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Modelling operator statements
via

many-sorted first-order logic



Many-sorted first-order logic

• First-order logic + sorts

• Same expressiveness as unsorted FO logic

• Computational advantages (sorts reduce # of expressions)

• We use sorts to model domains and codomains
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Linear operator statements

“Statements”

•
∧
i Si = Ti → P = Q (Raab, Regensburger, Hossein Poor, ’19/’21)

• First-order logic with equality as only predicate (today)

“Linear operators”

preadd.
Semicategories

Abelian
categoriesR-ModR-Mat

R

Semicategory = Category − identity morphisms
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Signature

Var = {x1, x2, . . . } . . . variables

A signature is a tuple Σ = (O,C, F,σ) consisting of

• O. . . object symbols (u, v) ∈ O×O . . . sort

• C. . . constant symbols with 0u,v ∈ C for u, v ∈ O;
• F. . . function symbols with −, +, · ∈ F;
• σ. . . sort function assigning all symbols their sort
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Syntax

Terms of sort (u, v)

• variables x ∈ Var with σ(x) = (u, v)

• constants c ∈ C with σ(c) = (u, v)

• f(t1, . . . tn) with σ(ti) = (ui, vi) and

σ(f) = (u1, v1)× · · · × (un, vn)→ (u, v)

Formulas

• s ≈ t with terms s, t where σ(s) = σ(t)

• ¬ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ→ ψ)

• ∃ x : ϕ, ∀ x : ϕ
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Syntax

Fix σ(x) = (u, v), σ(y) = (u,w), σ(c) = (u,w)

x+ y

x+ y

(c+ y) · 0w,u term of sort (w,w)

0w,v · (c+ c) ground term of sort (u, v)

x ≈ yx ≈ y

∀x : x ≈ 0 · (c+ c) arithmetic sentence

(c 6≈ 0 ∧ c + (−c) ≈ 0) → −c 6≈ 0

arithmetic ground sentence
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Axioms of semicategories

Au,u ′,v,v ′ = {

∀x(v′,v),y(u
′,v′), z(u,u′) : x · (y · z) ≈ (x · y) · z,

∀x(u,v),y(u,v), z(u,v) : x+ (y+ z) ≈ (x+ y) + z,

∀x(u,v) : x+ 0u,v ≈ x,
∀x(u,v) : x+ (−x) ≈ 0u,v,

∀x(u,v),y(u,v) : x+ y ≈ y+ x,

∀x(v′,v),y(u,v′), z(u,v′) : x · (y+ z) ≈ x · y+ x · z,
∀x(v′,v),y(v

′,v), z(u,v′) : (x+ y) · z ≈ x · z+ y · z

}

Axioms A of semicategories are then

A =
⋃

u,u ′,v,v ′∈O
Au,u ′,v,v ′
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Semantics

Formulas are true or false w.r.t. interpretation I

Interpretations are as in classical FO logic, except that they respect
the sorts.

For example:

I(s ≈ t) = > iff I(s) = I(t) as elements in the domain

ϕ valid iff I(ϕ) = > for all I

Ψ � ϕ (sem. consequence) iff I(Ψ) = >⇒ I(ϕ) = > for all I

Universal truth of operator statement ≡ A � ϕ
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Formal computation

Goal Prove semantic consequence via syntactic operations

Classically using some deductive system (e.g., Sequent calculus,
Resolution, etc.)

Ψ ` ϕ (syn. consequence) iff ϕ can be derived from Ψ

syntactically

Theorem Ψ � ϕ iff Ψ ` ϕ

Correctness

Completeness

Part II Derive analogous statement for Ψ = A with polynomial rhs

9
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Expressing universal truth
by

polynomial ideal memberships



Interlude: Noncommutative polynomials

Noncommutative polynomials = elements in free algebra Z〈X〉

=
∑d
i=1 ci · xi,1 . . . xi,ki

For F ⊆ Z〈X〉,

(F) =
{∑

aifibi | ai,bi ∈ Z〈X〉, fi ∈ F
}

Ideal membership problem p
?
∈ (F) is semi-decidable

(e.g., using Gröbner bases)
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From formulas to polynomials

Goal Translate A � ϕ into polynomial predicate I(ϕ) (Idealisation)

Translating arithmetic ground terms is easy

a · (a+ 0) + (−b) + c · d  aa− b+ cd ∈ Z〈a,b, c,d〉

...but what about

∃x : a+ b ≈ x  ?

← Herbrand’s theorem

f(a,b) ≈ f(b,a)  ?

← Ackermann’s reduction

11
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Herbrand’s theorem

Goal Reduce validity of formula to validity of ground sentence
 eliminate quantifiers

Herbrand normal form : ∃x1 . . . xn : ϕ∗ with ϕ∗ quantifier-free

Herbrand expansion : H(ϕ) = { all ground instances of ϕ∗ }

Herbrand’s theorem Let ϕ be in Herbrand normal form. Then
ϕ is valid if and only if there exist ϕ1, . . . ,ϕk ∈ H(ϕ) such that
ϕ1 ∨ · · ·∨ϕk is valid.

