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via
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Many-sorted first-order logic

First-order logic + sorts
Same expressiveness as unsorted FO logic
Computational advantages (sorts reduce # of expressions)

We use sorts to model domains and codomains
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Linear operator statements

“Statements’

e A;Si =T, — P = Q (Raab, Regensburger, Hossein Poor, '19/'21)
e First-order logic with equality as only predicate (today)

“Linear operators”

preadd.
Semicategories

Semicategory = Category — identity morphisms



Signature

Var = {xq,%2,...}...variables

A signature is a tuple £ = (O, C,F, o) consisting of

e O...object symbols (u,v) e O x O...sort
e C...constant symbols with 0y, € C for u,v € O;
e F...function symbols with —, +, - € F;

e 0...sort function assigning all symbols their sort



Syntax

Terms of sort (u,Vv)

e variables x € Var with o(x) = (u,v)
e constants ¢ € C with o(c) = (u,v)
e f(ty,...ty) with o(t;) = (ui,vi) and

o(f) = (w1, vi) X -+ X (Un,vn) = (u,v)



Syntax

Terms of sort (u,Vv)

e variables x € Var with o(x) = (u,v)
e constants ¢ € C with o(c) = (u,v)
o f(ty,...tn) with o(t;) = (w,v;) and
o(f) = (w1, v1) X -+ X (Un,vn) — (W,v)

Formulas

e s~ t with terms s, t where o(s) = o(t)

o~ (e AV), (p V), (¢ =)
e dx:,Vx: @
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Syntax

Fix o(x) = (u,v), o(y) = (u,w),
X ==y
(c+y) O term of sort (w,w)

Ow,v . (C + C)

o(c)

(u, w)
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Fix

ox) =(wv),  ofy) =(uw), o)

X ==y

(c+y) O term

Syntax

of sort (w,w)

Owy - (c+c) ground term of sort (u,Vv)

X%y
Vx:x=x0-(c+c)
(c %2 0Ac+ (—c¢)

arithmetic sentence

~ 0 — —c % 0

(u, w)



Fix

Syntax

ox) =(uw,v), oy =uw), ofc)=

X =y
(c+y) O term of sort (w,w)

Owy - (c+c) ground term of sort (u,Vv)

X =~ y
Vx:x~0-(c+c) arithmetic sentence

(c % 0Nc+(—cc) = 0 = —c % 0
arithmetic ground sentence

(u, w)



Axioms of semicategories

Au,u’,wv’ ={
wxlVVly e ey 2) & (xey) -,
wx (V) ywv) () Cox+(y+z) = (x+y) +z,
wx(w) X+ 0wy R X,
vx () ox+(—x) = Ou,v,
VX(HN)’y(UN) c ox+ y~y + X,
wx (V) v vy b2 Xy X 2,
wx (V) i) v (b y) e Xzt y 2
}

Axioms A of semicategories are then

A= U Au,u’,v,v/

u,u/,v,v'e0
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Semantics

Formulas are true or false w.r.t. interpretation J

Interpretations are as in classical FO logic, except that they respect
the sorts.

For example:

Js~t)=T iff JI(s) =7(t) as elements in the domain

@ valid iff J(@) =T forall J
Y E @ (sem. consequence) iff J(W)=T =IJ(@)=T forall J

Universal truth of operator statement = Ak @
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Formal computation

[€eFl] Prove semantic consequence via syntactic operations

Classically using some deductive system (e.g., Sequent calculus,
Resolution, etc.)

