Universal truth of operator statements via ideal membership

<u>Clemens Hofstadler</u>, Clemens G. Raab, Georg Regensburger Institute for Mathematics, University of Kassel

Seminar Algebra and Discrete Mathematics Linz, Austria, December 1, 2022

U N I K A S S E L V E R S I T A T

Proving statements about matrices/linear operators automatically and efficiently!

Proving statements about matrices/linear operators automatically and efficiently!

Proving statements about matrices/linear operators automatically and efficiently!

Proving statements about matrices/linear operators automatically and efficiently!

Proving statements about matrices/linear operators automatically and efficiently!

Proving statements about matrices/linear operators automatically and efficiently!

Modelling operator statements via many-sorted first-order logic

Many-sorted first-order logic

- First-order logic + sorts
- Same expressiveness as unsorted FO logic
- Computational advantages (sorts reduce # of expressions)
- We use sorts to model domains and codomains

"Statements"

•
$$\bigwedge_i S_i = T_i \rightarrow P = Q$$
 (Raab, Regensburger, Hossein Poor, '19/'21)

"Statements"

- $\bigwedge_i S_i = \mathsf{T}_i \to \mathsf{P} = Q$ (Raab, Regensburger, Hossein Poor, '19/'21)
- First-order logic with equality as only predicate (today)

"Statements"

- $\bigwedge_i S_i = \mathsf{T}_i \to \mathsf{P} = Q$ (Raab, Regensburger, Hossein Poor, '19/'21)
- First-order logic with equality as only predicate (today)

"Linear operators"

"Statements"

- $\bigwedge_i S_i = \mathsf{T}_i \to \mathsf{P} = Q$ (Raab, Regensburger, Hossein Poor, '19/'21)
- First-order logic with equality as only predicate (today)

"Linear operators"

"Statements"

- $\bigwedge_i S_i = \mathsf{T}_i \to \mathsf{P} = Q$ (Raab, Regensburger, Hossein Poor, '19/'21)
- First-order logic with equality as only predicate (today)

"Statements"

- $\bigwedge_i S_i = \mathsf{T}_i \to \mathsf{P} = Q$ (Raab, Regensburger, Hossein Poor, '19/'21)
- First-order logic with equality as only predicate (today)

"Statements"

"Linear operators"

- $\bigwedge_i S_i = \mathsf{T}_i \to \mathsf{P} = Q$ (Raab, Regensburger, Hossein Poor, '19/'21)
- First-order logic with equality as only predicate (today)

"Statements"

- $\bigwedge_i S_i = \mathsf{T}_i \to \mathsf{P} = Q$ (Raab, Regensburger, Hossein Poor, '19/'21)
- First-order logic with equality as only predicate (today)

"Statements"

- $\bigwedge_i S_i = \mathsf{T}_i \to \mathsf{P} = Q$ (Raab, Regensburger, Hossein Poor, '19/'21)
- First-order logic with equality as only predicate (today)

Semicategory = Category - identity morphisms

Signature

$$\mathbf{Var} = \{x_1, x_2, \dots\} \dots$$
 variables

A signature is a tuple $\boldsymbol{\Sigma} = (O,C,F,\sigma)$ consisting of

- O...object symbols $(u, v) \in O \times O...sort$
- C... constant symbols with $0_{u,v} \in C$ for $u, v \in O$;
- F... function symbols with $-, +, \cdot \in F$;
- σ ...sort function assigning all symbols their sort

Terms of sort (u,ν)

- variables $\mathbf{x} \in \mathbf{Var}$ with $\sigma(\mathbf{x}) = (\mathbf{u}, \mathbf{v})$
- constants $\textbf{c} \in C$ with $\sigma(c) = (u, \nu)$

•
$$f(t_1, \dots t_n)$$
 with $\sigma(t_i) = (u_i, v_i)$ and
 $\sigma(f) = (u_1, v_1) \times \dots \times (u_n, v_n) \rightarrow (u, v_n)$

Terms of sort (u, v)

- variables $\mathbf{x} \in \mathbf{Var}$ with $\sigma(\mathbf{x}) = (\mathbf{u}, \mathbf{v})$
- constants $\textbf{c} \in C$ with $\sigma(c) = (u, \nu)$

•
$$f(t_1, \dots t_n)$$
 with $\sigma(t_i) = (u_i, v_i)$ and
 $\sigma(f) = (u_1, v_1) \times \dots \times (u_n, v_n) \to (u, v)$

Formulas

- $s \approx t$ with terms s, t where $\sigma(s) = \sigma(t)$
- $\neg \phi$, $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \rightarrow \psi)$
- $\exists x : \phi, \forall x : \phi$

 $\mathsf{Fix} \quad \sigma(x) = (u, \nu), \qquad \sigma(y) = (u, w), \qquad \sigma(c) = (u, w)$

x + y

 $\mathsf{Fix} \quad \sigma(x) = (\mathfrak{u}, \nu), \qquad \sigma(y) = (\mathfrak{u}, w), \qquad \sigma(c) = (\mathfrak{u}, w)$

