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Abstract

The extension of propositional logic with quantifiers leads to the logic of quantified boolean
formulas (QBF). From a theoretical point of view, the decision problem of QBF, called
QSAT, is PSPACE-complete. Nevertheless, QBFs have been used successfully to encode and
solve problems coming from several different fields. To be able to solve larger and more
complex problem instances, a lot of effort was put into the development of efficient solvers.
A recent trend is to improve QBF solvers by (deep) machine learning. One such approach,
which was presented by Xu and Lieberherr, uses the famous AlphaZero framework to solve
QSAT problems.

AlphaZero is an algorithm that combines symbolic reasoning techniques in form of a
Monte Carlo tree search (MCTS) with novel deep reinforcement learning techniques, called
self-play reinforcement learning, to learn fully-observable, symmetric 2-player games. It has
proven to be powerful by beating the best human players and computer programs in the
games of chess, shogi and Go.

The key to using AlphaZero for QSAT is to consider QBF solving as a 2-player game
where one player tries to make the formula true by assigning variables to truth values while
the other player in the same way tries to make the formula false. The main idea is then to
use the AlphaZero framework to learn two (perfect) players for this game and to use these
(perfect) players to determine the truth value of QBFs.

In this thesis, we reproduce and analyze the results communicated by Xu and Lieberherr.
In particular, we train two AlphaZero players for the game of QBF solving and compare them
to several different variants of a standard MCTS and to a state-of-the-art QBF solver. We
describe how to adapt the standard AlphaZero algorithm to the task of QBF solving. Finally,
we also discuss how MCTS can be used as a preprocessing tool before applying a standard
QBF solver.
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Zusammenfassung

Die Erweiterung der Aussagenlogik mit Quantoren führt zur Logik der quantifizierten
booleschen Formeln (QBF). Aus theoretischer Sicht ist das Entscheidungsproblem für QBF,
auch QSAT genannt, ein PSPACE-vollständiges Problem. Nichtsdestotrotz konnten QBFs
erfolgreich verwendet werden um Probleme aus verschiedenen Bereichen zu kodieren und
zu lösen. Um immer größere und komplexere Probleme lösen zu können, wurde in den
letzten Jahren viel Aufwand betrieben, um die Entwicklung effizienter Lösungsverfahren
voranzutreiben. Ein neuer Trend ist hierbei die Verfahren mit Hilfe von tiefem maschinellen
Lernen zu verbessern. Vor Kurzem wurde von Xu und Lieberherr solch ein Ansatz vorgestellt,
welcher das berühmte AlphaZero Modell nutzt um QSAT-Probleme zu lösen.

AlphaZero ist ein Algorithmus, der symbolische Schlusstechniken in Form einer Monte
Carlo Baumsuche (MCTS) mit neuen Techniken des bestärkenden Lernens, auch Selbst-Spiel-
Lernen genannt, verbindet, um vollständig beobachtbare, symmetrische 2-Spieler Spiele zu
lernen. AlphaZero konnte seine Stärke bereits beweisen, indem es die besten menschlichen
Spieler sowie Computerprogramme in den Spielen Schach, Shogi und Go schlug.

Der Schlüssel um AlphaZero für QSAT verwenden zu können, ist das Lösen von QBFs
als 2-Spieler Spiel zu betrachten. In diesem Spiel versucht ein Spieler die Formel wahr zu
machen, indem er den Variablen Wahrheitswerte zuordnet, während der zweite Spieler auf
die gleiche Weise versucht die Formel falsch zu machen. Die Idee ist dann den AlphaZero
Algorithmus zu verwenden um zwei (perfekte) Spieler für dieses Spiel zu trainieren und diese
(perfekten) Spieler im Folgenden zu nutzen, um den Wahrheitswert von QBFs zu bestimmen.

In dieser Arbeit werden die Ergebnisse, die von Xu und Lieberherr kommuniziert wur-
den, reproduziert und analysiert. Genauer gesagt werden zwei AlphaZero Spieler für das
QSAT-Spiel trainiert und dann mit mehreren Varianten einer klassischen MCTS sowie mit
moderner QBF-Lösungssoftware verglichen. Bevor diese Experimente beschrieben werden,
werden die Änderungen beschrieben, die nötig sind, um AlphaZero an die Aufgabe des
QBF-Lösens anzupassen. Abschließend wird auch eine Methode vorgestellt, wie MCTS als
Vorbearbeitungsschritt genutzt werden kann, bevor ein klassisches QBF-Lösungsverfahren
angewandt wird.
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Chapter 1

Introduction

In the last 50 years, the formalism of propositional logic has sparked more and more (the-
oretical) interest. The satisfiability problem of propositional logic (SAT) is the problem of
deciding for a given formula in propositional logic whether there exists an assignment of
variables to the truth values true and false such that the formula evaluates to true. This
problem was the first one to be proven NP-complete [Coo71], showing that there does not
exist a polynomial-time algorithm to solve SAT (assuming that P ̸= NP). Despite the theo-
retical exponential complexity of SAT, impressive progress in this field has enabled modern
SAT solvers to nevertheless efficiently tackle many problems coming from real-world appli-
cations.

Problems whose complexity is beyond NP require more powerful formalisms that play
a similar role as SAT plays for solving problems in NP. One such formalism is the logic of
quantified boolean formulas (QBF), which can be considered as an extension of propositional
logic with existential (∃) and universal (∀) quantifiers. While the addition of these quantifiers
does not add expressiveness, it allows for more compact encodings than SAT. The decision
problem of QBF, often called QSAT, is the prototypical example of a PSPACE-complete
problem [MS73]. This complexity class contains many interesting reasoning problems of
practical interest, which can all be encoded in terms of QBF. For example, QBF is used suc-
cessfully to solve problems coming from formal verification, planning, and function synthesis.
We refer to the recent survey [SBPS19] for further information on applications of QBF.

To be able to solve larger and more complex problem instances, a lot of effort was put into
the development of efficient QBF solvers in the last years with annual competitions to objec-
tively evaluate the state of the art (see e.g. [PS19] for competition reports of 2016 and 2017).
Recently, many attempts were made to improve the process of QBF (and SAT) solving by
machine learning. For example, the QBF solver QFUN [Jan18] is based on counterexample
guided abstraction refinement extended with machine learning. QFUN progressively solves
a QBF by learning “good” assignments of the variables using a decision tree classifier. Alter-
natively, the SAT solver NeuroSAT [SLB+18] applies graph neural networks [LTBZ15] and
single-bit supervised learning to solve SAT problems. In this solver, boolean formulas are
encoded as graphs which form the input of a specially designed graph neural network. This
network then outputs a single bit representing the truth value of the input SAT problem.

1



Recently, also the algorithm applied by the famous AlphaZero framework [SHS+18] was used
to solve QSAT instances [XL21].

AlphaZero is an algorithm that has proven to be powerful by beating the best human play-
ers and computer programs in the the games of chess, shogi and Go. It combines a classical
Monte Carlo tree search (MCTS) (see [BPW+12] for a recent survey) with newly developed
deep reinforcement learning techniques, called self-play reinforcement learning [SSS+17]. Al-
phaZero is the successor of AlphaGo [SHM+16], the first computer program to beat a human
professional in the game of Go. In contrast to its predecessor, which was developed purely for
the game of Go, AlphaZero is a more general framework able to learn any fully-observable,
symmetric 2-player game. One of the remarkable aspects of AlphaZero is that it does this
without any human knowledge except the rules of the game (tabula rasa learning). It uses
a MCTS guided by a neural network for move selection and learns, starting as a completely
random player, by playing against itself (self-play).

In [XL21], QBF solving is considered as a 2-player game where one player tries to make
the formula true by assigning variables to truth values while the other player in the same
way tries to make the formula false. The main idea is then to use the AlphaZero framework
(in [XL21] also called neural MCTS) to learn two (perfect) players for this game and to use
these (perfect) players to determine the truth value of QBFs. It has to be noted that, in
contrast to standard QBF solvers, the results produced by this approach are just predictions
and not provably correct. Nevertheless, the authors report that their approach works well
empirically, at least for problems within a limited size.

