u_{1} t^{-} k l_{n} k^{-} t \text {, } \\
& z_{2}=\left(c_{1} b_{1}^{-}\left(b_{3}-b_{2} t^{-} k\right)+g^{-} r_{s} c_{2} t^{-} k\right) l_{n}+a_{1} a_{3}^{-} c_{3} n^{-} n+a_{1}\left(1-a_{3}^{-} r_{m} r_{j} a_{3}\right) a_{1}^{-} u_{2} n^{-} n \\
& a_{1} l_{a_{2}}\left(r_{m} p\right)^{-} r_{m}\left[e-j\left(r_{r_{m} p} r_{m} j\right)^{-} r_{r_{m} p} r_{m} e-j l_{r_{m} p r_{m} j} s^{-} u_{3} b_{1}^{-}\left(1-b_{2} t^{-} r_{b_{1}}\right) r_{q l_{k} l_{n}} q\right. \\
& \left.-\left(1-j\left(r_{r_{m} p} r_{m} j\right)^{-} r_{r_{m} p} r_{m}\right) e l_{k} l_{n}\left(q l_{k} l_{n}\right)^{-} q\right] k^{-} k l_{n}+a_{1} a_{1}^{-} l_{g} u_{1} t^{-} k l_{n} \\
& -a_{1} l_{a_{2}}\left(r_{m} p\right)^{-} r_{m} p\left(1-l_{a_{1}} s^{-} a_{2}\right) a_{1}^{-} u_{1} t^{-} k l_{n} \text {, } \\
& z_{3}=g c_{1}+s s^{-} c_{2} l_{t} f^{-}+s\left(r_{r_{m} p} r_{m} j\right)^{-} r_{r_{m} p} r_{m} e l_{n}\left(q l_{n}\right)^{-} r_{b_{2}} b_{1} \\
& +s\left(l_{r_{r m} p r_{m} j} j^{-}+\left(1-j^{-} r_{m} j\right)\left(r_{r_{m} p} r_{m} j\right)^{-} r_{r_{m p} p}\right) r_{m} e l_{k} l_{n}\left(q l_{k} l_{n}\right)^{-} r_{b_{2}} b_{1} \\
& +s s^{-} u_{3} r_{f} b_{1}^{-} b_{1}-s j^{-} r_{m} j l_{r_{r} p} r_{m} j s^{-} u_{3} b_{1}^{-}\left(1-b_{2} t^{-} r_{b_{1}}\right) q l_{k} l_{n}\left(q l_{k} l_{n}\right)^{-} r_{b_{2}} b_{1} \\
& -s\left(r_{r_{m} p} r_{m} j\right)^{-} r_{r_{m} p} r_{m} j s^{-} u_{3} b_{1}^{-}\left(1-b_{2} t^{-} r_{b_{1}}\right) q l_{n}\left(q l_{n}\right)^{-} r_{b_{2}} b_{1}, \\
& z_{4}=g c_{1} b_{1}^{-}\left(b_{3}-b_{2} t^{-} k\right) l_{n}++s s^{-} c_{2} l_{t} b_{2}^{-} b_{3} l_{n}+\left(g g^{-} r_{s} c_{2}+s s^{-} c_{2}\right) t^{-} k l_{n}+r_{s} a_{2} a_{3}^{-} c_{3} n^{-} n \\
& +r_{s} a_{2}\left(1-a_{3}^{-} r_{m} r_{j} a_{3}\right) a_{1}^{-} u_{2} n^{-} n+s j^{-} r_{m} j\left[s^{-} a_{2} a_{3}^{-} c_{3}+\left(s^{-} a_{2}\left(1-a_{3}^{-} r_{m} r_{j} a_{3}\right)-j^{-} a_{3}\right) a_{1}^{-} u_{2}\right] n^{-} n \\
& +s\left(1-j^{-} r_{m} j\right) s^{-} u_{4} n^{-} n+s\left(r_{r_{m} p} r_{m} j\right)^{-} r_{r_{m} p} r_{m} e l_{n}\left(q l_{n}\right)^{-} r_{b_{2}} b_{1} b_{1}^{-}\left(b_{3}-b_{2} t^{-} k\right) l_{n} \\
& +s\left(l_{r_{m} p r_{m} j} j^{-}+\left(1-j^{-} r_{m} j\right)\left(r_{r_{m} p} r_{m} j\right)^{-} r_{r_{m} p}\right) r_{m} e l_{k} l_{n}\left(q l_{k} l_{n}\right)^{-} r_{b_{2}} b_{1} b_{1}^{-}\left(b_{3}-b_{2} t^{-} k\right) l_{n} \\
& +s s^{-} u_{3} r_{f} b_{1}^{-}\left(b_{3}-b_{2} t^{-} k\right) l_{n} \\
& -s j^{-} r_{m} j l_{r_{r m} r_{m} r s^{-} u_{3} b_{1}^{-}\left(1-b_{2} t^{-} r_{b_{1}}\right) q l_{k} l_{n}\left(q l_{k} l_{n}\right)^{-} r_{b_{2}} b_{1} b_{1}^{-}\left(b_{3}-b_{2} t^{-} k\right) l_{n}, ~}^{n} \\
& -s\left(r_{r_{m} p} r_{m} j\right)^{-} r_{r_{m} p} r_{m} j s^{-} u_{3} b_{1}^{-}\left(1-b_{2} t^{-} r_{b_{1}}\right) q l_{n}\left(q l_{n}\right)^{-} r_{b_{2}} b_{1} b_{1}^{-}\left(b_{3}-b_{2} t^{-} k\right) l_{n} \text {, } \\
& z_{5}=r_{m}\left(\left(a_{3}-j s^{-} a_{2}\right) a_{1}^{-} c_{1}+j s^{-} c_{2} l_{t} f^{-}\right)+m m^{-} c_{3} b_{3}^{-} b_{1}+m m^{-} u_{5} b_{1}^{-}\left(1-b_{3} l_{k} l_{n} b_{3}^{-}\right) b_{1} \\
& +r_{m} j\left(r_{r_{m} p} r_{m} j\right)^{-} r_{r_{m} p} r_{m} e l_{n}\left(q l_{n}\right)^{-} r_{b_{2}} b_{1}+r_{m} j l_{r_{r m} r^{r} r_{m}} j^{-} r_{m} e l_{k} l_{n}\left(q l_{k} l_{n}\right)^{-} r_{b_{2}} b_{1}+r_{m} j s^{-} u_{3} r_{f} b_{1}^{-} b_{1} \\
& -r_{m} j l_{r_{r_{m}} r_{m} j} s^{-} u_{3} b_{1}^{-}\left(1-b_{2} t^{-} r_{b_{1}}\right) q l_{k} l_{n}\left(q l_{k} l_{n}\right)^{-} r_{b_{2}} b_{1} \\
& -r_{m} j\left(r_{r_{m} p} r_{m} j\right)^{-} r_{r_{m} p} r_{m} j s^{-} u_{3} b_{1}^{-}\left(1-b_{2} t^{-} r_{b_{1}}\right) q l_{n}\left(q l_{n}\right)^{-} r_{b_{2}} b_{1} \text {, } \\
& z_{6}=r_{m}\left(a_{3}-j s^{-} a_{2}\right) a_{1}^{-} c_{1} f+r_{m} a_{3} a_{2}^{-} r_{s} c_{2} t^{-} t+r_{m} j s^{-}\left(c_{2} l_{t} f^{-} f+c_{2} t^{-} t\right)+m m^{-} c_{3} b_{3}^{-} b_{2} l_{t} \\
& +m m^{-} u_{5} b_{1}^{-}\left(1-b_{3} l_{k} l_{n} b_{3}^{-}\right) b_{2} l_{t}+m m^{-}\left[c_{3} b_{3}^{-} b_{2} t^{-}+u_{5} b_{1}^{-}\left(\left(1-b_{3} l_{k} l_{n} b_{3}^{-}\right) b_{2} t^{-}-b_{3} k^{-}\right)\right] k l_{n} k^{-} t \\
& +m m^{-} u_{6} t^{-}\left(1-k l_{n} k^{-}\right) t+r_{m}\left(a_{3}-j s^{-} a_{2}\right) a_{1}^{-} l_{g} u_{1} t^{-} t \\
& +r_{m}\left(a_{3}-j s^{-} a_{2}\right) a_{1}^{-} a_{1} l_{a_{2}}\left(r_{m} p\right)^{-} r_{m}\left[e-j l_{r_{m} p r_{m} j} s^{-} u_{3} b_{1}^{-}\left(1-b_{2} t^{-} r_{b_{1}}\right) r_{q l_{k} l_{n}} q\right. \\
& \left.-j\left(r_{r_{m} p} r_{m} j\right)^{-} r_{r_{m} p} r_{m} e-\left(1-j\left(r_{r_{m} p} r_{m} j\right)^{-} r_{r_{m} p} r_{m}\right) e l_{k} l_{n}\left(q l_{k} l_{n}\right)^{-} q\right] l_{n} k^{-} t \\
& -r_{m}\left(a_{3}-j s^{-} a_{2}\right) a_{1}^{-} a_{1} l_{a_{2}}\left(r_{m} p\right)^{-} r_{m} p\left(1-l_{a_{1}} s^{-} a_{2}\right) a_{1}^{-} u_{1} t^{-} k l_{n} k^{-} t,
\end{aligned}
$$