 $\mathsf{Fix} \quad \sigma(x) = (\mathfrak{u}, \nu), \qquad \sigma(y) = (\mathfrak{u}, w), \qquad \sigma(c) = (\mathfrak{u}, w)$

 $\mathsf{Fix} \quad \sigma(x) = (\mathfrak{u}, \nu), \qquad \sigma(y) = (\mathfrak{u}, w), \qquad \sigma(c) = (\mathfrak{u}, w)$

x + y(c + y) · 0_{w,u} term of sort (w, w)

 $\mathsf{Fix} \quad \sigma(x) = (\mathfrak{u}, \nu), \qquad \sigma(y) = (\mathfrak{u}, w), \qquad \sigma(c) = (\mathfrak{u}, w)$

 $\mathsf{Fix} \quad \sigma(x) = (\mathfrak{u}, \nu), \qquad \sigma(y) = (\mathfrak{u}, w), \qquad \sigma(c) = (\mathfrak{u}, w)$

 $\mathsf{Fix} \quad \sigma(x) = (\mathfrak{u}, \nu), \qquad \sigma(y) = (\mathfrak{u}, w), \qquad \sigma(c) = (\mathfrak{u}, w)$

 $\mathbf{x} \approx \mathbf{y}$

 $\mathsf{Fix} \quad \sigma(x) = (\mathfrak{u}, \nu), \qquad \sigma(y) = (\mathfrak{u}, w), \qquad \sigma(c) = (\mathfrak{u}, w)$

 $\mathsf{Fix} \quad \sigma(x) = (\mathfrak{u}, \nu), \qquad \sigma(y) = (\mathfrak{u}, w), \qquad \sigma(c) = (\mathfrak{u}, w)$

x + y $(c + y) \cdot 0_{w,u}$ term of sort (w, w) $0_{w,v} \cdot (c + c)$ ground term of sort (u, v)

 $\forall x : x \approx 0 \cdot (c+c)$

 $\mathsf{Fix} \quad \sigma(x) = (\mathfrak{u}, \nu), \qquad \sigma(y) = (\mathfrak{u}, w), \qquad \sigma(c) = (\mathfrak{u}, w)$

x + y $(c + y) \cdot 0_{w,u}$ term of sort (w, w) $0_{w,v} \cdot (c + c)$ ground term of sort (u, v)

 $\forall x : x \approx 0 \cdot (c + c)$ arithmetic sentence

 $\mathsf{Fix} \quad \sigma(x) = (\mathfrak{u}, \nu), \qquad \sigma(y) = (\mathfrak{u}, w), \qquad \sigma(c) = (\mathfrak{u}, w)$

x + y $(c + y) \cdot 0_{w,u}$ term of sort (w, w) $0_{w,v} \cdot (c + c)$ ground term of sort (u, v)

 $\begin{array}{l} x \approx y \\ \forall x : x \approx 0 \cdot (c + c) \quad \mbox{ arithmetic sentence} \\ (c \ \not\approx \ 0 \ \land \ c \ + \ (-c) \ \approx \ 0) \ \rightarrow \ -c \ \not\approx \ 0 \end{array}$

 $\mathsf{Fix} \quad \sigma(x) = (u, v), \qquad \sigma(y) = (u, w), \qquad \sigma(c) = (u, w)$

 $x \neq y$ (c + y) $\cdot 0_{w,u}$ term of sort (w, w) $0_{w,v} \cdot (c + c)$ ground term of sort (u, v)

 $\begin{array}{l} x \approx y \\ \forall x : x \approx 0 \cdot (c+c) \quad \mbox{ arithmetic sentence} \\ (c \ \not\approx \ 0 \ \land \ c \ + \ (-c) \ \approx \ 0) \ \rightarrow \ -c \ \not\approx \ 0 \\ \mbox{ arithmetic ground sentence} \end{array}$

Axioms of semicategories

$$\begin{split} \mathcal{A}_{u,u',v,v'} &= \{ \\ & \forall x^{(v',v)}, y^{(u',v')}, z^{(u,u')} &: x \cdot (y \cdot z) \approx (x \cdot y) \cdot z, \\ & \forall x^{(u,v)}, y^{(u,v)}, z^{(u,v)} &: x + (y + z) \approx (x + y) + z, \\ & \forall x^{(u,v)}, z^{(u,v)} &: x + 0_{u,v} \approx x, \\ & \forall x^{(u,v)} &: x + 0_{u,v} \approx x, \\ & \forall x^{(u,v)}, y^{(u,v)} &: x + (-x) \approx 0_{u,v}, \\ & \forall x^{(u,v)}, y^{(u,v)} &: x + y \approx y + x, \\ & \forall x^{(v',v)}, y^{(u,v')}, z^{(u,v')} &: x \cdot (y + z) \approx x \cdot y + x \cdot z, \\ & \forall x^{(v',v)}, y^{(v',v)}, z^{(u,v')} &: (x + y) \cdot z \approx x \cdot z + y \cdot z \\ \} \end{split}$$

Axioms $\ensuremath{\mathcal{A}}$ of semicategories are then

$$\mathcal{A} = \bigcup_{u,u',v,v' \in O} \mathcal{A}_{u,u',v,v'}$$

Semantics

Formulas are true or false w.r.t. interpretation $\ensuremath{\mathbb{J}}$

Interpretations are as in classical FO logic, except that they respect the sorts.
Semantics

Formulas are true or false w.r.t. interpretation $\ensuremath{\mathbb{I}}$

Interpretations are as in classical FO logic, except that they respect the sorts.

