Universal truth of operator statements
via ideal membership

Clemens Hofstadler, Clemens G. Raab, Georg Regensburger
Institute for Mathematics, University of Kassel

Seminar Algebra and Discrete Mathematics
Linz, Austria, December 1, 2022

ASSEL FWF

N 1K
ERSIT -A. T Der Wissenschaftsfonds.

U
\")

Introduction

Proving statements about matrices/linear operators
automatically and efficiently!

Introduction

Proving statements about matrices/linear operators
automatically and efficiently!

statement about
operators

statement
[RA

Introduction

Proving statements about matrices/linear operators
automatically and efficiently!

statement about first-order
operators formula
statement semantic

is true consequence

Introduction

Proving statements about matrices/linear operators
automatically and efficiently!

statement about first-order
operators formula
formal
computation
statement semantic

is true consequence

Introduction

Proving statements about matrices/linear operators

automatically and efficiently!

statement about first-order
operators formula
formal
computation
statement semantic

is true consequence

noncommutative
ideal memberships

memberships
hold

Introduction

Proving statements about matrices/linear operators
automatically and efficiently!

statement about first-order noncommutative
>
operators formula ideal memberships
formal efficient
computation computation
statement semantic memberships
>

is true consequence hold

Modelling operator statements
via

many-sorted first-order logic

Many-sorted first-order logic

First-order logic + sorts
Same expressiveness as unsorted FO logic
Computational advantages (sorts reduce # of expressions)

We use sorts to model domains and codomains

Linear operator statements

“Statements’

Linear operator statements

“Statements’

e A;Si =T, — P = Q (Raab, Regensburger, Hossein Poor, '19/'21)

Linear operator statements

“Statements’

e A;Si =T, — P = Q (Raab, Regensburger, Hossein Poor, '19/'21)
e First-order logic with equality as only predicate (today)

Linear operator statements

“Statements’

e A;Si =T, — P = Q (Raab, Regensburger, Hossein Poor, '19/'21)
e First-order logic with equality as only predicate (today)

“Linear operators”

Linear operator statements

“Statements’

e A;Si =T, — P = Q (Raab, Regensburger, Hossein Poor, '19/'21)
e First-order logic with equality as only predicate (today)

“Linear operators”

Linear operator statements

“Statements’

e A;Si =T, — P = Q (Raab, Regensburger, Hossein Poor, '19/'21)
e First-order logic with equality as only predicate (today)

“Linear operators”

Linear operator statements

“Statements’

° /\i Si =T; = P = Q (Raab, Regensburger, Hossein Poor, '19/'21)
e First-order logic with equality as only predicate (today)

“Linear operators”

Linear operator statements

“Statements’

e A;Si =T, — P = Q (Raab, Regensburger, Hossein Poor, '19/'21)
e First-order logic with equality as only predicate (today)

“Linear operators”

Abelian

categories

Linear operator statements

“Statements’

e A;Si =T, — P = Q (Raab, Regensburger, Hossein Poor, '19/'21)
e First-order logic with equality as only predicate (today)

“Linear operators”

preadd.

Semicategories

Linear operator statements

“Statements’

e A;Si =T, — P = Q (Raab, Regensburger, Hossein Poor, '19/'21)
e First-order logic with equality as only predicate (today)

“Linear operators”

preadd.
Semicategories

Semicategory = Category — identity morphisms

Signature

Var = {xq,%2,...}...variables

A signature is a tuple £ = (O, C,F, o) consisting of

e O...object symbols (u,v) e O x O...sort
e C...constant symbols with 0y, € C for u,v € O;
e F...function symbols with —, +, - € F;

e 0...sort function assigning all symbols their sort

Syntax

Terms of sort (u,Vv)

e variables x € Var with o(x) = (u,v)
e constants ¢ € C with o(c) = (u,v)
e f(ty,...ty) with o(t;) = (ui,vi) and

o(f) = (w1, vi) X -+ X (Un,vn) = (u,v)

Syntax

Terms of sort (u,Vv)

e variables x € Var with o(x) = (u,v)
e constants ¢ € C with o(c) = (u,v)
o f(ty,...tn) with o(t;) = (w,v;) and
o(f) = (w1, v1) X -+ X (Un,vn) — (W,v)