Corollary A � ϕ iff A � ϕ1 ∨ · · ·∨ϕk.

12
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Herbrandisation

Goal Transform formula ϕ into Herbrand normal form

1 Bind any free variables by universal quantifier

2 Move all quantifiers to the front

3 Apply the following rules exhaustively

∀y : ψ  ψ[y 7→ c]

∃x1, . . . , xn∀y : ψ  ∃x1, . . . , xn : ψ[y 7→ f(x1, . . . , xn)]

where c, f are new with the correct sort

Proposition A � ϕ iff A � ϕH
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Ackermann’s reduction

Goal Remove function symbol f from quantifier-free formula ϕ

1 Flatten nested applications of f

2 Replace every instance f(t1, . . . , tn) by new constant cf,t1,...,tn . Denote
new formula by ϕflat.

3 For all cf,s1,...,sn and cf,t1,...,tn form functional consistency constraint

s1 ≈ t1 ∧ · · ·∧ sn ≈ tn → cf,s1,...,sn ≈ cf,t1,...,tn

4 ϕFC ← Conjunction of all functional consistency constraints

5 ϕAck ← (
ϕFC → ϕflat

)
Theorem ϕ valid iff ϕAck valid

Corollary If non-arithmetic function symbol is removed, then

A � ϕ iff A � ϕAck

14
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3 For all cf,s1,...,sn and cf,t1,...,tn form functional consistency constraint

s1 ≈ t1 ∧ · · ·∧ sn ≈ tn → cf,s1,...,sn ≈ cf,t1,...,tn

4 ϕFC ← Conjunction of all functional consistency constraints

5 ϕAck ← (
ϕFC → ϕflat

)
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Idealisation

Goal Translate A � ϕ into polynomial predicate I(ϕ)

Suffices to discuss arithmetic ground sentences

arb. formula Herbrand−−−−−→ ground sent. Ackermann−−−−−−→ arith. ground sent.

Every ϕ is logically equivalent to a formula of the form

CNF(ϕ) =
∧
i

(∨
j

si,j 6≈ ti,j ∨
∨
k

pi,k ≈ qi,k︸ ︷︷ ︸
clause

)
Idealisation

clause:

I(Ci) :≡ pi,k − qi,k ∈ (si,1 − ti,1, . . . , si,n − ti,n) for some k

arith. ground sentence: I(ϕ) :≡
∧

C clause
of CNF(ϕ)

I(C)
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Main result

Theorem Let ϕ be an arithmetic ground sentence. Then

A � ϕ iff I(ϕ) = >.

Proof:

“⇐”: Reduce to (Raab, Regensburger, Hossein Poor, ’19/’21)

“⇒”: Use A � ϕ iff A ` ϕ and show that sequent rules respect
idealisation.

Advantages

• Axioms A are treated implicitly.

• Proof is independent of sorts, and thus, holds in all settings.

• Exploit efficient polynomial routines.
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Semi-decision procedure

Input: signature Σ, formula ϕ
Output: > if and only if A � ϕ; otherwise infinite loop

1 ϕH ← Herband normal form of ϕ

2 ϕ1,ϕ2, · · ·← an enumeration of H(ϕH)

3 n← 1

4 ψn ← ∨n
i=1ϕi

5 ψAck
n ← remove all non-arithmetic function symbols from ψn using

Ackermann’s reduction.

6 If I(ψAck
n ) = >, return >. Otherwise, increase n by 1 and go to step 4.
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3 n← 1

4 ψn ← ∨n
i=1ϕi

5 ψAck
n ← remove all non-arithmetic function symbols from ψn using

Ackermann’s reduction.

6 For k← 1, . . . ,n
If I(ψAck

k ) = > can be verified with n operations, return >.

7 Increase n by 1 and go to step 4.
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Computational aspects

• Efficiency of the procedure ≈ good enumeration of H(ϕH)
◦ Expert knowledge
◦ “Polynomial unification”

• Avoid CNF blowup by incremental computation
I(γ) = ⊥

I(α1 ∨ γ) = > I(β1 ∨ γ) = ⊥

I(α1 ∨ α2 ∨ γ)

= >
I(α1 ∨ β2 ∨ γ)

= >
I(β1 ∨ α2 ∨ γ)

= >
I(β1 ∨ β2 ∨ γ)

= >

. . . . . . . . . . . . . . . . . . . . . . . .

• Treat simple subformulas separately

18



Applications

Used to automatically (im)prove statements in the field of

• generalized inverses
◦ Moore-Penrose inverses (K. Bernauer)
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Applications

(Extract from Handbook of Linear Algebra)
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Applications

(Milošević, ’20)
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• Homological algebra
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A B C D E

A ′ B ′ C ′ D ′ E ′

f g h j

f ′ g ′ h ′ j ′

α β γ δ ε
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Summary & Outlook

Summary

• Model operator statements via many-sorted logic

• Translate validity of operator statement into finitely many
polynomial ideal memberships

• Tools: Herbrand’s theorem + Ackermann’s reduction

Outlook

• Producing proofs

• (Better) heuristics for finding good instantiations

• More advanced computational techniques (DPLL-style,
techniques from SMT)

• Further applications
25