For example:

 $\mathbb{I}(s\approx t)=\top \quad \text{ iff } \quad \mathbb{I}(s)=\mathbb{I}(t) \text{ as elements in the domain }$

Semantics

Formulas are true or false w.r.t. interpretation $\ensuremath{\mathbb{I}}$

Interpretations are as in classical FO logic, except that they respect the sorts.

For example:

 $\mathbb{I}(s\approx t)=\top \quad \text{ iff } \quad \mathbb{I}(s)=\mathbb{I}(t) \text{ as elements in the domain }$

 $\label{eq:phi} \begin{array}{ll} \phi \mbox{ valid } & \mbox{iff } & \ensuremath{\mathbb{J}}(\phi) = \top \mbox{ for all } \ensuremath{\mathbb{J}} \\ \Psi \vDash \phi \mbox{ (sem. consequence) } & \mbox{iff } & \ensuremath{\mathbb{J}}(\Psi) = \top \Rightarrow \ensuremath{\mathbb{J}}(\phi) = \top \mbox{ for all } \ensuremath{\mathbb{J}} \end{array}$

Semantics

Formulas are true or false w.r.t. interpretation $\ensuremath{\mathbb{J}}$

Interpretations are as in classical FO logic, except that they respect the sorts.

For example:

 $\mathbb{I}(s\approx t)=\top \quad \text{ iff } \quad \mathbb{I}(s)=\mathbb{I}(t) \text{ as elements in the domain }$

 $\label{eq:phi} \begin{array}{ll} \phi \mbox{ valid } & \mbox{iff } \ensuremath{ \ensuremath{\mathcal{I}}}(\phi) = \top \mbox{ for all } \ensuremath{\mathcal{I}} \\ \Psi \vDash \phi \mbox{ (sem. consequence) } & \mbox{iff } \ensuremath{ \ensuremath{\mathcal{I}}}(\Psi) = \top \Rightarrow \ensuremath{\mathcal{I}}(\phi) = \top \mbox{ for all } \ensuremath{\mathcal{I}} \end{array}$

Universal truth of operator statement $\equiv \mathcal{A} \models \phi$

Prove semantic consequence via syntactic operations

Classically using some deductive system (e.g., Sequent calculus, Resolution, etc.)

Prove semantic consequence via syntactic operations

Classically using some **deductive system** (e.g., Sequent calculus, Resolution, etc.)

 $\Psi \vdash \phi \text{ (syn. consequence)} \quad \text{ iff } \quad \phi \text{ can be derived from } \Psi \\ \text{ syntactically}$

Prove semantic consequence via syntactic operations

Classically using some **deductive system** (e.g., Sequent calculus, Resolution, etc.)

 $\Psi \vdash \phi \ (\mbox{syn. consequence}) \qquad \mbox{iff} \qquad \phi \ \mbox{can be derived from } \Psi \\ \mbox{syntactically}$

 $\Psi \vDash \varphi$ iff $\Psi \vdash \varphi$

Prove semantic consequence via syntactic operations

Classically using some **deductive system** (e.g., Sequent calculus, Resolution, etc.)

 $\Psi \vdash \varphi$ (syn. consequence) iff φ can be derived from Ψ syntactically

Prove semantic consequence via syntactic operations

Classically using some **deductive system** (e.g., Sequent calculus, Resolution, etc.)

 $\Psi \vdash \phi \text{ (syn. consequence)} \quad \text{ iff } \quad \phi \text{ can be derived from } \Psi \\ \text{ syntactically}$

Prove semantic consequence via syntactic operations

Classically using some **deductive system** (e.g., Sequent calculus, Resolution, etc.)

 $\Psi \vdash \phi \text{ (syn. consequence)} \quad \text{ iff } \quad \phi \text{ can be derived from } \Psi \\ \text{ syntactically}$

Derive analogous statement for $\Psi = \mathcal{A}$ with polynomial rhs

Expressing universal truth by polynomial ideal memberships

Interlude: Noncommutative polynomials

Interlude: Noncommutative polynomials

Noncommutative polynomials = elements in free algebra $\mathbb{Z}\langle X \rangle$ $= \sum_{i=1}^{d} c_i \cdot x_{i,1} \dots x_{i,k_i}$ For $F \subseteq \mathbb{Z}\langle X \rangle$,

$$(F) = \left\{ \sum a_i f_i b_i \mid a_i, b_i \in \mathbb{Z} \langle X \rangle, \, f_i \in F \right\}$$

Interlude: Noncommutative polynomials

Noncommutative polynomials = elements in free algebra $\mathbb{Z}\langle X \rangle$ = $\sum_{i=1}^{d} c_i \cdot x_{i,1} \dots x_{i,k_i}$

$$(\mathsf{F}) = \left\{ \sum a_{i} f_{i} b_{i} \mid a_{i}, b_{i} \in \mathbb{Z} \langle X \rangle, f_{i} \in \mathsf{F} \right\}$$