Formulas

e s~ t with terms s, t where o(s) = o(t)

o~ (e AV), (p V), (¢ =)
e dx:,Vx: @

Syntax

Fix o(x) = (u,v), o(y) = (u,w), o(c) = (u,w)

X+y

Syntax

Fix o(x) = (u,v), o(y) = (u,w), o(c) = (u,w)

X ==y

Syntax

Fix o(x) = (u,v), o(y) = (u,w), o(c) = (u,w)

X ==y
(C +y) : Ow,u

Fix

X ==y
(C +y) : Ow,u

Syntax

o(y) = (u,w),

term of sort (w,w)

o(c)

(u, w)

Syntax

Fix o(x) = (u,v), o(y) = (u,w),
X ==y
(c+y) O term of sort (w,w)

Ow,v . (C + C)

o(c)

(u, w)

Syntax
Fix o(x)=(uv), oly)=ww), oc)
X ==y

(c+1y) 0wy term of sort (w,w)

Owy - (c+c) ground term of sort (u,Vv)

Syntax

Fix olx)=(uwv), oy =mw), ofc)=(uw)
X ==y
(c+y)-O0pu term of sort (W, w)
Owy - (c+c) ground term of sort (u,Vv)

Syntax

Fix olx)=(uwv), oy =mw), ofc)=(uw)
X ==y
(c+y)-O0pu term of sort (W, w)
Owy - (c+c) ground term of sort (u,Vv)

Syntax

Fix ox)=(wv), oy =w), ofc)=(uw)
X ==y
(c+1y) 0wy term of sort (w,w)
Owy - (c+c) ground term of sort (u,Vv)
X~ y

Vx:x=~0-(c+c)

Syntax

Fix ox)=(wv), oy =w), ofc)=(uw)
X ==y
(c+1y) 0wy term of sort (w,w)
Owy - (c+c) ground term of sort (u,Vv)
X~ y

Vx:x~0-(c+c) arithmetic sentence

Fix

ox) =(wv), ofy) =(uw), o)

X ==y

(c+y) O term

Syntax

of sort (w,w)

Owy - (c+c) ground term of sort (u,Vv)

X%y
Vx:x=x0-(c+c)
(c %2 0Ac+ (—c¢)

arithmetic sentence

~ 0 — —c % 0

(u, w)

Fix

Syntax

ox) =(uw,v), oy =uw), ofc)=

X =y
(c+y) O term of sort (w,w)

Owy - (c+c) ground term of sort (u,Vv)

X =~ y
Vx:x~0-(c+c) arithmetic sentence

(c % 0Nc+(—cc) = 0 = —c % 0
arithmetic ground sentence

(u, w)

Axioms of semicategories

Au,u’,wv’ ={
wxlVVly e ey 2) & (xey) -,
wx (V) ywv) () Cox+(y+z) = (x+y) +z,
wx(w) X+ 0wy R X,
vx () ox+(—x) = Ou,v,
VX(HN)’y(UN) c ox+ y~y + X,
wx (V) v vy b2 Xy X 2,
wx (V) i) v (b y) e Xzt y 2
}

Axioms A of semicategories are then

A= U Au,u’,v,v/

u,u/,v,v'e0

Semantics

Formulas are true or false w.r.t. interpretation J

Interpretations are as in classical FO logic, except that they respect
the sorts.

Semantics

Formulas are true or false w.r.t. interpretation J

Interpretations are as in classical FO logic, except that they respect
the sorts.

For example:

Js~t)=T iff JI(s) =7(t) as elements in the domain

Semantics

Formulas are true or false w.r.t. interpretation J

Interpretations are as in classical FO logic, except that they respect
the sorts.

For example:

Js~t)=T iff JI(s) =7(t) as elements in the domain

@ valid iff J(@)=T forallJ
Y E @ (sem. consequence) iff J(W)=T =IJ(@)=T forall J

Semantics

Formulas are true or false w.r.t. interpretation J

Interpretations are as in classical FO logic, except that they respect
the sorts.

