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operators

 - additional material
This Mathematica notebook accompanies the paper “Computing elements of certain form in ideals 

to prove properties of operators”  by Clemens Hofstadler, Clemens G. Raab, and Georg Regens-
burger. In this notebook, we provide automated proofs of the operator statements discussed in the 

paper. 

In order to run this notebook, make sure that the OperatorGB package is in the same folder as this 

notebook. Then, you can run the following commands.

������� (* Loading the package *)

SetDirectory[NotebookDirectory[]];
<< OperatorGB.m

Package OperatorGB version 1.4.2
Copyright 2019, Institute of Mathematics, University of Kassel
by Clemens Hofstadler, clemens.hofstadler@mathematik.uni-kassel.de

Theorem 1.1

Let A : ℋ4 → ℋ2 , B : ℋ1 → ℋ3 , C : ℋ1 → ℋ2  be bounded linear operators on complex Hilbert 
spaces. There exists a bounded linear operator X : ℋ3 → ℋ4 such that A XB = C if and only if 
ℛ(C) ⊆ ℛ(A) and ℛA† C* ⊆ ℛ(B*).

The quiver Q encoding the domains and codomains of the operators involved consists of the four 
vertices ℋ1,ℋ2,ℋ3,ℋ4 and a total of 12 edges representing the 12 indeterminates. Note that we 

also have to introduce variables for A†and all adjoint operators as we also have to encode the 

properties of these operators.



������� Q = {a, H4, H2}, {adj[a], H2, H4}, a†, H2, H4, adja†, H4, H2,

{b, H1, H3}, {adj[b], H3, H1}, {c, H1, H2}, {adj[c], H2, H1},

{y, H1, H4}, {adj[y], H4, H1}, {z, H4, H3}, {adj[z], H3, H4};

PlotQuiver[
Q]
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The following command defines the ring of noncommutative polynomials in the variables given by 

the labels of the quiver Qover the coefficient field ℚ.

������� SetUpRing[Q[[All, 1]]]

Sufficiency of the range conditions

The range inclusions appearing in the theorem above can be translated into the existence of opera-
tors Y and Z such that C = A Y and A† C* = B* Z. Hence, we can translate the range inclusions into 

the following set of noncommutative polynomials.

������� F = c - a ** y, adja† ** c - adj[b] ** z;

We have to add to this set of assumptions the polynomials representing the properties of A†, and all 
the respective adjoint statements.

������� F = Join[F, Pinv[a]] // AddAdj;

To find a solution of the equation A XB = C, we intersect the two-sided ideal generated by F repre-
senting our assumptions with the right ideal Jρ generated by a and c and check whether a Gröbner 
basis of this intersection contains an element of the form a x b - c for some x. 

������� Jρ = {a, c};
int = IntersectRightIdeal[F, Jρ, Q, MaxDeg → 2];
solution = Cases[int, -c + a ** __ ** b]

�������� {-c + a ** adj[z] ** b}

We could indeed find a polynomial of the desired form. To finish the proof, we check that it is 

compatible with Q.

�������� CompatibleQ[-c + a ** adj[z] ** b, Q]

�������� True

Necessity of the range conditions

For this implication, our assumptions consist of the existence of a solution X to A XB = C, the 
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defining identities of A†, and all the respective adjoint statements. This gives rise to the following 

set of polynomials.

�������� F = Join[{a ** x ** b - c}, Pinv[a]] // AddAdj;

For this part of the proof, we have to extend the quiver in order to also include the variable x and its 

adjoint x*.

�������� Q = Join[Q, {{x, H3, H4}, {adj[x], H4, H3}}];

To prove the range inclusions, we have to find compatible polynomials in the ideal (F) representing 

the identities C = A Y and A† C* = B* Z  where Y, Z are still unknown. We search for such elements 

by intersecting (F) with the right ideal Jρ generated by a and c, respectively with the right ideal 
generated by a† c*and b*.

�������� Jρ = {a, c};
int1 = IntersectRightIdeal[F, Jρ, Q, MaxDeg → 2];
rangeInclusion1 = Cases[int1, -c + a ** __]

Jρ = adja† ** c, adj[b];

int2 = IntersectRightIdeal[F, Jρ, Q, MaxDeg → 2];

rangeInclusion2 = Casesint2, -adja† ** c + adj[b] ** __

�������� -c + a ** x ** b, -c + a ** a† ** c

�������� -adj[c] ** adja† + adj[b] ** adj[x] ** adj[a] ** adja†

We could indeed find polynomials of the desired form. To finish the proof, we check that they are 

compatible with Q.