In this thesis, we reproduce and analyze the results communicated in [XL21]. In partic-
ular, we start from an open source implementation1 of AlphaZero and adapt it so that it
can be used for QBF solving. Then we use our AlphaZero adaptation to train two players
on the game of QBF solving using randomly generated QBFs as training data. We evaluate
our players on an independent test set and compare it to the state-of-the-art QBF solver
DepQBF [LB10]. Additionally, we compare this AlphaZero approach to several different
variants of a standard MCTS. Finally, we also show how MCTS can be used a preprocessing
tool before applying a standard QBF solver. Our implementations together with all files
needed to reproduce our experiments are available at

https://github.com/ClemensHofstadler/MCTS4QBF.

The remainder of this work is structured as follows. To keep this thesis self-contained,
we first recall the the syntax and semantics of QBF as an extension of propositional logic
in Chapter 2. Furthermore, we also give a brief summary of the most common solving ap-
proaches for QSAT. Following upon that, we discuss the AlphaZero framework in Chapter 3.
In particular, we give a brief historic overview of the development of AlphaZero and on how it
fits into this field of artificial intelligence that deals with teaching computers to play (board)
games on a superhuman level. Then, after presenting the classical AlphaZero framework as
introduced in [SHS+18], we discuss the relevant changes needed to adapt the algorithm for
our problem of QSAT in Chapter 4. Finally, we present our experimental results. Based
on the insights gained from these experiments, we describe a slightly different approach to

1available at https://github.com/suragnair/alpha-zero-general
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QSAT in Chapter 5. Here, we use MCTS as a preprocessing tool to simplify QBFs before giv-
ing them as input to a standard QBF solver. We report on some experiments we conducted
and on possible future work.
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Chapter 2

Quantified Boolean Formulas

In this chapter, we recall the syntax and semantics of quantified boolean formulas (QBF).
This is done in Section 2.1 and Section 2.2. Note that, as we introduce QBF as an extension of
propositional logic, we first define the syntax of the latter. For a more extensive introduction
of propositional logic and QBF, we refer to [BL99] and [BB09] respectively, which were
also our main references for this chapter. Additionally, in Section 2.3, we present the two
main approaches to QSAT that modern solvers implement, namely backtracking search and
variable expansion. To end this chapter, we also discuss how to consider QBF solving as a
2-player game. This point of view will be of particular relevance for the forthcoming chapters.

2.1 Syntax
The syntax of a logic specifies how formulas can be structured. Only formulas which comply
with the syntactic rules are part of the language of the logic. In this section, we define the
syntax of QBF. To this end, we first recall the language of propositional logic.

2.1.1 Propositional Logic

The objects that we are dealing with in the language of propositional logic are called propo-
sitional formulas. The basic building blocks of these propositional formulas are atomic
propositions (also called variables), boolean connectives and parentheses as well as the truth
constants ⊤,⊥. The variables are taken from a countably infinite set P = {x1, x2, x3, . . . }.
They represent propositions which can either be true or false. Truth constants represent
propositions which are always true (⊤) or always false (⊥). Finally, the boolean connectives
negation ¬, conjunction ∧ and disjunction ∨ together with parentheses ),( allow to form
more complex expressions from simpler ones. More formally, we have the following recursive
definition of the syntax of propositional logic.

Definition 2.1. Let P be a countably infinite set of variables. The language of propositional
logic L is the smallest set such that

1. ⊤,⊥ ∈ L;
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2. P ⊆ L;

3. if ϕ ∈ L, then (¬ϕ) ∈ L;

4. if ϕ, ψ ∈ L, then (ϕ ◦ ψ) ∈ L, where ◦ ∈ {∧,∨};

We will typically denote propositional variables by x1, x2, x3, . . . . However, in cases
where only a few variables are needed, we might switch to denoting them just by lowercase
letters a, b, c, . . . , x, y, z. This avoids the usage of too many subscripts, and consequently,
makes the formulas easier to read. Furthermore, writing formulas strictly according to the
syntax introduced above will become cumbersome because of many parentheses. Therefore,
we agree upon the notational convention to drop the outermost parentheses and we assume
the following precedence of the logical connectives: ¬, ∧, ∨. However, for better readability,
we might still sometimes keep some of the parentheses.

Example 2.2. Using the notational conventions from above, we write x∧¬y ∨ z instead of
((x ∧ (¬y)) ∨ z).

Apart from the boolean connectives introduced above, there exist further well-known
operators such as implication →, equivalence ↔ and exclusive disjunction ⊕. These addi-
tional connectives can be introduced as abbreviations, as they can be expressed in terms
of the previous ones. For example, we introduce implication x → y as an abbreviation for
¬x ∨ y. Similarly, equivalence x ↔ y expresses (x ∧ y) ∨ (¬x ∧ ¬y) and x ⊗ y stands for
(x ∧ ¬y) ∨ (¬x ∧ y).

In the following, we recall some standard definitions in propositional logic. Given a
formula ϕ ∈ L, we denote by V (ϕ) the set of variables occurring in ϕ. Furthermore, for
a variable x ∈ P, a literal is either x or its negation ¬x. A literal l is called positive if
l = x and negative if l = ¬x for some x ∈ P. The variable of l is denoted by v(l) and is
given by v(l) = x if either l = x or l = ¬x. A clause C is a disjunction of literals, that is
C = l1 ∨ . . . ∨ lk for some k ≥ 0. The quantity k is referred to as the size of the clause. If
k = 0, then the clause C is called the empty clause and denoted by C = ⊥. Clauses allow us
to specify a certain class of propositional formulas which have a particular uniform structure,
the so-called conjunctive normal form (CNF).

Definition 2.3. Let ϕ ∈ L. Then ϕ is called in conjunctive normal form (CNF) if ϕ is of
the form

C1 ∧ . . . ∧ Cn,

where C1, . . . , Cn are clauses. The quantity n is called the size of ϕ. If n = 0, then ϕ is
called the empty CNF and denoted by ϕ = ⊤.

Example 2.4. The propositional formula ϕ = (x ∨ y) ∧ (¬x ∨ y ∨ z) ∧ (¬y ∨ ¬z) is in CNF.
It consists of three clauses, two of size two and one of size three. The largest clause contains
the positive literals y, z and the negative literal ¬x. Furthermore, we have V (ϕ) = {x, y, z}.

We note that any formula ϕ ∈ L can be transformed (in linear time) into a satisfiability
equivalent formula ϕ′ ∈ L which is in CNF; see [BL99, Section 2.3] for an explicit description
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of this transformation procedure. This is very useful in practice, as the set of rules stated in
Definition 2.1 allows to build propositional formulas with arbitrary structure. In particular,
there are no restrictions on how deep the propositional operators can be nested. In practical
applications, however, it is often convenient to restrict oneself to only a particular class of
formulas. Using a transformation into CNF, we can restrict ourselves to formulas of this
specific form. In fact, CNF is widely used in the domain of automated reasoning and in this
thesis we will consider QBF solving entirely in the context of a normal form based on CNF.

2.1.2 QBF

Based on the language of propositional logic developed in the previous section, we can now
easily introduce the language of quantified boolean formulas (QBF). QBF extends propo-
sitional logic by allowing variables to be associated with universal (∀) and existential (∃)
quantifiers. Recall that P denotes a countably infinite set of variables and L denotes the
language of propositional logic.

Definition 2.5. The language of QBF Q is the smallest set such that

1. L ⊆ Q;

2. if ϕ ∈ Q, then (¬ϕ) ∈ Q;

3. if ϕ, ψ ∈ Q, then (ϕ ◦ ψ) ∈ Q, where ◦ ∈ {∧,∨};

4. if ϕ ∈ Q and x ∈ P, then (Qx . ϕ) ∈ Q, where Q ∈ {∀, ∃};

Note that Definition 2.5 allows quantifiers to be arbitrarily nested in a QBF. Following
the same rules as in the case of propositional logic, we might drop some of the parentheses
of a QBF in order to increase its readability. We extend the notation V (ϕ) for all variables
appearing in ϕ from propositional formulas to QBFs ϕ ∈ Q. For ∀x . ϕ (respectively ∃x . ϕ),
the formula ϕ is called the scope of the quantified variable x. An occurrence of the variable
x in ϕ is called bound. All non-quantified occurrences of a variable, that is, all occurrences
which are not in the scope of a quantifier, are called free occurrences. A variable x ∈ P
is called bound (respectively free) in a formula ϕ if there is a bound (respectively free)
occurrence of x in ϕ. A QBF is called closed if it does not contain any free variables. In
later parts of this work, we will restrict ourselves to closed QBFs.