For example:

Js~t)=T iff JI(s) =7(t) as elements in the domain

@ valid iff J(@) =T forall J
Y E @ (sem. consequence) iff J(W)=T =IJ(@)=T forall J

Universal truth of operator statement = Ak @

Formal computation

[€eFl] Prove semantic consequence via syntactic operations

Classically using some deductive system (e.g., Sequent calculus,
Resolution, etc.)

Formal computation

[€eFl] Prove semantic consequence via syntactic operations

Classically using some deductive system (e.g., Sequent calculus,
Resolution, etc.)

Y ¢ (syn. consequence) iff @ can be derived from ¥
syntactically

Formal computation

[€eFl] Prove semantic consequence via syntactic operations

Classically using some deductive system (e.g., Sequent calculus,
Resolution, etc.)

Y ¢ (syn. consequence) iff @ can be derived from ¥
syntactically

YEe iff Wrho

Formal computation

[€eFl] Prove semantic consequence via syntactic operations

Classically using some deductive system (e.g., Sequent calculus,
Resolution, etc.)

Y ¢ (syn. consequence) iff @ can be derived from ¥

syntactically
Correctness

J/_\
YEe iff Wl

Formal computation

[€eFl] Prove semantic consequence via syntactic operations

Classically using some deductive system (e.g., Sequent calculus,
Resolution, etc.)

Y ¢ (syn. consequence) iff @ can be derived from ¥
syntactically

Correctness
N

YE @ iff Y@
~_

Completeness

Formal computation

[€eFl] Prove semantic consequence via syntactic operations

Classically using some deductive system (e.g., Sequent calculus,
Resolution, etc.)

Y ¢ (syn. consequence) iff @ can be derived from ¥
syntactically

Correctness
N

YE @ iff Y@
~_

Completeness

5e1gMl) Derive analogous statement for ¥ = A with polynomial rhs

Expressing universal truth
by

polynomial ideal memberships

Interlude: Noncommutative polynomials

Noncommutative polynomials = elements in free algebra Z(X)

l
= Zi:] Ci - Xi1... Xi kg

10

Interlude: Noncommutative polynomials

Noncommutative polynomials = elements in free algebra Z(X)

= Z?:] Ci - Xi1... Xikq
For F C Z(X),

(F) = {Z aifibi | ai, by € Z(X), fi € F}

10

Interlude: Noncommutative polynomials

Noncommutative polynomials = elements in free algebra Z(X)

= Z?:] Ci - Xi1... Xikq
For F C Z(X),

(F) = {Z aifibi | ai, by € Z(X), fi € F}

?
Ideal membership problem p € (F) is semi-decidable
(e.g., using Grdbner bases)

10

From formulas to polynomials

Translate A F ¢ into polynomial predicate I(¢) (Idealisation)

11

From formulas to polynomials

Translate A F ¢ into polynomial predicate I(¢) (Idealisation)

Translating arithmetic ground terms is easy

a-(a+0)+(-b)+c-d ~ aa—b+cdeZab,c,d)

11

From formulas to polynomials

Translate A F ¢ into polynomial predicate I(¢) (Idealisation)

Translating arithmetic ground terms is easy
a-(a+0)+(-b)+c-d ~ aa—b+cdeZab,c,d)
...but what about

Ix:a+brx 2

11

From formulas to polynomials

Translate A F ¢ into polynomial predicate I(¢) (Idealisation)

Translating arithmetic ground terms is easy
a-(a+0)+(-b)+c-d ~ aa—b+cdeZab,c,d)
...but what about

Ix:a+brx 2
f(a,b) ~ f(b,a) ~ 2

11

From formulas to polynomials

Translate A F ¢ into polynomial predicate I(¢) (Idealisation)

Translating arithmetic ground terms is easy
a-(a+0)+(-b)+c-d ~ aa—b+cdeZab,c,d)
...but what about

Ix:a+brx ~ 7 « Herbrand's theorem

f(a,b) ~ f(b,a) ~s 2 « Ackermann’s reduction

11

Herbrand’s theorem

Reduce validity of formula to validity of ground sentence
~> eliminate quantifiers