For

Ideal membership problem $p \stackrel{?}{\in} (F)$ is semi-decidable (e.g., using Gröbner bases)

Translate $\mathcal{A} \vDash \varphi$ into polynomial predicate $I(\varphi)$ (Idealisation)

Translate $\mathcal{A} \models \varphi$ into polynomial predicate $I(\varphi)$ (Idealisation)

Translating arithmetic ground terms is easy

 $\mathbf{a} \cdot (\mathbf{a} + \mathbf{0}) + (-\mathbf{b}) + \mathbf{c} \cdot \mathbf{d} \quad \rightsquigarrow \quad \mathbf{a}\mathbf{a} - \mathbf{b} + \mathbf{c}\mathbf{d} \in \mathbb{Z}\langle \mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d} \rangle$

Translate $\mathcal{A} \vDash \varphi$ into polynomial predicate $I(\varphi)$ (Idealisation)

Translating arithmetic ground terms is easy

 $a \cdot (a + 0) + (-b) + c \cdot d \quad \rightsquigarrow \quad aa - b + cd \in \mathbb{Z}\langle a, b, c, d \rangle$

...but what about

 $\exists x: a + b \approx x \quad \rightsquigarrow \quad ?$

Translate $\mathcal{A} \vDash \varphi$ into polynomial predicate $I(\varphi)$ (Idealisation)

Translating arithmetic ground terms is easy

 $\mathbf{a} \cdot (\mathbf{a} + \mathbf{0}) + (-\mathbf{b}) + \mathbf{c} \cdot \mathbf{d} \quad \rightsquigarrow \quad \mathbf{a}\mathbf{a} - \mathbf{b} + \mathbf{c}\mathbf{d} \in \mathbb{Z}\langle \mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d} \rangle$

...but what about

$$\exists x : a + b \approx x \qquad \rightsquigarrow \qquad ?$$
$$f(a, b) \approx f(b, a) \qquad \rightsquigarrow \qquad ?$$

Translate $\mathcal{A} \vDash \varphi$ into polynomial predicate $I(\varphi)$ (Idealisation)

Translating arithmetic ground terms is easy

 $a \cdot (a + 0) + (-b) + c \cdot d \quad \rightsquigarrow \quad aa - b + cd \in \mathbb{Z}\langle a, b, c, d \rangle$

...but what about

 $\exists x : a + b \approx x \quad \rightsquigarrow \quad ? \quad \leftarrow \mathsf{Herbrand's theorem} \\ f(a, b) \approx f(b, a) \quad \rightsquigarrow \quad ? \quad \leftarrow \mathsf{Ackermann's reduction} \\ \end{cases}$

Reduce validity of formula to validity of ground sentence ~> eliminate quantifiers

Reduce validity of formula to validity of ground sentence ~ eliminate quantifiers

Herbrand normal form : $\exists x_1 \dots x_n : \phi^*$ with ϕ^* quantifier-free

Herbrand normal form : $\exists x_1 \dots x_n : \phi^*$ with ϕ^* quantifier-free Herbrand expansion : $H(\phi) = \{ \text{ all ground instances of } \phi^* \}$

Herbrand normal form : $\exists x_1 \dots x_n : \phi^*$ with ϕ^* quantifier-free Herbrand expansion : $H(\phi) = \{ \text{ all ground instances of } \phi^* \}$

Herbrand's theorem Let φ be in Herbrand normal form. Then φ is valid if and only if there exist $\varphi_1, \ldots, \varphi_k \in H(\varphi)$ such that $\varphi_1 \vee \cdots \vee \varphi_k$ is valid.

Reduce validity of formula to validity of ground sentence \rightsquigarrow eliminate quantifiers

Herbrand normal form : $\exists x_1 \dots x_n : \phi^*$ with ϕ^* quantifier-free Herbrand expansion : $H(\phi) = \{ \text{ all ground instances of } \phi^* \}$

Herbrand's theorem Let φ be in Herbrand normal form. Then φ is valid if and only if there exist $\varphi_1, \ldots, \varphi_k \in H(\varphi)$ such that $\varphi_1 \vee \cdots \vee \varphi_k$ is valid.

$$\mathcal{A} \vDash \varphi$$
 iff $\mathcal{A} \vDash \varphi_1 \lor \cdots \lor \varphi_k$.