In the previous section, we have introduced CNF as a uniform and structured way to
represent propositional formulas. In a similar fashion, we now extend this normal form to
the so-called prenex conjunctive normal form (PCNF) for QBFs.

Definition 2.6. Let ψ ∈ Q. Then ψ is called in prenex conjunctive normal form (PCNF) if
ψ is of the form

Q1x1 . . . Qnxn . ϕ,

where Q1, . . . , Qn ∈ {∀, ∃} and ϕ ∈ L is a propositional formula in CNF. The string
Q1x1 . . . Qnxn is called the prefix and ϕ is called the matrix of ψ.

6



Example 2.7. The QBF ψ = ∀x∃y . (x∨ y)∧ (¬x∨ y∨ z)∧ (¬y∨¬z) is in PCNF. Its prefix
is ∀x∃y and its matrix is the propositional formula (x∨ y)∧ (¬x∨ y∨ z)∧ (¬y∨¬z) in CNF.
Note that ψ is not closed because the variable z is free in ψ. The other two variables x and
y are both bound. The scope of x is ∃y . (x ∨ y) ∧ (¬x ∨ y ∨ z) ∧ (¬y ∨ ¬z) and the scope of
y is (x ∨ y) ∧ (¬x ∨ y ∨ z) ∧ (¬y ∨ ¬z).

We note that every propositional formula ϕ in CNF is also in PCNF, where the prefix is
empty. Similar to the case of CNF transformation, also every QBF ψ ∈ Q can be transformed
into an equivalent formula ψ′ ∈ Q which is in PCNF. This transformation is again linear
in the size of ψ; see [BB09] for further details. Using this transformation into PCNF, we
can restrict ourselves to formulas of this specific form. In fact, we will consider QBF solving
entirely in the context of this normal form in this thesis.

For a formula ψ = Q1x1 . . . Qnxn . ϕ in PCNF, we typically abbreviate a subpart of
the prefix of the form QxiQxi+1 . . . Qxi+k with Q ∈ {∀, ∃}, i.e., a block of consecutive
equally quantified variables, by Qxi, xi+1, . . . , xi+k. Note that Qxi, xi+1, . . . xi+k actually
means Q{xi, xi+1, . . . xi+k} but we typically omit the parentheses. Hence, we can write
ψ = Q1B1 . . . QkBk . ϕ where Q1, . . . , Qk ∈ {∀,∃} such that Qi ̸= Qi+1 for all 1 ≤ i < k and
B1, . . . , Bk ⊆ P. Furthermore, we can assume that there occurs at least one literal in the
matrix ϕ for each quantified variable. Otherwise, this variable together with its quantifier
can simply be removed.

The quantifier blocks B1, . . . , Bk induce a partial ordering on the literals of ψ as follows.
Given literals li, lj with v(li) ∈ Bi and v(lj) ∈ Bj , we have li < lj if and only if i < j.
A quantifier block Bi is called universal (respectively existential) if Qi = ∀ (respectively
Qi = ∃). Given a QBF with k quantifier blocks, there are k − 1 quantifier alternations.
The first quantifier block B1 and the last quantifier block Bk are called the outermost,
respectively the innermost, quantifier block. For a literal l with v(l) ∈ Bi, the quantifier type
of l is q(l) := Qi.

Example 2.8. The prefix ∃w∀x∃y∃z of the QBF

ψ = ∃w∀x∃y∃z . (x ∨ y) ∧ (¬w ∨ y ∨ z) ∧ (¬y ∨ ¬z)

can be written more compactly as ∃w∀x∃y, z. Consequently, ψ has three quantifier blocks
and two quantifier alternations. Its outermost quantifier block is the existential block ∃w
and its innermost quantifier block is the existential block ∃y, z. From this, we can see that
w is the smallest variable appearing in ψ and, more precisely, that w < x < y, z. Note that
y and z are incomparable in the partial ordering of variables. Furthermore, we for example
have q(y) = q(¬y) = ∃.

To end this section, we mention the QDIMACS format [QBF05] which provides a stan-
dardized format for QBFs. In particular, it sets a standard for how the input and output of
QBF solvers should look like. We note that our implementations also expect the input to be
given in this format.
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2.2 Semantics
Now that we have defined the syntactic structure of propositional formulas and QBFs, we
can address their semantic evaluation. Semantics provides a set of rules to assign meaning
to formulas. In contrast to the case of syntax where we discussed the propositional case
separately, we will now immediately introduce the semantics of QBF. The semantics of
propositional logic can then be considered as a special case.

In QBF, a semantic evaluation consists of assigning the truth values true (⊤) and false
(⊥) to variables. The truth value of a formula ψ ∈ Q can then be determined by assigning
truth values to all variables appearing in ψ and by simplifying the formula according to a
set of semantic rules. Note that we agree upon the convention to use the symbols ⊤ and ⊥
for both, the syntactic truth constants as well as for the semantic truth values.

In order to define the semantics of QBF following the standard recursive approach, we
first need the notion of an assignment.

Definition 2.9. Let ψ ∈ Q and let S ⊆ V (ψ). An assignment A of ψ is a function
A : S → {⊤,⊥} which assigns truth values to variables in ψ. An assignment A is complete
if S = V (ψ) and partial otherwise.

Given a formula ψ ∈ Q and S = {x1, . . . , xn} ⊆ V (ψ), we can represent an assignment
A : S → {⊤,⊥} of ψ as a set of literals {l1, . . . , ln} such that li = xi if and only if A(xi) = ⊤
and li = ¬xi if and only if A(xi) = ⊥ for all i = 1, . . . , n. Hence, the literals l1, . . . , ln, with
v(li) ̸= v(lj) for all i ̸= j, represent truth assignments to variables.

Example 2.10. We consider the QBF ψ = ∀x∃y . (x∨¬y)∧(¬x∨y). The partial assignment
A : {x} → {⊤,⊥} with A(x) = ⊤ of ψ can be represented by the set {x}. Similarly, the set
{x,¬y} corresponds to the complete assignment A : {x, y} → {⊤,⊥} with A(x) = ⊤ and
A(y) = ⊥ of ψ.

An assignment A of a QBF ψ allows us to define the interpretation of ψ under A,
denoted by ψ[A], as follows. Since every quantified boolean formula can be transformed into
an equivalent formula in PCNF, we can assume w.l.o.g. that ψ is in PCNF.

First, we consider the case where A = {l} is a partial assignment of a single vari-
able. Then ψ[{l}] is obtained from ψ as follows. First, v(l) is deleted from the prefix,
if it appears in it. That is, if ψ = Q1B1 . . . Qi(Bi ∪ {v(l)}) . . . QkBk . ϕ, then ψ[{l}] =
Q1B1 . . . QiBi . . . QkBk . ϕ[{l}], where ϕ[{l}] is computed as described below.

If l is positive, each occurrence of v(l) in ϕ is replaced by ⊤ and each occurrence of ¬v(l)
in ϕ is replaced by ⊥. Dually, if l is negative, each occurrence of v(l) in ϕ is replaced by ⊥
and each occurrence of ¬v(l) in ϕ is replaced by ⊤. Then ϕ is simplified by applying the
following rewrite rules until a fixed point is reached. We note that these rules correspond to
well-known equivalences of Boolean algebra.