12

Herbrand’s theorem

Reduce validity of formula to validity of ground sentence
~> eliminate quantifiers

Herbrand normal form : 3x;...xn: @* with @* quantifier-free

12

Herbrand’s theorem

Reduce validity of formula to validity of ground sentence
~> eliminate quantifiers

Herbrand normal form : 3x;...xn: @* with @* quantifier-free

Herbrand expansion : H(g) ={ all ground instances of ¢* }

12

Herbrand’s theorem

Reduce validity of formula to validity of ground sentence
~> eliminate quantifiers

Herbrand normal form : 3x;...xn: @* with @* quantifier-free

Herbrand expansion : H(g) ={ all ground instances of ¢* }

B EN MRl Let @ be in Herbrand normal form. Then
@ is valid if and only if there exist @1,..., @x € H(@) such that

@1V -V @y is valid.

12

Herbrand’s theorem

Reduce validity of formula to validity of ground sentence
~> eliminate quantifiers

Herbrand normal form : 3x;...xn: @* with @* quantifier-free

Herbrand expansion : H(g) ={ all ground instances of ¢* }

B EN MRl Let @ be in Herbrand normal form. Then
@ is valid if and only if there exist @1,..., @x € H(@) such that

@1V -V @y is valid.

A iff AF@V- Ve

12

Herbrandisation

Transform formula ¢ into Herbrand normal form

K]

Herbrandisation

Transform formula ¢ into Herbrand normal form

1 Bind any free variables by universal quantifier
2 Move all quantifiers to the front

3 Apply the following rules exhaustively

Vy:p o~ ly e

g, X VYt e Txg, X s By o f(x,,

where ¢, f are new with the correct sort

K]

Herbrandisation

Transform formula ¢ into Herbrand normal form

1 Bind any free variables by universal quantifier
2 Move all quantifiers to the front

3 Apply the following rules exhaustively

Vy:p o~ ly e

g, x VYt e Txg, X s By o f(x,,

where ¢, f are new with the correct sort

Abg AR

3 Xn)]

13

Ackermann’s reduction

Remove function symbol f from quantifier-free formula ¢

14

Ackermann’s reduction

Remove function symbol f from quantifier-free formula ¢

1 Flatten nested applications of f

2 Replace every instance f(ty,...,tn) by new constant c¢, .. +,. Denote

new formula by @ft.

3 Forall cts,,...;sn and cey, ... t, form functional consistency constraint

n

S1 = t1 /\ e /\Sn ~ tn — Cf,s1 sy ST ~ Cf,t1 seeytn

4 ¢ « Conjunction of all functional consistency constraints

[(pAck — ((PFC N (pﬂat)

14

Ackermann’s reduction

Remove function symbol f from quantifier-free formula ¢

1 Flatten nested applications of f

2 Replace every instance f(ty,...,tn) by new constant c¢, .. +,. Denote

new formula by @ft.

3 Forall cts,,...;sn and cey, ... t, form functional consistency constraint

n

S1 = t1 /\ e /\Sn ~ tn — Cf,s1 sy ST ~ Cf,t1 seeytn

4 ¢ « Conjunction of all functional consistency constraints

[(pAck — ((PFC N (pﬂat)

@ valid iff @"k valid

14

Ackermann’s reduction

Remove function symbol f from quantifier-free formula ¢

1 Flatten nested applications of f

2 Replace every instance f(ty,...,tn) by new constant c¢, .. +,. Denote

new formula by @ft.

3 Forall cts,,...;sn and cey, ... t, form functional consistency constraint

n

.....

S1 = t1 /\ e /\Sn ~ tn — Cf,s1 sy ST ~ Cf,t1 seeytn

4 ¢ « Conjunction of all functional consistency constraints

[(pAck — ((PFC N (pﬂat)

@ valid iff @"k valid
@JIGET If non-arithmetic function symbol is removed, then

AEq@ iff AE @k

14

Idealisation

Translate A F ¢ into polynomial predicate I(¢)

15

Idealisation
Translate A F ¢ into polynomial predicate I(¢)

Suffices to discuss arithmetic ground sentences

Herbrand Ackermann .
arb. formula ———— ground sent. ————— arith. ground sent.