�������� CompatibleQ[#, Q] & /@ Join[rangeInclusion1, rangeInclusion2]

�������� {True, True, True}

Theorem 1.2

Let A : ℋ3 → ℋ2 , B : ℋ1 → ℋ3 , C : ℋ1 → ℋ2  be bounded linear operators on complex Hilbert 
spaces such that ℛ(B) ⊆ ℛ(A*) . If there exists a bounded, positive linear operator 
X : ℋ3 → ℋ3 such that A XB = C, then  B* A† C is positive.

Here, our assumptions consist of the existence of a positive solution X to A XB = C and of the range 

inclusion ℛ(B) ⊆ ℛ(A*),  which we encode by the identities A Y* Y B = C and B = A* Z, respectively, 
with new operators Y, Z.
Finally, we also have to add the defining identities of A† and all the respective adjoint statements. 
This gives rise to the following set of polynomials.

�������� F = Join[{a ** adj[y] ** y ** b - c, b - adj[a] ** z}, Pinv[a]] // AddAdj;

To use the procedure for computing the homogeneous part of an ideal, we have to add the identity 

v - b* a† c to our assumptions.

�������� F = JoinF, v - adj[b] ** a† ** c;

The quiver Q encoding the domains and codomains of the operators involved consists of the three 

vertices ℋ1,ℋ2,ℋ3 and a total of 12 edges representing the 12 indeterminates.
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�������� Q = {a, H3, H2}, {adj[a], H2, H3}, a†, H2, H3, adja†, H3, H2,

{b, H1, H3}, {adj[b], H3, H1}, {c, H1, H2}, {adj[c], H2, H1},

{y, H3, H3}, {adj[y], H3, H3}, {z, H1, H2}, {adj[z], H2, H1};

Next, we define the ring of noncommutative polynomials in the variables given by the labels of the 

quiver Qover the coefficient field ℚ and specify the degree matrix A w.r.t. which the homogeneous 

part will be computed.

�������� SetUpRing[Join[Q[[All, 1]], {v}]]
(* Setting up the degree matrix *)

A = Table[0, {i, WordOrder // Length}, {j, 6}];
A[[1, 1]] = 1; A[[2, 1]] = -1;
A[[3, 2]] = 1; A[[4, 2]] = -1;
A[[5, 3]] = 1; A[[6, 3]] = -1;
A[[7, 4]] = 1; A[[8, 4]] = -1;
A[[9, 5]] = 1; A[[10, 5]] = -1;
A[[11, 6]] = 1;
A[[12, 6]] = -1;

Before we proceed to compute the homogeneous part of (F), we first compute the reduced Gröbner 
basis of this ideal. This step is not necessary for the correctness of the procedure but it speeds up 

the computation. We then use this Gröbner basis, the degree matrix A and a termination criterion as 

input to enumerate a Gröbner basis of the homogeneous part of (F).

�������� G = Groebner[cofactors, F];
G = Interreduce[G][[1]];

(* Computing homAI *)

VerboseOperatorGB = 1;
hom = Hom[cofactors, G, 2, A];

G has 701 elements in the beginning.

Starting iteration 1...

8831 ambiguities in total

Iteration 1 finished. G has now 1450 elements

Starting iteration 2...

41555 ambiguities in total

Iteration 2 finished. G has now 11478 elements

Rewriting the cofactors...

We can see below that this Gröbner basis contains a polynomial of the desired form. Finally, we 

have to check that this polynomial (where the auxiliary variable v has been replaced by b* a† c) is 

compatible with the quiver Q.
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�������� hom[[27]]

CompatibleQadj[b] ** a† ** c - adj[b] ** adj[y] ** y ** b, Q

�������� -v + adj[b] ** adj[y] ** y ** b

�������� True

Additional material: proofs of [1] that can be computer-supported now

In this section, we give more details on the very last point made in Section 3 of the paper. In particu-
lar, we discuss how ideal intersections can be used to support the proofs done in [1]. To exemplify 

this, we look at the implication (i) ⇒ (v) from the following theorem [1, Theorem 2.1].

Let A, B, C be complex matrices with Moore-Penrose inverses A†, B†, C† such that M = ABC is 

defined. Let P = A† ABC C† and Q = C C† B† A† A. Then, the following are equivalent:
(i) M† = C† B† A†;
(ii) Q ∈ P {1, 2} and both of A* A PQ and QPCC* are Hermitian;
(iii) Q ∈ P {1, 2} and both of A* A PQ and QPCC* are EP;
(iv) Q ∈ P {1}, ℛ(A* A P) =ℛ(Q*), and ℛ(C C* P*) =ℛ(Q);
(v) PQ = (PQ)2,ℛ(A* A P) =ℛ(Q*), and ℛ(C C* P*) =ℛ(Q);

[1] Cvetković-Ilić, D. S., Hofstadler, C., Hossein Poor, J., Milošević, J.,  Raab, C. G., and Regensburger, 
G., Algebraic proof methods for identities of matrices and operators: improvements of Hartwig’s triple 

reverse order law. Appl. Math. Comput. 409, Article 126357, 10 pages, 2021.