¬⊤⇝ ⊥ ¬⊥⇝ ⊤ ⊤ ∧ ϕ⇝ ϕ

⊥ ∧ ϕ⇝ ⊥ ⊤ ∨ ϕ⇝ ⊤ ⊥ ∨ ϕ⇝ ϕ
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Under these rewrite rules, every formula has a unique normal form (up to reordering of
literals and clauses). We define this normal form to be ϕ[{l}]. Finally, variables which no
longer appear in ϕ[{l}] are removed from the prefix Q1B1 . . . QkBk. If this causes a block Bj
to become empty, then the quantifier Qj can be removed and the (equally quantified) blocks
Bj−1 and Bj+1 can be merged together.

Additionally, we define ψ[∅] = ψ for the empty assignment A = ∅ and ψ[{l1, . . . , ln}] =
(ψ[l1])[{l2, . . . , ln}]. To keep the presentation simple, we agree upon the convention to omit
parentheses in ψ[{l1, . . . , ln}] and write ψ[l1, . . . , ln].

To summarize, the interpretation of a formula under an assignment A is calculated from
the evaluation of the variables of the formula given by A according to the above rewrite rules.
We note that the notation ϕ[A] is also applicable to propositional formulas ϕ in CNF, as they
can be considered as QBFs in PCNF with empty prefix. Furthermore, the interpretation of
a formula under a complete assignment is always either ⊤ or ⊥.

Example 2.11. We consider the QBF ψ = ∀x∃y . (x∨¬y)∧(¬x∨y). Then the interpretation
of ψ under the partial assignments {x} and {¬y} is ψ[x] = ∃y . y and ψ[¬y] = ∀x .¬x
respectively. Furthermore, the complete assignment {x,¬y} yields ψ[x,¬y] = (∃y . y)[¬y] =
⊥.

The rewrite rules above justify our notation for the empty clause and the empty CNF.
These rules also allow us to make certain assumptions about PCNFs. In particular, we can
assume that no clause in a PCNF contains multiple or complementary literals of the same
variable. A clause containing complementary literals reduces under any complete assignment
to ⊤ and is therefore redundant and can be eliminated from a PCNF. Furthermore, we can
assume that a non-empty clause never contains ⊤ or ⊥, as they can always be removed by
the above rules.

Based on the notion of interpretation, we can now state the following standard definition
of satisfiability of QBFs based on recursive evaluation. Note that we first define satisfiability
only for closed QBFs and then extend it to all formulas.

Definition 2.12. Let ψ ∈ Q be a closed QBF. Then ψ is called satisfiable if and only if one
of the following holds:

• ψ = ⊤;

• ψ = ¬ϕ and ϕ is not satisfiable;

• ψ = ϕ ∧ ϕ′ and ϕ and ϕ′ are satisfiable;

• ψ = ϕ ∨ ϕ′ and ϕ or ϕ′ is satisfiable;

• ψ = ∀x . ϕ and ϕ[x] and ϕ[¬x] are satisfiable;

• ψ = ∃x . ϕ and ϕ[x] or ϕ[¬x] is satisfiable;

A not necessarily closed QBF ψ ∈ Q is called satisfiable if and only if there exists an
assignment A of the free variables in ψ such that the closed QBF ψ[A] is satisfiable. If ψ is
not satisfiable, then it is called unsatisfiable.
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According to Definition 2.12, a QBF ψ with free variables x1, . . . , xn is semantically
equivalent to the closed QBF ψ′ = ∃x1, . . . , xnψ. Hence, for the rest of this work, we restrict
ourselves to closed QBFs.

Example 2.13. The closed QBF ψ = ∀x∃y . (x ∨ ¬y) ∧ (¬x ∨ y) is satisfiable. This can be
seen by applying Definition 2.12 as follows

ψ is satisfiable

⇐⇒
(︃
∃y . (x ∨ ¬y) ∧ (¬x ∨ y)

)︃
[x] and

(︃
∃y . (x ∨ ¬y) ∧ (¬x ∨ y)

)︃
[¬x] are satisfiable

⇐⇒ ∃y . y and ∃y . (¬y) are satisfiable

⇐⇒
(︃
y[y] or y[¬y] is satisfiable

)︃
and

(︃
(¬y)[y] or (¬y)[¬y] is satisfiable

)︃
⇐⇒

(︃
⊤ or ⊥ is satisfiable

)︃
and

(︃
⊥ or ⊤ is satisfiable

)︃
.

Now, the first part of Definition 2.12 shows that the last line is true.
Similarly, we can show that the non-closed QBF ϕ = ∀y . (x∨¬y)∧(¬x∨y) is unsatisfiable.

To this end, we consider the closed QBF ϕ′ = ∃x∀y . (x∨¬y)∧ (¬x∨ y). Then the following
holds:

ϕ is satisfiable
⇐⇒ ϕ′ is satisfiable

⇐⇒
(︃
∀y . (x ∨ ¬y) ∧ (¬x ∨ y)

)︃
[x] or

(︃
∀y . (x ∨ ¬y) ∧ (¬x ∨ y)

)︃
[¬x] is satisfiable

⇐⇒ ∀y . y or ∀y . (¬y) is satisfiable

⇐⇒
(︃
y[y] and y[¬y] are satisfiable

)︃
or

(︃
(¬y)[y] and (¬y)[¬y] are satisfiable

)︃
⇐⇒

(︃
⊤ and ⊥ are satisfiable

)︃
or

(︃
⊥ and ⊤ are satisfiable

)︃
.

Since ⊥ is unsatisfiable, the last line is false. Consequently, ϕ is unsatisfiable.

Remark. As Example 2.13 shows, the prefix of a QBF can drastically influence its satisfia-
bility. The two QBFs ∀x∃y . (x∨¬y)∧ (¬x∨y) and ∃x∀y . (x∨¬y)∧ (¬x∨y) share the same
matrix but the different prefixes lead to different semantic evaluations.

2.3 Solving QBFs
In this section, we deal with the satisfiability problem for quantified boolean formulas, called
QSAT. Like SAT for NP, QSAT is the prototypical example of a PSPACE-complete prob-
lem [MS73]. Nevertheless, there exist powerful approaches for solving QSAT instances in
practice, that is, to decide for a given QBF whether it is satisfiable or not. In the following,
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we give a brief overview of the two main techniques that modern QBF solvers implement,
which are backtracking search and variable expansion. To end this section, we also discuss
how QSAT can be considered as a game between two players, which will be particularly rel-
evant for our approach involving AlphaZero. Since every QBF can be turned into PCNF, we
will restrict ourselves to solving PCNFs in this section. Furthermore, recall that every QBF
is semantically equivalent to a closed QBF. Consequently, we may assume that all formulas
are closed.

2.3.1 Backtracking Search

The idea of backtracking search arises naturally from the semantic definition of QBFs. Def-
inition 2.12 can be turned into a simple recursive algorithm, where rules for evaluating
ψ = ∀x. ϕ and ψ = ∃x. ϕ correspond to case splits into subgoals ϕ[x] and ϕ[¬x], respectively.
This splitting of the proof into subgoals, also called branching or decision making, is done
until either the empty clause ⊥ is produced (in this case the sub-QBF is unsatisfiable) or
the matrix becomes the empty CNF ⊤ (in this case sub-QBF is satisfiable). Then, on the
basis of the satisfiability of the subgoals ϕ[x] and ϕ[¬x], the satisfiability of ψ can be deter-
mined according to Definition 2.12. Once a subgoal is solved, the algorithm backtracks to
the most recent unsolved subgoal and continues. This gives rise to a simple yet infeasible
algorithm. However, by integrating the following observations into the solving process one
can drastically improve the efficiency of this procedure in practice.

One can immediately conclude that a QBF ψ ∈ Q is unsatisfiable if the matrix contains
a contradictory clause. A clause is called contradictory if it contains no existential literal.
The empty clause ⊥ is a special case of a contradictory clause.

The second improvement concerns so-called unit literals and pure literals.

Definition 2.14. Let ψ ∈ Q be in PCNF. An existentially quantified literal e with v(e) ∈
V (ψ) is called unit literal of ψ if there exists a clause C in ψ such that

C = e ∨ a1 ∨ . . . ∨ an,

where a1, . . . , an are universally quantified literals and e < ai for all i = 1, . . . , n.