Y ¢ (syn. consequence) iff @ can be derived from ¥
syntactically

Correctness
N

YE @ iff Y@
~_

Completeness

5e1gMl) Derive analogous statement for ¥ = A with polynomial rhs



Expressing universal truth
by

polynomial ideal memberships
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Interlude: Noncommutative polynomials

Noncommutative polynomials = elements in free algebra Z(X)

= Z?:] Ci - Xi1... Xikq
For F C Z(X),

(F) = {Z aifibi | ai, by € Z(X), fi € F}

?
Ideal membership problem p € (F) is semi-decidable
(e.g., using Grdbner bases)

10
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From formulas to polynomials

Translate A F ¢ into polynomial predicate I(¢) (Idealisation)

Translating arithmetic ground terms is easy
a-(a+0)+(-b)+c-d ~ aa—b+cdeZab,c,d)
...but what about

Ix:a+brx ~ 7 « Herbrand's theorem

f(a,b) ~ f(b,a) ~s 2 « Ackermann’s reduction

11
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Herbrand’s theorem

Reduce validity of formula to validity of ground sentence
~> eliminate quantifiers

Herbrand normal form :  3x;...xn: @* with @* quantifier-free

Herbrand expansion : H(g) ={ all ground instances of ¢* }

B EN MRl Let @ be in Herbrand normal form. Then
@ is valid if and only if there exist @1,..., @x € H(@) such that

@1V -V @y is valid.

A iff  AF@V- Ve

12
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1 Bind any free variables by universal quantifier
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3 Apply the following rules exhaustively
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Herbrandisation

Transform formula ¢ into Herbrand normal form

1 Bind any free variables by universal quantifier
2 Move all quantifiers to the front

3 Apply the following rules exhaustively

Vy:p o~ ly e

g, x VYt e Txg, X s By o f(x,,

where ¢, f are new with the correct sort

Abg AR

3 Xn)]

13
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Ackermann’s reduction

Remove function symbol f from quantifier-free formula ¢

1 Flatten nested applications of f

2 Replace every instance f(ty,...,tn) by new constant c¢, .. +,. Denote

new formula by @ft.

3 Forall cts,,...;sn and cey, ... t, form functional consistency constraint

n

.....

S1 = t1 /\ e /\Sn ~ tn — Cf,s1 sy ST ~ Cf,t1 seeytn

4 ¢ « Conjunction of all functional consistency constraints

[ (pAck — ((PFC N (pﬂat)

@ valid iff @"k valid
@JIGET  If non-arithmetic function symbol is removed, then

AEq@ iff  AE @k

14
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Every @ is logically equivalent to a formula of the form

CNF(¢) = /\ (\/Si,j #tij \/\/pi,k ~ qi,k>
j K

1

Idealisation clause

clause:

I(C;) = Pix —dix € (51’1 —ti1,...,8in — ti,n) for some k
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Idealisation

Translate A F ¢ into polynomial predicate I(¢)

Suffices to discuss arithmetic ground sentences

Herbrand Ackermann .
arb. formula ———— ground sent. ————— arith. ground sent.

Every @ is logically equivalent to a formula of the form

CNF(¢) = /\ (\/Si,j #tij \/\/pi,k ~ qi,k>
j K

1

Idealisation clause

clause:
I(Ci) = Ppik—9ix € (si,1 —ti1,...,Sin —tin) for some k
arith. ground sentence: I(¢@) := /\ I(C)
C clause

of CNF(¢)

15



Main result

Let @ be an arithmetic ground sentence. Then

AEe@ iff I()=T.

16



Main result

Let @ be an arithmetic ground sentence. Then

AEe@ iff I()=T.
Proof:

“&" Reduce to (Raab, Regensburger, Hossein Poor, '19/'21)

16



Main result

Let @ be an arithmetic ground sentence. Then
AE @ iff I()=T.

Proof:

“&" Reduce to (Raab, Regensburger, Hossein Poor, '19/'21)

“=" Use A F @ iff A @ and show that sequent rules respect
idealisation.

16



Main result

Let @ be an arithmetic ground sentence. Then

AE @ iff I()=T.
Proof:
“&" Reduce to (Raab, Regensburger, Hossein Poor, '19/'21)

“=" Use A F @ iff A @ and show that sequent rules respect
idealisation.

e Axioms A are treated implicitly.

e Proof is independent of sorts, and thus, holds in all settings.

e Exploit efficient polynomial routines.