The assumptions of the implication (i) ⇒ (v) can be encoded by the following set of polynomials.

�������� F = JoinPinv[a], Pinv[b], Pinv[c], Pinva ** b ** c, c† ** b† ** a† // AddAdj;

The following quiver encodes the domains and codomains of the theorem.

�������� QQ = {a, H3, H4}, {adj[a], H4, H3}, a†, H4, H3, adja†, H3, H4,

{b, H2, H3}, {adj[b], H3, H2}, b†, H3, H2, adjb†, H2, H3,

{c, H1, H2}, {adj[c], H2, H1}, c†, H2, H1, adjc†, H1, H2;

�������� SetUpRing[QQ[[All, 1]]]

Proving the first assertion PQ = (PQ)2 comes down to simply verifying ideal membership of an 

explicitly given polynomial. This could also be done automatically before. The following command 

Certify automatically applies the framework for algebraic proofs of operator statements, and in this 

way, automatically proves this assertion.

�������� p = a† ** a ** b ** c ** c†;
q = c ** c† ** b† ** a† ** a;
VerboseOperatorGB = 0;
certificate = Certify[F, p ** q ** p ** q - p ** q, QQ];

Done! All claims were successfully reduced to 0.

The two claimed range inclusions  ℛ(A* A P) =ℛ(Q*), and ℛ(C C* P*) =ℛ(Q) can be translated into 

the existence of operators U1, U2, V1, V2 such that 
A* A P = Q* V1, A* A P V2 =Q*, C C* P* = QU1,
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C C* P* U2 = Q.
In [1], the following was noted: “By inspecting the proof of Theorem 2.3 one can see that these can be 

chosen as
V1 = B* A* ABCC† , V2 = B† A† A†  * B† 

*
C† 

* C*, U1 = BCC* B* A*A†  *,
U2 = B† 

*
C† 

* C† B† A† A.”

Now, using the methods for intersecting ideals, we can find the polynomials that represent these 

operators automatically.
To this end, we intersect the two-sided ideal (F) generated by our assumptions F, with the right 
ideal generated by a* a p and q* to obtain V1 and V2, respectively with the right ideal generated by 

c c* p* and q to obtain U1 and U2.

�������� (* find V1 *)

SetUpRing[QQ[[All, 1]] // Reverse];
Jρ = {adj[a] ** a ** p, adj[q]};
R1 = IntersectRightIdeal[F, Jρ, QQ, MaxDeg → 2];
R1 = Cases[R1, -adj[a] ** a ** p + adj[q] ** ___][[1]];
(* find V2 *)

SetUpRing[QQ[[All, 1]]];
R2 = IntersectRightIdeal[F, Jρ, QQ, MaxDeg → 2];
R2 = Cases[R2, -adj[q] + adj[a] ** a ** p ** ___][[1]];
(* find U1 *)

SetUpRing[QQ[[All, 1]] // Reverse];
Jρ = {c ** adj[c] ** adj[p], q};
R3 = IntersectRightIdeal[F, Jρ, QQ, MaxDeg → 2];
R3 = Cases[R3, -c ** adj[c] ** adj[p] + q ** ___][[1]];
(* find U2 *)

SetUpRing[QQ[[All, 1]]];
R4 = IntersectRightIdeal[F, Jρ, QQ, MaxDeg → 2];
R4 = Cases[R4, -q + c ** adj[c] ** adj[p] ** ___][[1]];

In the following, we pretty-print the found polynomials. One can observe that these polynomials 

lead to the same U1, U2, V1, V2 that were also used in [1].

�������� R1 /. {p → "p", q → "q", adj[p] → adj["p"], adj[q] → adj["q"]}
R2 /. {p → "p", q → "q", adj[p] → adj["p"], adj[q] → adj["q"]}
R3 /. {p → "p", q → "q", adj[p] → adj["p"], adj[q] → adj["q"]}
R4 /. {p → "p", q → "q", adj[p] → adj["p"], adj[q] → adj["q"]}

�������� -adj[a] ** a ** p + adj[q] ** adj[b] ** adj[a] ** a ** b ** c ** c†

�������� -adj[q] + adj[a] ** a ** p ** b† ** a† ** adja† ** adjb† ** adjc† ** adj[c]

�������� -c ** adj[c] ** adj[p] + q ** b ** c ** adj[c] ** adj[b] ** adj[a] ** adja†

�������� -q + c ** adj[c] ** adj[p] ** adjb† ** adjc† ** c† ** b† ** a† ** a

To finish the proof, we check that these polynomials are indeed compatible with the quiver.

�������� CompatibleQ[#, QQ] & /@ {R1, R2, R3, R4}

�������� {True, True, True, True}
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