Definition 2.15. Let ψ ∈ Q be in PCNF. A literal l with v(l) ∈ V (ψ) is called pure literal
of ψ if l occurs in ψ but ¬l does not occur in ψ.

Example 2.16. The QBF ψ = ∀x∃y∀z . (x∨ y)∧ (x∨¬y ∨ z)∧ (¬y ∨¬z) contains the unit
literal ¬y and the pure literal x. Note that ¬y is a unit literal of ψ because of the clause
¬y ∨ ¬z as y < z. Furthermore, x is a pure literal of ψ because ¬x does not appear in the
matrix.

The following two lemmas tell us that unit and pure literals force assignments of the
respective variables.

Lemma 2.17. Let ψ ∈ Q be in PCNF and let l be a unit literal of ψ. Then ψ is satisfiable
if and only if ψ[l] is satisfiable.
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Proof. See [CSGG02, Lemma 2.2].

Lemma 2.18. Let ψ ∈ Q be in PCNF and let l be a pure literal of ψ. If q(l) = ∃, then ψ
is satisfiable if and only if ψ[l] is satisfiable. Dually, if q(l) = ∀, then ψ is satisfiable if and
only if ψ[¬l] is satisfiable.

Proof. See [CSGG02, Lemma 2.4, Lemma 2.5].

Example 2.19. We reconsider the QBF ψ = ∀x∃y∀z . (x∨y)∧ (x∨¬y∨ z)∧ (¬y∨¬z) from
Example 2.16. Since ¬y is a unit literal of ψ, Lemma 2.17 implies that it suffices to consider

ψ′ := ψ[¬y] = ∀x . x

to determine the satisfiability of ψ. Now, we can apply Lemma 2.18 to the pure literal x in
ψ′, which reduces ψ′ to

ψ′′ := ψ′[¬x] = ⊥.
Since ψ′′ is clearly unsatisfiable, we can deduce that so is ψ.

Detecting unit and pure literals and assigning the respective variables according to the
lemmas above is called unit literal elimination, respectively pure literal elimination.

Finally, we note that the ordering in which variables are assigned in such a solving process
can substantially influence the overall performance of a QBF solver. Since the variables
within one quantifier block can be reordered, this allows to introduce some heuristics into
the choice of the variable for branching.

Combining all the improvements mentioned above gives rise to Algorithm 1 for deter-
mining the satisfiability of QBFs based on backtracking search. This recursive algorithm is
a generalization of the classical DPLL approach for propositional logic [DP60, DLL62] and
was first described in [CGS98, CSGG02].

Theorem 2.20. Let ψ ∈ Q be a closed QBF in PCNF. Then Algorithm 1 returns ⊤ given
ψ as input if and only if ψ is satisfiable, and ⊥ otherwise.

Proof. See [CSGG02, Section 3].

Example 2.21. In this example, we apply Algorithm 1 to the QBF

ψ = ∃w∀x∃y, z . (¬w ∨ ¬x ∨ y) ∧ (¬x ∨ ¬y) ∧ (y ∨ z) ∧ (w ∨ ¬x ∨ ¬z) ∧ (x ∨ y ∨ ¬z).

Since ψ does not contain a contradictory clause, a unit or pure literal, the algorithm reaches
line 12. The only possible choice is l = w. Consequently, we have to recursively apply
Algorithm 1 to ψ[w] and ψ[¬w].

Case 1. ψ[w] We have to recursively evaluate

ψ′ := ψ[w] = ∀x∃y, z . (¬x ∨ y) ∧ (¬x ∨ ¬y) ∧ (y ∨ z) ∧ (x ∨ y ∨ ¬z).

Since ψ′ does not contain a contradictory clause, a unit or pure literal, the algorithm
reaches line 12. The only possible choice is l = x. Consequently, we have to recursively
apply Algorithm 1 to ψ′[x] and ψ′[¬x].
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Algorithm 1 QDPLL
Input: A closed QBF ψ = Π.ϕ in CNF with prefix Π and matrix ϕ
Output: ⊤ if ψ is satisfiable and ⊥ otherwise

1: if ϕ contains a contradictory clause then
2: return ⊥
3: if ϕ is empty then
4: return ⊤
5: if ψ contains a unit literal l then
6: return QDPLL(ψ[l])
7: if ψ contains a pure literal l then
8: if q(l) = ∃ then
9: return QDPLL(ψ[l])

10: else
11: return QDPLL(ψ[¬l])
12: l← a literal of the outermost quantifier block of ψ
13: if q(l) = ∃ then
14: return QDPLL(ψ[l]) ∨ QDPLL(ψ[¬l])
15: else
16: return QDPLL(ψ[l]) ∧ QDPLL(ψ[¬l])

Case 1.1. ψ′[x] We have to recursively evaluate ψ′′ := ψ′[x] = ∃y, z . y ∧ (¬y) ∧ (y ∨ z).
Now, ψ′′ contains the unit literal y. Hence, ψ′′ simplifies to ψ′′[y] = ⊥, which closes this
subcase.

Case 1.2. ψ′[¬x] We have to recursively evaluate ψ′′ := ψ′[¬x] = ∃y, z . (y ∨ z)∧ (y ∨¬z).
Now, ψ′′ contains the pure literal y. Hence, ψ′′ simplifies to ψ′′[y] = ⊤, which closes this
subcase.

Since the two subcases ψ′[x] and ψ′[¬x] are closed, Algorithm 1 continues by combining
their results. More precisely, the results of the subcases are conjoined by ∧ since x was
universally quantified. This yields ⊥ ∧⊤ = ⊥ and closes Case 1.

Case 2. ψ[¬w] We have to recursively evaluate

ψ′ := ψ[¬w] = ∀x∃y, z . (¬x ∨ ¬y) ∧ (y ∨ z) ∧ (¬x ∨ ¬z) ∧ (x ∨ y ∨ ¬z).

Since ψ′ does not contain a contradictory clause, a unit or pure literal, the algorithm reaches
line 12. The only possible choice is l = x. Consequently, we have to recursively apply
Algorithm 1 to ψ′[x] and ψ′[¬x].

Case 2.1. ψ′[x] We have to recursively evaluate ψ′′ := ψ′[x] = ∃y, z . (¬y)∧ (y ∨ z)∧ (¬z).
Now, ψ′′ contains the unit literals ¬y and ¬z. Hence, ψ′′ simplifies to ψ′′[¬y,¬z] = ⊥, which
closes this subcase.
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Case 2.2. ψ′[¬x] We have to recursively evaluate ψ′′ := ψ′[¬x] = ∃y, z . (y ∨ z)∧ (y ∨¬z).
Now, ψ′′ contains the pure literal y. Hence, ψ′′ simplifies to ψ′′[y] = ⊤, which closes this
subcase.

Since the two subcases ψ′[x] and ψ′[¬x] are closed, Algorithm 1 continues by combining
their results. More precisely, the results of the subcases are conjoined by ∧ since x was
universally quantified. This yields ⊥ ∧⊤ = ⊥ and closes Case 2.

Finally, the algorithm combines the results of Case 1 and Case 2 to obtain the semantic
evaluation of ψ. Since w was existentially quantified, the two sub-results are conjoined
using ∨ which gives ⊥ ∨ ⊥ = ⊥. Consequently, the algorithm returns ⊥ proving that ψ is
unsatisfiable.

Remark. In the evaluation of Case 1 in Example 2.21, Algorithm 1 could have stopped after
evaluating Case 1.1 because no matter what result r Case 1.2 would yield, we always obtain
⊥ ∧ r = ⊥. The same also holds for the evaluation of Case 2.

One example of a state-of-the-art QBF solver that implements a search-based approach
based on QDPLL is DepQBF [LB10]. This is also the solver that we will use for all our
experiments.

Finally, we note that modern QBF solvers extend the basic QDPLL algorithm by more
advanced techniques such as conflict driven clause learning (CDCL) [MSS99, ZM02]. This
method uses Q-resolution [BKF95], an extension of resolution for propositional logic, to
derive clauses from the original formula ψ. Adding such clauses to ψ does not change its
semantics but should help the solver rule out certain assignments that are not satisfying
anyway. In this way, the search process is guided away from regions of the search space that
do not contain solutions.