15

Idealisation
Translate A F ¢ into polynomial predicate I(¢)

Suffices to discuss arithmetic ground sentences

Herbrand Ackermann .
arb. formula ———— ground sent. ————— arith. ground sent.

Every @ is logically equivalent to a formula of the form

CNF(¢) = /\ (\/Si,j #tij \/\/pi,k ~ qi,k>
j K

1

clause

15

Idealisation

Translate A F ¢ into polynomial predicate I(¢)

Suffices to discuss arithmetic ground sentences

Herbrand Ackermann

arb. formula ———— ground sent. ————— arith. ground sent.

Every @ is logically equivalent to a formula of the form

CNF(¢) = /\ (\/Si,j #tij \/\/pi,k ~ qi,k>
j K

1

Idealisation clause

clause:

I(C;) = Pix —dix € (51’1 —ti1,...,8in — ti,n) for some k

15

Idealisation

Translate A F ¢ into polynomial predicate I(¢)

Suffices to discuss arithmetic ground sentences

Herbrand Ackermann .
arb. formula ———— ground sent. ————— arith. ground sent.

Every @ is logically equivalent to a formula of the form

CNF(¢) = /\ (\/Si,j #tij \/\/pi,k ~ qi,k>
j K

1

Idealisation clause

clause:
I(Ci) = Ppik—9ix € (si,1 —ti1,...,Sin —tin) for some k
arith. ground sentence: I(¢@) := /\ I(C)
C clause

of CNF(¢)

15

Main result

Let @ be an arithmetic ground sentence. Then

AEe@ iff I()=T.

16

Main result

Let @ be an arithmetic ground sentence. Then

AEe@ iff I()=T.
Proof:

“&" Reduce to (Raab, Regensburger, Hossein Poor, '19/'21)

16

Main result

Let @ be an arithmetic ground sentence. Then
AE @ iff I()=T.

Proof:

“&" Reduce to (Raab, Regensburger, Hossein Poor, '19/'21)

“=" Use A F @ iff A @ and show that sequent rules respect
idealisation.

16

Main result

Let @ be an arithmetic ground sentence. Then

AE @ iff I()=T.
Proof:
“&" Reduce to (Raab, Regensburger, Hossein Poor, '19/'21)

“=" Use A F @ iff A @ and show that sequent rules respect
idealisation.

e Axioms A are treated implicitly.

e Proof is independent of sorts, and thus, holds in all settings.

e Exploit efficient polynomial routines.

16

Semi-decision procedure

Input: signature X, formula ¢
Output: T if and only if A E @; otherwise infinite loop

1 @' « Herband normal form of ¢

2 @1,@2, - < an enumeration of H(¢M)
3ne1

4 P, — \/?:1 Pi

5 1A% « remove all non-arithmetic function symbols from 1, using
Ackermann's reduction.

6 If I(PA*) = T, return T. Otherwise, increase n by 1 and go to step 4.

17

Semi-decision procedure

Input: signature X, formula ¢

Output: T if and only if A E @; otherwise infinite loop

1

p
K}
4
5

@' «— Herband normal form of ¢

@1, @2, - an enumeration of H(p™)
n«1
wn — \/?:1 [OFF

A k
P «— remove all non-arithmetic function symbols from ¥, using
Ackermann's reduction.

Fork«1,...,n
If I(YR*) = T can be verified with n operations, return T.
Increase n by 1 and go to step 4.

17

Computational aspects

e Efficiency of the procedure ~ good enumeration of H(¢M)

o Expert knowledge
o “Polynomial unification”

e Avoid CNF blowup by incremental computation

Iv)= 1
lgVy)=T I(B1Vy) =1
g VearVy) I(gVBR2Vy) I(B1VeaVy) 1(B1VR2VYy)
. T -7 =T
7 N\ < N\ 7 N\ 7 N\

e Treat simple subformulas separately

18

Applications

Used to automatically (im)prove statements in the field of

e generalized inverses

o Moore-Penrose inverses (K. Bernauer)

19

Applications

(Extract from Handbook of Linear Algebra)

5.7 Pseudo-Inverse

Definitions:

A Moore-Penrose pseudo-inverse of a matrix A € C™*™ is a matrix A" € C"*™ that satisfies

the following four Penrose conditions:

AATA = A; ATAAT = AT, (aaly = a4l (ata)y = A4

Facts:

All the following facts except those with a specific reference can be found in [Gra83, pp.
105-141] or [RM71, pp. 44-67).