Herbrandisation

Goal Transform formula φ into Herbrand normal form

Herbrandisation

Goal Transform formula φ into Herbrand normal form

- 1 Bind any free variables by universal quantifier
- 2 Move all quantifiers to the front
- 3 Apply the following rules exhaustively

 $\begin{array}{rcl} & \forall y: \psi & \rightsquigarrow & \psi[y \mapsto c] \\ \exists x_1, \dots, x_n \forall y: \psi & \rightsquigarrow & \exists x_1, \dots, x_n: \psi[y \mapsto f(x_1, \dots, x_n)] \end{array}$

where c, f are new with the correct sort

Herbrandisation

Goal Transform formula φ into Herbrand normal form

- 1 Bind any free variables by universal quantifier
- 2 Move all quantifiers to the front
- 3 Apply the following rules exhaustively

 $\begin{array}{rcl} & \forall y: \psi & \rightsquigarrow & \psi[y \mapsto c] \\ \exists x_1, \dots, x_n \forall y: \psi & \rightsquigarrow & \exists x_1, \dots, x_n: \psi[y \mapsto f(x_1, \dots, x_n)] \end{array}$

where c, f are new with the correct sort

Proposition

$$\mathcal{A} \vDash \varphi$$
 iff $\mathcal{A} \vDash \varphi^{\mathsf{H}}$

Goal Remove function symbol f from quantifier-free formula φ

Goal Remove function symbol f from quantifier-free formula φ

- 1 Flatten nested applications of f
- 2 Replace every instance $f(t_1, \ldots, t_n)$ by new constant c_{f,t_1,\ldots,t_n} . Denote new formula by ϕ^{flat} .
- 3 For all c_{f,s_1,\ldots,s_n} and c_{f,t_1,\ldots,t_n} form functional consistency constraint

$$s_1 \approx t_1 \wedge \dots \wedge s_n \approx t_n \rightarrow c_{f,s_1,\dots,s_n} \approx c_{f,t_1,\dots,t_n}$$

 $\begin{array}{l} \mbox{4} \quad \phi^{FC} \leftarrow \mbox{ Conjunction of all functional consistency constraints} \\ \mbox{5} \quad \phi^{Ack} \leftarrow \left(\phi^{FC} \rightarrow \phi^{flat}\right) \end{array}$

Goal Remove function symbol f from quantifier-free formula φ

- 1 Flatten nested applications of f
- 2 Replace every instance $f(t_1, \ldots, t_n)$ by new constant c_{f,t_1,\ldots,t_n} . Denote new formula by ϕ^{flat} .
- 3 For all c_{f,s_1,\ldots,s_n} and c_{f,t_1,\ldots,t_n} form functional consistency constraint

$$s_1 \approx t_1 \wedge \dots \wedge s_n \approx t_n \rightarrow c_{f,s_1,\dots,s_n} \approx c_{f,t_1,\dots,t_n}$$

 $\begin{array}{l} \mbox{4} \quad \phi^{FC} \leftarrow \mbox{Conjunction of all functional consistency constraints} \\ \mbox{5} \quad \phi^{Ack} \leftarrow \left(\phi^{FC} \rightarrow \phi^{flat}\right) \end{array}$

 φ valid iff $\overline{\varphi}^{Ack}$ valid

Goal Remove function symbol f from quantifier-free formula φ

- 1 Flatten nested applications of f
- 2 Replace every instance $f(t_1, \ldots, t_n)$ by new constant c_{f,t_1,\ldots,t_n} . Denote new formula by ϕ^{flat} .
- 3 For all c_{f,s_1,\ldots,s_n} and c_{f,t_1,\ldots,t_n} form functional consistency constraint

$$s_1 \approx t_1 \wedge \dots \wedge s_n \approx t_n \rightarrow c_{f,s_1,\dots,s_n} \approx c_{f,t_1,\dots,t_n}$$

 φ valid

Corollary

Theorem

If non-arithmetic function symbol is removed, then

iff ω^{Ack} valid

$$\mathcal{A} \vDash \varphi$$
 iff $\mathcal{A} \vDash \varphi^{\mathsf{Ack}}$

Translate $\mathcal{A} \vDash \varphi$ into polynomial predicate $I(\varphi)$

Goal Translate $\mathcal{A} \models \varphi$ into polynomial predicate $I(\varphi)$

Suffices to discuss arithmetic ground sentences

arb. formula $\xrightarrow{\text{Herbrand}}$ ground sent. $\xrightarrow{\text{Ackermann}}$ arith. ground sent.

Goal Translate
$$\mathcal{A} \vDash \varphi$$
 into polynomial predicate $I(\varphi)$

Suffices to discuss arithmetic ground sentences

arb. formula $\xrightarrow{\text{Herbrand}}$ ground sent. $\xrightarrow{\text{Ackermann}}$ arith. ground sent.

Every ϕ is logically equivalent to a formula of the form

$$\mathsf{CNF}(\phi) = \bigwedge_{\mathfrak{i}} \left(\underbrace{\bigvee_{j} s_{\mathfrak{i},j} \not\approx t_{\mathfrak{i},j} \vee \bigvee_{k} p_{\mathfrak{i},k} \approx \mathfrak{q}_{\mathfrak{i},k}}_{\mathsf{clause}} \right)$$

Goal Translate
$$\mathcal{A} \vDash \varphi$$
 into polynomial predicate $I(\varphi)$

Suffices to discuss arithmetic ground sentences

arb. formula $\xrightarrow{\text{Herbrand}}$ ground sent. $\xrightarrow{\text{Ackermann}}$ arith. ground sent.