2.3.2 Variable Expansion

An alternative approach to the one described in the previous section is variable expansion,
sometimes also referred to as expansion-based solving. While backtracking search can be
considered as a top-down approach that tries to construct a satisfying assignment for a given
QBF ψ ∈ Q, variable expansion tries to successively remove quantified variables from ψ
until the formula eventually reduces to ⊤ or ⊥. The following result builds the theoretical
foundation for variable expansion. As in the previous sections, we restrict ourselves to
formulas in PCNF.

Proposition 2.22. Let ψ = Q1B1 . . . QnBn ∪{x} . ϕ ∈ Q be in PCNF. Then ψ is satisfiable
if and only if

Q1B1 . . . QnBn . (ϕ[x] ◦ ϕ[¬x])
is satisfiable, where ◦ = ∧ if Qn = ∀ and ◦ = ∨ if Qn = ∃.

So, to expand a variable x, we make two copies of the matrix ϕ and assign x to true
in one copy and to false in the other copy. The two copies are then conjoined either by
conjunction or by disjunction depending on the quantifier type of x.

Note that the expanded variable x is taken from the innermost quantifier block. This
causes variables to be eliminated from right to left and stands in contrast to the search-based
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approach where variables were assigned left to right. Therefore, variable expansion is also
called a bottom-up approach. Furthermore, in this approach, the variable x is assigned to
true and false simultaneously. This is another difference to the search-based approach where
variable assignments are made tentatively and retracted if no solution can be found. We note
that there are also generalizations of Proposition 2.22 that allow to expand a variable from
an arbitrary quantifier block. In cases where a variable from a non-innermost quantifier block
is expanded, all variables that are larger than the expanded variable have to be duplicated.

The main problem of the expansion-based approach is that each variable expansion step
can cause the formula to double in size. One way to mitigate this increase in size is to only
copy those parts of the matrix on which the expanded variable has an effect. We note that
the relevant parts can be found for example by an approach called mini-scoping and refer
to [Lon12, Section 3.2.2] for further details. Additionally, one can observe that universally
quantified variables from the innermost quantifier block do not have to be expanded but
can be eliminated directly. This process is called universal reduction (sometimes also called
forall reduction) and was first introduced in [BKF95]. It is based on the following lemma.

Lemma 2.23. Let ψ ∈ Q be in PCNF and let

C = a ∨ l1 ∨ . . . ∨ ln

be a clause in ψ such that q(a) = ∀ and for all i = 1, . . . , n if q(li) = ∃ then li < a. Then a
can be removed from C without changing the satisfiability of ψ.

Proof. This result follows from the principle of Q-resolution. See for example [BKF95] or
Definition 23.5.2 and the subsequent discussion in [BB09].

Example 2.24. By applying Lemma 2.23, the QBF ψ = ∀x∃y∀z . (x ∨ y) ∧ (x ∨ ¬y ∨ z) ∧
(¬y ∨ ¬z) can be simplified to

∀x∃y . (x ∨ y) ∧ (x ∨ ¬y) ∧ (¬y).

Additionally, as for the search-based approach, also in variable expansion the propagation
rules for unit and pure literals can be applied. This gives rise to Algorithm 2 for determining
the satisfiability of QBFs based on variable expansion.

Theorem 2.25. Let ψ ∈ Q be a closed QBF in PCNF. Then Algorithm 2 returns ⊤ given
ψ as input if and only if ψ is satisfiable, and ⊥ otherwise.

Proof. Follows from Lemma 2.17, Lemma 2.18, Proposition 2.22 and Lemma 2.23.

We note that there is also a version of Algorithm 2 which expands universal variables and
eliminates existential variables (see for example Figure 24.4 in [BB09]). For propositional
formulas, this algorithm boils down to the Davis Putnam procedure [DP60].

Example 2.26. In this example, we apply Algorithm 2 to the QBF

ψ = ∃w∀x∃y, z . (¬w ∨ ¬x ∨ y) ∧ (¬x ∨ ¬y) ∧ (y ∨ z) ∧ (w ∨ ¬x ∨ ¬z) ∧ (x ∨ y ∨ ¬z).
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Algorithm 2 QDP
Input: A closed QBF ψ = Q1B1 . . . QnBn ∪ {x} . ϕ ∈ Q in PCNF
Output: ⊤ if ψ is satisfiable and ⊥ otherwise

1: if ϕ contains a contradictory clause then
2: return ⊥
3: if ϕ is empty then
4: return ⊤
5: if ψ contains a unit literal l then
6: return QDP(ψ[l])
7: if ψ contains a pure literal l then
8: if q(l) = ∃ then
9: return QDP(ψ[l])

10: else
11: return QDP(ψ[¬l])
12: if Bn = ∃ then
13: return QDP(Q1B1 . . . QnBn . (ϕ[x] ∨ ϕ[¬x]))
14: else
15: ϕ′ ← remove all occurrences of x and ¬x in ϕ
16: return QDP(Q1B1 . . . QnBn . ϕ

′)

Note that this is the formula to which we also applied Algorithm 1 in Example 2.21.
Since ψ does not contain a contradictory clause, a unit or pure literal, the algorithm

reaches line 12. We have to expand the formula as the innermost quantifier block is existen-
tial. In this step, we have the choice between expanding y or z. If the algorithm chooses y,
then we have to recursively evaluate

∃w∀x∃z .
(︁
(¬x) ∧ (w ∨ ¬x ∨ ¬z)

)︁
∨

(︁
(¬w ∨ ¬x) ∧ z ∧ (w ∨ ¬x ∨ ¬z) ∧ (x ∨ ¬z)

)︁
.

Note that this formula is not in PCNF yet. Hence, before we can proceed, this formula first
has to be transformed into normal form. Doing this and removing all duplicates of literals
within a clause and all clauses with complementary literals of the same variable yields

ψ′ := ∃w∀x∃z . (¬w ∨ ¬x) ∧ (¬x ∨ z) ∧ (w ∨ ¬x ∨ ¬z).

Now, ψ′ does not contain any unit literals but it contains the pure literal ¬x. Consequently,
ψ′ is simplified to ψ′′ := ψ′[x] = ∃w, z . (¬w)∧z∧(w∨¬z). The resulting formula ψ′′ contains
the unit literals ¬w and z. After setting z to ⊤ and w to ⊥, the formula simplifies to ⊥.
Consequently, the algorithm returns ⊥ proving that ψ is unsatisfiable.

Modern QBF solvers often implement variable expansion following the so-called CEGAR
(Counterexample-Guided Abstraction Refinement) approach [CGJ+03, JKMSC12]. This ap-
proach is based on the observation that a partial existential expansion can prove a QBF
to be satisfiable while a partial universal expansion can prove a QBF to be unsatisfiable.
The goal of CEGAR-based approaches is to find such a partial expansion quickly. To this
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end, for a given QBF ψ, an existential expansion and a universal expansion are computed
simultaneously. An example of a CEGAR-based QBF solver is RAReQS [JK12].

2.3.3 Gamification of QBF Solving

In this section, we describe how determining the satisfiability of a QBF can be considered as
a game between two players. This point of view will be particularly useful when using the
AlphaZero framework for solving QBFs.

Determining the truth value of a QBF can be seen as a game between a universal player
and an existential player. During the game, the universal player assigns truth values to the
universally quantified variables and tries to make the resulting formula unsatisfiable, i.e., tries
to obtain ⊥. Dually, the existential player assigns truth values to the existentially quantified
variables and tries to make the formula satisfiable, i.e., tries to obtain ⊤. A player can only
assign a value to a variable if this variable is quantified in the outermost quantifier block.
The game ends when the resulting formula is ⊥ or ⊤, with the universal player winning in
the first case and the existential player winning in the latter case. More formally, we have
the following procedure to “play a QBF ψ ∈ Q”.