. Every A € C™*" has a unique pseudo-inverse Al
. If Ae R™*" then Al is real.
3. If A € C™*™ of rank r has a full rank decomposition A = BC, where B € C"™*" and
C € C*", then A! can be evaluated using A" = C*(B*AC*)"'B*.
. [LH95, p. 38] If A € C™*™ of rank r < min{m,n} has an SVD A = ULV™*, then its
pseudo-inverse is At = VEIU*, where

ot = diag(1/0y,...,1/0;,0 0) € R™*™,

=AY, Aht=4
. If A is a nonsingular square matrix, then A' = A
. If U has orthonormal columns or orthonormal rows, then Ut = U*.
3. If A= A* and A= A?, then A" = A.
. At = A* if and only if A*A is idempotent.
5. If A is normal and k is a positive integer, then AA" = ATA and (A%)! = (AT)k,
5. If U € C™*" is of rank n and satisfies U = U*, then U has orthonormal columns.
L If U € C™ ™ and V € C"*™ are unitary matrices, then (UAV)! = v*ATU*.
. A= (47 A)T A" = A*(AA*)!. In particular,

Applications

Used to automatically (im)prove statements in the field of

e Generalized inverses

o Moore-Penrose inverses (K. Bernauer)

21

Applications

Used to automatically (im)prove statements in the field of

e Generalized inverses

o Moore-Penrose inverses (K. Bernauer)
o Reverse order law (with D. Cvetkovi¢-lli¢ and J. Milosevic)

21

Applications

Used to automatically (im)prove statements in the field of

e Generalized inverses

o Moore-Penrose inverses (K. Bernauer)
o Reverse order law (with D. Cvetkovi¢-lli¢ and J. Milosevic)

e Solvability of systems of equations

21

Applications

(Milogevic,

Theorem 2.2 Let ag by, ¢; be elements of a ring R with o unit such that a;b; are regular and
agag oiby by = e for ¢ = 1,3, Additionally, let s = azly),j = agly,,m = jlg,t =y, bp, b = vy ba,n =
ek, p = asl, =rhba and s, j,m, Lk, n, rmp, gln, Troprmd, gleln € R™. The following are equivalent:

(i) The system of equations (11) is consistent.

(if) The conditions

Ts(cz — azay erby be)ly = 0
Trppmd (PrppTmd) Frpprmela(gln) " gln = vy prmeln
i el (gleln) " gleln = rmelils

are satisfied, where e = ¢3 — 8~ et ™k — agay recat Tk — jaenliby by — (a3 — FsTaz)ay erby (b —
bat ™ k).

(iii) The conditions

7a(e2 — agay erbTbo)ly =0

Tj(cs — agay crby b3)le =0

tmles — js7ealiby by — (a3 — js"az)ay erby bs)lplnlyns, =0
i raptm (€3 — agag recot ™k — azay ey by (by — bat "k} = 0

TropPmlcs — §87eat ™k — azay reeat™k — js™calihy by

—(ag — js"az)ay erby (ba — bot k) lnlg, = 0.

are satisfied.