Every $\boldsymbol{\phi}$ is logically equivalent to a formula of the form

$$\mathsf{CNF}(\phi) = \bigwedge_{\mathfrak{i}} \left(\underbrace{\bigvee_{j} s_{\mathfrak{i},j} \not\approx t_{\mathfrak{i},j} \vee \bigvee_{k} p_{\mathfrak{i},k} \approx \mathfrak{q}_{\mathfrak{i},k}}_{\mathsf{clause}} \right)$$

Idealisation

clause:

$$I(C_i) \quad :\equiv \quad p_{i,k} - q_{i,k} \in (s_{i,1} - t_{i,1}, \dots, s_{i,n} - t_{i,n}) \text{ for some } k$$

Goal Translate
$$\mathcal{A} \vDash \varphi$$
 into polynomial predicate $I(\varphi)$

Suffices to discuss arithmetic ground sentences

arb. formula $\xrightarrow{\text{Herbrand}}$ ground sent. $\xrightarrow{\text{Ackermann}}$ arith. ground sent.

Every $\boldsymbol{\phi}$ is logically equivalent to a formula of the form

$$\mathsf{CNF}(\phi) = \bigwedge_{i} \left(\underbrace{\bigvee_{j} s_{i,j} \not\approx t_{i,j} \lor \bigvee_{k} p_{i,k} \approx \mathfrak{q}_{i,k}}_{\mathsf{clause}} \right)$$

Idealisation

clause:

$$I(C_i) \quad :\equiv \quad p_{i,k} - q_{i,k} \in (s_{i,1} - t_{i,1}, \dots, s_{i,n} - t_{i,n}) \text{ for some } k$$

arith. ground sentence: $I(\phi) := \bigwedge_{\substack{C \text{ clause} \\ \text{ of } CNF(\phi)}} I(C)$

Main result

Theorem Let φ be an arithmetic ground sentence. Then

$$\mathcal{A} \vDash \varphi$$
 iff $I(\varphi) = \top$.
Main result

Theorem Let φ be an arithmetic ground sentence. Then $\mathcal{A} \models \varphi$ iff $I(\varphi) = \top$. Proof: " \Leftarrow ": Reduce to (Raab, Regensburger, Hossein Poor, '19/'21)

Main result

Theorem Let φ be an arithmetic ground sentence. Then $\mathcal{A} \models \varphi$ iff $I(\varphi) = \top$. Proof: " \Leftarrow ": Reduce to (Raab, Regensburger, Hossein Poor, '19/'21)

" \Rightarrow ": Use $\mathcal{A}\vDash \phi$ iff $A\vdash \phi$ and show that sequent rules respect idealisation.

Main result

Theorem Let φ be an arithmetic ground sentence. Then $\mathcal{A} \models \varphi$ iff $I(\varphi) = \top$. Proof: " \Leftarrow ": Reduce to (Raab, Regensburger, Hossein Poor, '19/'21) " \Rightarrow ": Use $\mathcal{A} \models \varphi$ iff $A \vdash \varphi$ and show that sequent rules respect

"⇒": Use $A \models \varphi$ iff $A \vdash \varphi$ and show that sequent rules respect idealisation.

Advantages

- Axioms \mathcal{A} are treated implicitly.
- Proof is independent of sorts, and thus, holds in all settings.
- Exploit efficient polynomial routines.

Semi-decision procedure

Input: signature Σ , formula φ **Output**: \top if and only if $\mathcal{A} \vDash \varphi$; otherwise infinite loop

- $\textbf{1} \hspace{0.1 in} \phi^{H} \leftarrow \text{Herband normal form of } \phi$
- **2** $\phi_1, \phi_2, \dots \leftarrow$ an enumeration of $H(\phi^H)$
- $3 n \leftarrow 1$
- $\textbf{4} \ \psi_n \leftarrow \ \bigvee_{i=1}^n \phi_i$
- 5 $\psi_n^{Ack} \leftarrow$ remove all non-arithmetic function symbols from ψ_n using Ackermann's reduction.
- 6 If $I(\psi_n^{Ack}) = \top$, return \top . Otherwise, increase n by 1 and go to step 4.

Semi-decision procedure

Input: signature Σ , formula φ **Output**: \top if and only if $\mathcal{A} \vDash \varphi$; otherwise infinite loop

- $\textbf{1} \hspace{0.1 in} \phi^{H} \leftarrow \text{Herband normal form of } \phi$
- **2** $\phi_1, \phi_2, \dots \leftarrow$ an enumeration of $H(\phi^H)$
- $3 n \leftarrow 1$
- $\textbf{4} \ \psi_n \leftarrow \ \bigvee_{i=1}^n \phi_i$
- 5 $\psi_n^{Ack} \leftarrow$ remove all non-arithmetic function symbols from ψ_n using Ackermann's reduction.
- $\begin{array}{ll} \textbf{6} \ \mbox{ For } k \leftarrow 1, \ldots, n \\ & \mbox{ If } I(\psi_k^{Ack}) = \top \mbox{ can be verified with } n \mbox{ operations, return } \top. \end{array}$
- 7 Increase n by 1 and go to step 4.