Algorithm 3 QSAT game
Input: A closed QBF ψ in PCNF

1: while ψ /∈ {⊤,⊥} do
2: x← a variable of the outermost quantifier block of ψ
3: if q(x) = ∃ then
4: Existential player chooses assignment A : {x} → {⊤,⊥} of x
5: else
6: Universal player chooses assignment A : {x} → {⊤,⊥} of x
7: ψ ← ψ[A]
8: if ψ = ⊤ then
9: return Existential player wins

10: else
11: return Universal player wins

Note that a single game is in general not enough to determine the satisfiability of a given
QBF. It is possible that the existential player wins such a game for an unsatisfiable formula,
or dually, that the universal player wins a game for a satisfiable formula. This is witnessed
by the following example.

Example 2.27. We consider the QBF ψ = ∀x∃y . (x ∨ ¬y) ∧ (¬x ∨ y). Recall that in
Example 2.13 we have seen that ψ is satisfiable. Now, we apply Algorithm 3 to this formula.
Since the outermost variable x is universally quantified, the universal player is allowed to
choose an assignment for x. If we assume that he decides to set x to ⊤, then ψ simplifies to
ψ′ := ψ[x] = ∃y . y. Now, the outermost variable y is existentially quantified. Consequently,
it is the existential player’s turn to assign y to a truth value. Assuming that he sets y to
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⊥, we obtain ψ′′ := ψ′[¬y] = ⊥. Then Algorithm 3 terminates and returns a win for the
universal player.

However, we can still relate the satisfiability of a closed QBF to Algorithm 3 by con-
sidering winning strategies. Here, a wining strategy is a game tree that, for every possible
move of the opponent, indicates how to proceed so as to guarantee a win. More precisely,
given a closed QBF ψ = Q1x1 . . . Qnxn . ϕ ∈ Q in PCNF, a universal strategy for ψ is a tree
of height n + 1 where every node at level k, with 1 ≤ k ≤ n, has a single child if Qk = ∀
and two children if Qk = ∃. If a node has two children, the two edges to these children are
labelled by ⊤ and ⊥, respectively. If a node has only a single child, the edge to this child
is labelled by either ⊤ or ⊥. Existential strategies are defined analogously, with the only
difference being that that the roles of the quantifiers ∃ and ∀ are exchanged. More precisely,
a node at level k has only one successor if Qk = ∃ and two successors if Qk = ∀.

Example 2.28. We consider the QBF ψ = ∀x∃y . (x ∨ ¬y) ∧ (¬x ∨ y). There exist the
following four existential strategies for ψ:

⊤ ⊥

⊤ ⊤

⊤ ⊥

⊤ ⊥

⊤ ⊥

⊥ ⊤

⊤ ⊥

⊥ ⊥

Additionally, there are two universal strategies:

⊤

⊤ ⊥

⊥

⊤ ⊥

Every path in a strategy for ψ yields a complete assignment A : V (ψ) → {⊤,⊥} of ψ
and corresponds to one particular game between the universal and the existential player. A
universal strategy is a winning strategy (for the universal player) for ψ if all its paths lead
to assignments A such that ψ[A] = ⊥. Dually, an existential strategy is a winning strategy
(for the existential player) for ψ if all its paths lead to assignments A such that ψ[A] = ⊤.
This definition leads to the following central characterization for the satisfiability of a closed
QBF.

Proposition 2.29. Let ψ ∈ Q be a closed QBF in PCNF. Then ψ is satisfiable if and only
if there exists an existential winning strategy. Dually, ψ is unsatisfiable if and only if there
exist a universal winning strategy.
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Example 2.30. The existential strategy

⊤ ⊥

⊤ ⊥

is a winning strategy for the QBF ψ = ∀x∃y . (x∨¬y)∧(¬x∨y). To see this, we note that the
left path yields the assignment {x, y} and the right path yields {¬x,¬y}. The interpretation
of ψ under these assignments is ψ[x, y] = ψ[¬x,¬y] = ⊤. Consequently, Proposition 2.29
implies that ψ is satisfiable.

Obtaining a winning strategy for one of the players is equivalent to QSAT, and hence, a
hard problem. Even determining whether a given strategy is a winning strategy is compu-
tationally expensive as this in general requires to play exponentially many games (measured
in the number of variables). However, assuming that we have two perfect players, that is,
two players that always make the best possible move, we can deduce the following corollary
of Proposition 2.29.

Corollary 2.31. Let ψ ∈ Q be a closed QBF in PCNF and assume that we have a perfect
existential and universal player. Then a single run of Algorithm 3 suffices to determine the
satisfiability of ψ. More precisely, in this case, Algorithm 3 returns a win for the existential
player if and only if ψ is satisfiable.
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Chapter 3

The AlphaZero Framework

In 2016, the British artificial intelligence startup DeepMind made headlines after its computer
program AlphaGo [SHM+16] beat a human professional in the game of Go. It was the first
computer program to do so. In the following years, AlphaGo was improved and generalized to
AlphaZero [SHS+18], a program capable of learning any fully-observable, symmetric 2-player
game. AlphaZero has proven to be a powerful framework by beating the best human players
and computers in the games of chess, shogi and Go.

AlphaZero combines a Monte Carlo tree search (MCTS) [BPW+12] with a newly devel-
oped deep reinforcement learning technique called self-play reinforcement learning [SSS+17].
In particular, AlphaZero applies a special variant of MCTS called PUCT (Predictor + Upper
Confidence Bound) [Ros11] for its move selection. This variant uses a so-called predictor to
guide the tree search. In AlphaZero, this predictor is realized in form of a neural network
that computes confidence scores for all possible moves and an overall confidence score for the
current board configuration. Before an AlphaZero agent can be employed in a competitive
environment, the predictor has to be trained to learn which moves and board configurations
it has to consider as favorable. This is done by a novel reinforcement learning technique
called self-play reinforcement learning. Starting as a completely random player, AlphaZero
learns by playing games against itself. By learning from the previous games, the predictions
of the predictor network improve with each game, which in turn improves the move selection
via the MCTS. This improved move selection then leads to a stronger and more competitive
player (and opponent). In this way, the algorithm receives a gradually improving training
signal.

Following the successes of AlphaZero in the games of chess, shogi and Go, the framework
was exported to several other fields. For example, it has been applied to other games, in
particular to wargames [MS19, Blo20], as well as to solve complex military planning prob-
lems [ZYY+20]. Furthermore, on the more theoretical side, AlphaZero was used in combi-
natorial optimization [XL20] and to tackle problems coming from first-order logic [XKL21].

In this chapter, we first recall some recent milestones of this field of artificial intelli-
gence that deals with teaching computers to play (board) games on a superhuman level in
Section 3.1. On the one hand, this shall help to form a better understanding of the ac-
complishments achieved by AlphaZero and on the other hand, this allows to highlight the

20



differences between AlphaZero and its predecessors and successors. Then, in Section 3.2,
we describe the original AlphaZero framework as introduced in [SHS+18]. In particular, we
discuss the two central concepts applied in the AlphaZero algorithm – Monte Carlo tree
search and self-play reinforcement learning.

3.1 Historical Context
We start this brief history overview in 1996, when IBM’s chess computer DeepBlue [CHJH02]
first played against chess world champion Garry Kasparov in a six-game match and lost 4 – 2.
At this time, chess was considered to be the challenge for (symbolic) artificial intelligence.
For its move selection, DeepBlue used custom hardware to run an optimized minimax al-
gorithm with alpha-beta pruning [KM75] in a highly parallel fashion. This approach can
be summarized as pure brute force with DeepBlue using a specially crafted evaluation func-
tion to evaluate 50 – 100 million chess board positions per second [CHJH02]. Additionally,
DeepBlue had hardcoded data bases with dedicated opening and endgame moves. After the
defeat in 1996, several improvements were made to DeepBlue in preparation for a rematch
with Kasparov in 1997. Using advanced hardware, a completely redesigned evaluation func-
tion and dedicated evaluation tuning software, DeepBlue was able to win the rematch with
a score of 3.5 – 2.5. This win allowed to rule off the quest for teaching computers the game
of chess and researchers moved on to the next challenge, which was found in the traditional
Chinese board game Go.