In that ease the general solution of (11) is given by (34), where

21 =erf + g reeat T+ arlay (Fmp) T rmle — G0, pTmd) T e ptme
— dlreprmgd " usbT (L= bat s Wrgni,9 — (1 — §{Prpprmd) " Froptm)eleln(gliln) "g)lnk ™t
+ aray Lt — alay (Pmp) " rmp(l — lays”an)ag w "kl k™,
(erby (b — bat™k) + g™ recat ™ k) + a3 can™n+ a1(1 — a3 rrjas)al usn"n
Aoy (Fmp) " Pmle — J(Prnptmd) Praptme — ey w8 usby (1 — bt 7r Irgna,q
— (1 = jlreprmd) " rrnprm)elilaalidn) " glk Tkl + aray luit” kL,
— @1lay (Pmp) rmp(l — loy 8™ ag)ay wnt kl,,
ge1 + 88 cali [T+ s(re,ptmd) Praptmeln(gln) "o, by
prmid T+ (1= 37PN pPond) ") Tl (Gl) 70,01
+ 85 u-uf[ll by — 8§ Pl raiS” uab] (1 — bt vy Jalila(glada) "o,
— 8P pmd) Trptmds usby (1 — bat " ra Jalal(gln) reab,
gerby (ba — bat Tk, + 887 ealeby bl + (997 rac2 + 857 e2)t Tkl + 1eazaz eann
+ reaz(l — a3 rmrjas)ay uan"n + 8§ rp (s azay e3 + (sTas(l — a3 rprias) — i azayugln e
+8(1 = i)8 Tugn TR 8, gl) T meln () T ra,bi by (By — DptTR)L,
+ 8l prnid T+ (L= 07 md) (et) Trmp)rmeliln(gliln) "o, biby (bs — bot k)1,
+ 857 ugr by (ba — bot " k)l
— 8§ Fumils, by (1 = bat vy, alila(alydn) o babi (bs — bat),
— &Py gt) T ptmd s T usby (1 — bat Try, Jalu(gln) "robaby (bs — bat ™k).,
T ((ag — Fsag)al ey + ds~ealy f7) + mam~egbl by + manTusb] (1 — balid b7)by
+ T (Trpfmd) TrpTmeln(@ln) royby + rmfle, e i T rmelkdn(@leln) " by + TindsTuarsby by

= Prdle g prmg® wsby (1 — bat ™1y,)qleln (aleln) ro,br

— P (Tr pPmd) T ptmis uab] (1 — bot " ry Yala(gln) " ry,bn,

Tmlaz — jsTag)al 1 f + rmasag recat ™t + rmjs(cole ST + eatTE) + mm T eaby baly

+ mnm”ughy (1 — balplyby Ybaly + momn ™ [ezby bat ™ + usby (1 — balglnby Yoot~ — bak ™)klpk ¢
+mm”ugt (1 — klo k™) + rmlas — jsap)ay lunt ™t

+rmlas — js”ap)ay arlay (rmp) "rile = dlr, e usby (1= bot re, a9
— 3l prmd) T ptme — (1= §{reprmd) " e ptm)eleln(gledn) " gllnk ™t
— rmlag — j8~ag)ay arla, (Fmp) rmpl(l — Loy s ag)ay urt " kinkt,

Applications

Used to automatically (im)prove statements in the field of

e Generalized inverses

o Moore-Penrose inverses (K. Bernauer)
o Reverse order law (with D. Cvetkovi¢-1li¢ and J. Milosevi¢)

e Solvability of systems of equations

e Homological algebra

24

Applications

Used to automatically (im)prove statements in the field of

e Generalized inverses

o Moore-Penrose inverses (K. Bernauer)
o Reverse order law (with D. Cvetkovi¢-1li¢ and J. Milosevi¢)

e Solvability of systems of equations

e Homological algebra

o Diagram lemmas

24

Applications

Used to automatically (im)prove statements in the field of

e Generalized inverses

o Moore-Penrose inverses (K. Bernauer)
o Reverse order law (with D. Cvetkovi¢-1li¢ and J. Milosevi¢)

e Solvability of systems of equations

e Homological algebra

f g h j
o Diagram lemmas A—B—C—D—E
Joc Jf-” JV Jé Js
Al— B — C' — D — ¥

24

Summary & Outlook

Summary

e Model operator statements via many-sorted logic

e Translate validity of operator statement into finitely many

polynomial ideal memberships

e Tools: Herbrand's theorem + Ackermann’s reduction

Outlook

Producing proofs

(Better) heuristics for finding good instantiations

More advanced computational techniques (DPLL-style,
techniques from SMT)

Further applications

25