Computational aspects

- Efficiency of the procedure $~\approx~$ good enumeration of $H(\phi^H)$

- Expert knowledge
- "Polynomial unification"
- Avoid CNF blowup by incremental computation

• Treat simple subformulas separately

- generalized inverses
 - Moore-Penrose inverses (K. Bernauer)

(Extract from Handbook of Linear Algebra)

5.7 Pseudo-Inverse

Definitions:

A Moore–Penrose pseudo-inverse of a matrix $A \in \mathbb{C}^{m \times n}$ is a matrix $A^{\dagger} \in \mathbb{C}^{n \times m}$ that satisfies the following four **Penrose** conditions:

$$AA^{\dagger}A = A;$$
 $A^{\dagger}AA^{\dagger} = A^{\dagger};$ $(AA^{\dagger})^* = AA^{\dagger};$ $(A^{\dagger}A)^* = A^{\dagger}A.$

Facts:

All the following facts except those with a specific reference can be found in [Gra83, pp. 105–141] or [RM71, pp. 44–67].

- Every A ∈ C^{m×n} has a unique pseudo-inverse A[†].
- 2. If $A \in \mathbb{R}^{m \times n}$, then A^{\dagger} is real.
- If A ∈ C^{m×n} of rank r has a full rank decomposition A = BC, where B ∈ C^{m×r} and C ∈ C^{r×n}, then A[†] can be evaluated using A[†] = C^{*}(B^{*}AC^{*})⁻¹B^{*}.
- [LH95, p. 38] If A ∈ C^{m×n} of rank r ≤ min{m,n} has an SVD A = UΣV^{*}, then its pseudo-inverse is A[†] = VΣ[†]U^{*}, where

$$\Sigma^{\dagger} = \operatorname{diag}(1/\sigma_1, \dots, 1/\sigma_r, 0, \dots, 0) \in \mathbb{R}^{n \times m}$$

10. $(A^{\dagger})^* = (A^*)^{\dagger}; \quad (A^{\dagger})^{\dagger} = A.$

- 11. If A is a nonsingular square matrix, then $A^{\dagger} = A^{-1}$.
- 12. If U has orthonormal columns or orthonormal rows, then $U^{\dagger} = U^*$.
- 13. If $A = A^*$ and $A = A^2$, then $A^{\dagger} = A$.
- 14. $A^{\dagger} = A^*$ if and only if A^*A is idempotent.
- 15. If A is normal and k is a positive integer, then $AA^{\dagger} = A^{\dagger}A$ and $(A^k)^{\dagger} = (A^{\dagger})^k$.
- 16. If $U \in \mathbb{C}^{m \times n}$ is of rank n and satisfies $U^{\dagger} = U^*$, then U has orthonormal columns.
- 17. If $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$ are unitary matrices, then $(UAV)^{\dagger} = V^* A^{\dagger} U^*$.
- 18. $A^{\dagger} = (A^*A)^{\dagger}A^* = A^*(AA^*)^{\dagger}$. In particular,
- and the second second

Used to automatically (im)prove statements in the field of

• Generalized inverses

• Moore-Penrose inverses (K. Bernauer)

Used to automatically (im)prove statements in the field of

• Generalized inverses

- Moore-Penrose inverses (K. Bernauer)
- Reverse order law (with D. Cvetković-Ilić and J. Milošević)

- Generalized inverses
 - Moore-Penrose inverses (K. Bernauer)
 - Reverse order law (with D. Cvetković-Ilić and J. Milošević)
- Solvability of systems of equations

(Milošević, '20)

Theorem 2.2 Let a_i, b_i, c_i be elements of a ring \mathcal{R} with a unit such that a_i, b_i are regular and $a_i a_i^- c_i b_i^- b_i = c_i$ for $i = \overline{1,3}$. Additionally, let $s = a_2 l_{a_1,j} = a_3 l_{a_1,j} = a_j l_{a_j,j} t = b_j b_2, k = r_{b_j} b_3, n = r_t k, p = a_3 l_{a_2,q} = r_{b_2} b_3$ and $s, j, m, t, k, n, r_m p, q l_n, r_m p^* m_j, q l_k l_n \in \mathcal{R}^-$. The following are equivalent:

- The system of equations (11) is consistent.
- (ii) The conditions

$$\begin{split} & r_{s}(c_{2} - a_{2}a_{1}^{-}c_{1}b_{1}^{-}b_{2})l_{t} = 0 \\ & r_{r_{m}p}r_{m}j(r_{r_{m}p}r_{m}j)^{-}r_{r_{m}p}r_{m}el_{n}(ql_{n})^{-}ql_{n} = r_{r_{m}p}r_{m}el_{n} \\ & r_{m}jj^{-}el_{k}l_{n}(ql_{k}l_{n})^{-}ql_{k}l_{n} = r_{m}el_{k}l_{n} \end{split}$$

are satisfied, where $e = c_3 - js^-c_2t^-k - a_3a_2^-r_sc_2t^-k - js^-c_2l_tb_2^-b_3 - (a_3 - js^-a_2)a_1^-c_1b_1^-(b_3 - b_2t^-k)$.