Applications

Used to automatically (im)prove statements in the field of

- Generalized inverses
- Moore-Penrose inverses (K. Bernauer)
- Reverse order law (with D. Cvetković-llić and J. Milošević)
- Solvability of systems of equations
- Homological algebra

Applications

Used to automatically (im)prove statements in the field of

- Generalized inverses
- Moore-Penrose inverses (K. Bernauer)
- Reverse order law (with D. Cvetković-llić and J. Milošević)
- Solvability of systems of equations
- Homological algebra
- Diagram lemmas

Applications

Used to automatically (im)prove statements in the field of

- Generalized inverses
- Moore-Penrose inverses (K. Bernauer)
- Reverse order law (with D. Cvetković-llić and J. Milošević)
- Solvability of systems of equations
- Homological algebra
- Diagram lemmas

$$
\begin{aligned}
& A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D \xrightarrow{j} E \\
& \downarrow \alpha \quad \downarrow \quad \downarrow \gamma \quad \downarrow \delta \quad \downarrow^{\varepsilon} \\
& A^{\prime} \underset{f^{\prime}}{\longrightarrow} B^{\prime} \underset{g^{\prime}}{\longrightarrow} C^{\prime} \underset{h^{\prime}}{\longrightarrow} D^{\prime} \underset{j^{\prime}}{ } E^{\prime}
\end{aligned}
$$

Summary \& Outlook

Summary

- Model operator statements via many-sorted logic
- Translate validity of operator statement into finitely many polynomial ideal memberships
- Tools: Herbrand's theorem + Ackermann's reduction

Outlook

- Producing proofs
- (Better) heuristics for finding good instantiations
- More advanced computational techniques (DPLL-style, techniques from SMT)
- Further applications