16



Semi-decision procedure

Input: signature X, formula ¢
Output: T if and only if A E @; otherwise infinite loop

1 @' « Herband normal form of ¢

2 @1,@2, - < an enumeration of H(¢M)
3ne1

4 P, — \/?:1 Pi

5 1A% « remove all non-arithmetic function symbols from 1, using
Ackermann's reduction.

6 If I(PA*) = T, return T. Otherwise, increase n by 1 and go to step 4.

17



Semi-decision procedure

Input: signature X, formula ¢

Output: T if and only if A E @; otherwise infinite loop

1

p
K}
4
5

@' «— Herband normal form of ¢

@1, @2, - an enumeration of H(p™)
n«1
wn — \/?:1 [OFF

A k . . . .
P «— remove all non-arithmetic function symbols from ¥, using
Ackermann's reduction.

Fork«1,...,n
If I(YR*) = T can be verified with n operations, return T.
Increase n by 1 and go to step 4.

17



Computational aspects

e Efficiency of the procedure ~ good enumeration of H(¢M)

o Expert knowledge
o “Polynomial unification”

e Avoid CNF blowup by incremental computation

Iv)= 1
lgVy)=T I(B1Vy) =1
g VearVy)  I(gVBR2Vy) I(B1VeaVy)  1(B1VR2VYy)
. T -7 =T
7 N\ < N\ 7 N\ 7 N\

e Treat simple subformulas separately

18



Applications

Used to automatically (im)prove statements in the field of

e generalized inverses

o Moore-Penrose inverses (K. Bernauer)
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Applications

(Extract from Handbook of Linear Algebra)

5.7 Pseudo-Inverse

Definitions:

A Moore-Penrose pseudo-inverse of a matrix A € C™*™ is a matrix A" € C"*™ that satisfies

the following four Penrose conditions:

AATA = A; ATAAT = AT, (aaly = a4l (ata)y = A4

Facts:

All the following facts except those with a specific reference can be found in [Gra83, pp.
105-141] or [RM71, pp. 44-67).

. Every A € C™*" has a unique pseudo-inverse Al
. If Ae R™*" then Al is real.
3. If A € C™*™ of rank r has a full rank decomposition A = BC, where B € C"™*" and
C € C*", then A! can be evaluated using A" = C*(B*AC*)"'B*.
. [LH95, p. 38] If A € C™*™ of rank r < min{m,n} has an SVD A = ULV™*, then its
pseudo-inverse is At = VEIU*, where

ot = diag(1/0y,...,1/0;,0 0) € R™*™,

=AY, Aht=4
. If A is a nonsingular square matrix, then A' = A
. If U has orthonormal columns or orthonormal rows, then Ut = U*.
3. If A= A* and A= A?, then A" = A.
. At = A* if and only if A*A is idempotent.
5. If A is normal and k is a positive integer, then AA" = ATA and (A%)! = (AT)k,
5. If U € C™*" is of rank n and satisfies U = U*, then U has orthonormal columns.
L If U € C™ ™ and V € C"*™ are unitary matrices, then (UAV)! = v*ATU*.
. A= (47 A)T A" = A*(AA*)!. In particular,
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Applications

Used to automatically (im)prove statements in the field of

e Generalized inverses

o Moore-Penrose inverses (K. Bernauer)
o Reverse order law (with D. Cvetkovi¢-lli¢ and J. Milosevic)

e Solvability of systems of equations

21



Applications

(Milogevic,

Theorem 2.2 Let ag by, ¢; be elements of a ring R with o unit such that a;b; are regular and
agag oiby by = e for ¢ = 1,3, Additionally, let s = azly),j = agly,,m = jlg,t =y, bp, b = vy ba,n =
ek, p = asl, =rhba and s, j,m, Lk, n, rmp, gln, Troprmd, gleln € R™. The following are equivalent:

(i) The system of equations (11) is consistent.