(iii) The conditions

$$\begin{split} r_s(c_2 - a_2a_1^-c_1b_1^-b_2)l_t &= 0\\ r_j(c_3 - a_3a_1^-c_1b_1^-b_3)l_k &= 0\\ r_m(c_3 - js^-c_2l_tb_2^-b_3 - (a_3 - js^-a_2)a_1^-c_1b_1^-b_3)l_k l_n l_{ql_kl_n} &= 0\\ r_{r_mp^Tm}(r_mp^-r_m)r_m(c_3 - a_3a_2^-r_sc_2t^-k - a_3a_1^-c_1b_1^-(b_3 - b_2t^-k))l_n &= 0\\ r_{r_mp^Tm}(c_3 - js^-c_2t^-k - a_3a_2^-r_sc_2t^-k - js^-c_2l_tb_2^-b_3 - (a_3 - js^-a_2)a_1^-c_1b_1^-(b_3 - b_2t^-k))l_n l_{ql_n} &= 0 \end{split}$$

are satisfied.

In that case the general solution of (11) is given by (34), where

$$\begin{split} z_1 &= c_1 f + g^{-r} s_c z_t^{-t} t + a_1 l_{a_2} (r_m p)^{-r} r_m [e - j(r_{r_m p} r_m j)^{-r} r_m p^{-r} me \\ &\quad - j l_{r_{r_m p} r_m j} s^{-u} s_0^{-1} (1 - b_2 t^{-r} b_1) r_{l_k l_n} q - (1 - j(r_{r_m p} r_m j)^{-r} r_m p^{-m}) el_k l_n (q_k l_n)^{-q}] l_n k^{-t} t \\ &\quad + a_1 a_1^{-1} l_g u_1 t t^{-} - a_1 l_{a_2} (r_m p)^{-r} mp (1 - l_{a_1} s^{-} a_2) a_1^{-u} u_1 t^{-k} l_n k^{-t} t, \\ z_2 &= (c_1 b_1^{-} (b_3 - b_2 t^{-k})) + g^{-r} s_c z_t^{-k} b) l_n + a_1 a_3^{-c} s_1^{-n} n + a_1 (1 - a_3^{-T} m_r j_3) a_1^{-u} u_2 n^{-n} \\ a_1 l_{a_2} (r_m p)^{-r} m_m [e - j (r_{r_m p} r_m j)^{-r} r_m p^{-m} e^{-j} l_{r_m p^{-r} m^{j}} s^{-u} s_0^{-1} (1 - b_2 t^{-r} b_1) r_{q_k l_n} q \\ &\quad - (1 - j (r_{r_m p} r_m j)^{-r} r_m p^{-m}) el_k l_n (q_k l_n)^{-1} q] k^{-k} l_n + a_1 a_1^{-l} g_1 u^{-k} l_n \\ &\quad - a_1 l_{a_2} (r_m p)^{-r} m_m (1 - l_a s^{-u} a_2) a_1^{-u} u^{-k} l_n , \\ z_3 &= gc_1 + ss^{-c_2} l_t f^{-1} + s (r_{r_m p^{-r} m^{j})^{-r_{r_m p^{-r} mp^{j}} m_j l^{-r_{b_2} b_1} \\ &\quad + ss^{-u} s_1 r_p b_1^{-1} s_1^{-r} - r_m j) (r_{r_m p^{-r} m^{j})^{-r_{r_m p^{-r} mp^{j}} m_k l_n (q_k l_n)^{-r_{b_2} b_1} \\ &\quad - s(r_{r_m p^{-r} m^{j})^{-r_{r_m p^{-r} m^{j}} s^{-u} a_0 l_1^{-1} - b_2 t^{-r_{b_1}}) q_k l_n (q_k l_n)^{-r_{b_2} b_1} \\ &\quad - s(r_{r_m p^{-r} m^{j})^{-r_{m} p^{-r} m^{j}} s^{-u} a_1^{-1} - s_1^{-r_{m}} j) r_{r_m p^{-r} m^{j}} s^{-u} a_2 a_3^{-c} s_1 + (s^{-2} a_2(1 - a_3^{-r_m} r_{a_3} a_3) a_1^{-u} a_2) n^{-n} \\ &\quad + s(l_{r_{r_m p} r_m j} a_1^{-u} a_1^{-n} + s(r_{r_m p} r_m j)^{-r_{r_m p} r_m p^{-r_m p^{-r_m$$

- Generalized inverses
 - Moore-Penrose inverses (K. Bernauer)
 - Reverse order law (with D. Cvetković-Ilić and J. Milošević)
- Solvability of systems of equations
- Homological algebra

- Generalized inverses
 - Moore-Penrose inverses (K. Bernauer)
 - Reverse order law (with D. Cvetković-Ilić and J. Milošević)
- Solvability of systems of equations
- Homological algebra
 - Diagram lemmas

- Generalized inverses
 - Moore-Penrose inverses (K. Bernauer)
 - Reverse order law (with D. Cvetković-Ilić and J. Milošević)
- Solvability of systems of equations
- Homological algebra
 - Diagram lemmas

Summary & Outlook

Summary

- Model operator statements via many-sorted logic
- Translate validity of operator statement into finitely many polynomial ideal memberships
- Tools: Herbrand's theorem + Ackermann's reduction

Outlook

- Producing proofs
- (Better) heuristics for finding good instantiations
- More advanced computational techniques (DPLL-style, techniques from SMT)
- Further applications