(if) The conditions

Ts(cz — azay erby be)ly = 0
Trppmd (PrppTmd) Frpprmela(gln) " gln = vy prmeln
i el (gleln) " gleln = rmelils

are satisfied, where e = ¢3 — 8~ et ™k — agay recat Tk — jaenliby by — (a3 — FsTaz)ay erby (b —
bat ™ k).

(iii) The conditions

7a(e2 — agay erbTbo)ly =0

Tj(cs — agay crby b3)le =0

tmles — js7ealiby by — (a3 — js"az)ay erby bs)lplnlyns, =0
i raptm (€3 — agag recot ™k — azay ey by (by — bat "k} = 0

TropPmlcs — §87eat ™k — azay reeat™k — js™calihy by

—(ag — js"az)ay erby (ba — bot k) lnlg, = 0.

are satisfied.




In that ease the general solution of (11) is given by (34), where

21 =erf + g reeat T+ arlay (Fmp) T rmle — G0, pTmd) T e ptme
— dlreprmgd " usbT (L= bat s Wrgni,9 — (1 — §{Prpprmd) " Froptm)eleln(gliln) "g)lnk ™t
+ aray Lt — alay (Pmp) " rmp(l — lays”an)ag w "kl k™,
(erby (b — bat™k) + g™ recat ™ k) + a3 can™n+ a1(1 — a3 rrjas)al usn"n
Aoy (Fmp) " Pmle — J(Prnptmd ) Praptme — ey w8 usby (1 — bt 7r Irgna,q
— (1 = jlreprmd) " rrnprm)elilaalidn) " glk Tkl + aray luit” kL,
— @1lay (Pmp) rmp(l — loy 8™ ag)ay wnt kl,,
ge1 + 88 cali [T+ s(re,ptmd ) Praptmeln(gln) "o, by
prmid T+ (1= 37PN pPond) ") Tl (Gl ) 70,01
+ 85 u-uf[ll by — 8§ Pl raiS” uab] (1 — bt vy Jalila(glada) "o,
— 8P pmd) Trptmds usby (1 — bat " ra Jalal(gln) reab,
gerby (ba — bat Tk, + 887 ealeby bl + (997 rac2 + 857 e2)t Tkl + 1eazaz eann
+ reaz(l — a3 rmrjas)ay uan"n + 8§ rp (s azay e3 + (sTas(l — a3 rprias) — i azayugln e
+8(1 = i )8 Tugn TR 8, gl ) T meln () T ra,bi by (By — DptTR)L,
+ 8l prnid T+ (L= 07 md) (et ) Trmp)rmeliln(gliln) "o, biby (bs — bot k)1,
+ 857 ugr by (ba — bot " k)l
— 8§ Fumils, by (1 = bat vy, alila(alydn) o babi (bs — bat ),
— &Py gt ) T ptmd s T usby (1 — bat Try, Jalu(gln) "robaby (bs — bat ™k ).,
T ((ag — Fsag)al ey + ds~ealy f7) + mam~egbl by + manTusb] (1 — balid b7 )by
+ T (Trpfmd) TrpTmeln(@ln) royby + rmfle, e i T rmelkdn(@leln) " by + TindsTuarsby by

= Prdle g prmg® wsby (1 — bat ™1y, )qleln (aleln) ro,br

— P (Tr pPmd) T ptmis uab] (1 — bot " ry Yala(gln) " ry,bn,
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Applications

Used to automatically (im)prove statements in the field of

e Generalized inverses

o Moore-Penrose inverses (K. Bernauer)
o Reverse order law (with D. Cvetkovi¢-1li¢ and J. Milosevi¢)

e Solvability of systems of equations

e Homological algebra
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Summary & Outlook

Summary

e Model operator statements via many-sorted logic

e Translate validity of operator statement into finitely many

polynomial ideal memberships

e Tools: Herbrand's theorem + Ackermann’s reduction

Outlook

Producing proofs

(Better) heuristics for finding good instantiations

More advanced computational techniques (DPLL-style,
techniques from SMT)

Further applications
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