Go is a symmetric 2-player board game, where players take turns placing stones on the
board aiming at surrounding more territory than their opponent. Despite its relatively simple
rules, Go is way more complex than chess. This is mainly because of two reasons. First of
all, the average branching factor for Go, that is, the average number of legal moves a player
can execute at each turn during a game of Go, is 250, compared to 35 for chess [MIG96].
This leads to an astronomically huge number of possible configurations of the board in
Go. Additionally, in contrast to chess, there is often no easy way to evaluate these board
configurations. Due to this, the brute force approaches that barely worked for chess are
practically useless for Go.

This is why it took until the beginning of the last decade that the first Go programs [OK09,
Cou11] emerged that could beat human professionals when the humans were given a handi-
cap. These programs replaced exhaustive brute force techniques by a stochastic Monte Carlo
tree search. However, it was not until October 2015 that the first Go program was able to
beat a human expert without handicap. This breakthrough was achieved by DeepMind’s
AlphaGo [SHM+16] when it defeated the European Go champion Fan Hui 5 – 0. Similar to
the other Go programs, also AlphaGo replaced brute force approaches by a Monte Carlo tree
search. However, in contrast to its competitors, AlphaGo supported its MCTS with deep
learning techniques. In particular, a neural network guided the tree search by identifying the
best moves and the winning percentages of these moves. This neural network was trained
from human expert moves. Following the win against Fan Hui, AlphaGo was improved fur-
ther and played against Lee Sedol, one of the best Go players, in March 2016. Out of five
games, AlphaGo could win four. At this time, AlphaGo was running on a cluster consisting
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of 1920 CPUs and 280 GPUs.
In the following years, the AlphaGo framework was improved even further. First, Al-

phaGo Zero [SSS+17] was presented, a version which could learn without any expert data
just by playing against itself. It was stronger than any previous AlphaGo version. Addition-
ally, AlphaGo Zero required only four TPUs and could therefore run on a single machine.
Following upon that, in December 2017, DeepMind published a paper announcing AlphaGo
Zero’s successor, named AlphaZero [SHS+18]. AlphaZero generalized its predecessors frame-
work from the game of Go to any fully-observable, symmetric 2-player game. It was able
to achieve superhuman level of play in the games of chess, shogi and Go within 24 hours of
training and could beat the strongest version of AlphaGo Zero with a score of 60 – 40.

While AlphaZero is limited to conventional board games, its successor MuZero [SAH+20]
extends the framework also to other domains. MuZero was presented by DeepMind at
the end of 2020 and is considered by many as a significant step towards general artificial
intelligence. It combines the planning approach from AlphaZero with ideas from model-free
reinforcement learning. This leads to an improved performance in classical planning regimes,
such as Go, while also allowing to handle domains with much more complex inputs, such as
visual video games. In particular, the new framework can be applied to environments where
the underlying dynamics of the system are unknown, such as Atari games (learning without
knowing the rules).

3.2 AlphaZero in General
In this section, we describe the classical AlphaZero framework as introduced in [SHS+18].
This framework can be considered as a planning algorithm. Such an algorithm deals with
finding a strategy for a sequential task for one or more decision makers [LaV06]. In general,
this means finding the best possible sequence of actions given the current state of an envi-
ronment. In AlphaZero’s original field of application, that is, in board games, the current
state is the current configuration of the board and an action corresponds to a legal move
by one of the players. Often, in planning an optimal action is chosen based on imaginary
trajectories (simulations). To this end, AlphaZero uses the following two key components:

1. A Monte Carlo tree search which is used to generate data in form of simulations.

2. A deep neural network which is used to learn from the data and to guide the tree search
towards winning positions.

This general approach allows AlphaZero to learn any fully-observable, symmetric 2-player
game. Often, such games are also referred to as symmetric combinatorial games [ANW19].
They usually share the following characteristics [ZY20]:

• The game contains two players (e.g. chess, Go). Also certain one player games (such as
Sudoku or Solitaire) can be considered as combinatorial games between the player and
the game designer. Games with more than two players are not regarded combinatorial
due to the possibility of coalitions forming.
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• The game does not contain any factors of chance that could influence the outcome
(such as dice).

• The game is symmetric, in the sense that both players pursue the same goal. More
precisely, the outcome of playing a particular strategy depends only on the opponent’s
strategy, and not on who is playing it.

• The game is fully-observable, often also referred to as a perfect information game.
This means that at each point in time each player can determine the state of the game;
there is no hidden information (as in poker for example). Additionally, each player is
perfectly informed about all events that have occurred before.

• The players perform actions in a turn-based manner. Furthermore, at each point in
time each player only has finitely many legal moves at their disposal, in other words,
the action space is finite. Moreover, also the state space, that is, the set of all possible
game configurations, is finite.

• The game ends after finitely many steps either with a win for one of the players or
with a draw.

3.2.1 Monte Carlo Tree Search

Monte Carlo methods [MU49] are computational algorithms that use randomness to solve
deterministic problems. In particular, they use repeated random sampling to obtain an esti-
mate of a value based on stored statistics such as means and variances. They are particularly
useful for very complex problems where it is difficult or even impossible to use determinis-
tic approaches. For example, Monte Carlo methods are used in numerical integration, for
physical simulations, or to evaluate business risks [Ham13].

In planning, Monte Carlo methods typically appear in form of a Monte Carlo tree search
(MCTS) [BPW+12]. MCTS refers to a family of Monte Carlo algorithms where, given the
current state of an environment, random sampling is used to evaluate nodes in a tree search
and subsequently use these values to select a promising action in the current state. It is
based on the assumption that random sampling can approximate the true value of an action,
and that the mean outcome of random simulations forms precisely this approximation. A
MCTS is particularly useful for problems with a large branching factor (i.e., a large action
space) where exhaustive methods are computationally infeasible. In this section, we describe
the variant of MCTS applied by AlphaZero for its move selection. To this end, we first recall
the standard MCTS.

Standard MCTS

A MCTS includes two main parts, the search tree and the search method. The search tree is
a data structure consisting of nodes connected by edges that holds all relevant information.
Each node represents one state of the environment and each edge between two nodes corre-
sponds to the action that transforms the parent state into the child state. For example, in
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terms of board games, each node represents one board configuration and each edge repre-
sents a legal move for one of the players starting from the board represented by the parent
state. In the following, we may use the terms node and state as well as edge and action
interchangeably.

We denote the nodes of the search tree by s0, . . . , sm (respectively by s if we only talk
about a single node) and the edges by a1, . . . , an (respectively by a if we only talk about a
single edge). Besides the correspondence to a state, a node s in the search tree also holds
information about its visit count n(s). This number keeps track of how often each node
is traversed during the search and is initialized with 0. For a node s with outgoing edge
a, the pair (s, a) is called a state-action pair. For each state-action pair (s, a), we also
keep track of the visit count n(s, a) (initially set to 0). Furthermore, to each such pair, we
associate its value Q(s, a). The value of a pair (s, a) encodes the average reward that all
simulations involving s and a yield. It is initialized with 0 as well. One important aspect to
keep in mind is that, for our application of MCTS to 2-player games, the tree contains two
perspectives, one for each player. This means that the information at each node is either
from the perspective of player A or from the perspective of player B.

In the beginning of the MCTS, the search tree is initialized with a root node representing
the state of the environment for which a promising action should be found. Then the following
four steps are repeated until a termination criterion is met:

1. Selection: Actions are selected from the root node to a leaf node following the search
method.

2. Expansion: Child nodes are added to the current leaf node and one child node is
selected.

3. Simulation: A (random) simulation is generated starting from the selected child node.
The simulation ends when an end state is reached (e.g. when the game ends with a
win for one of the two players).

4. Backpropagation: The result of the simulation is backpropagated through the tree
to update the information at each node that was traversed during this iteration.

With every iteration of the MCTS the search tree is extended by adding the children of
a leaf node. As the tree grows in this way, the values of the state-action pairs, which are
updated after each simulation, become more and more accurate. The iterations are usually
halted before these values converge to an optimum with standard termination criteria being
pre-defined time limits or iteration numbers. Finally, the action a from the root node s0
with either the highest visit count n(s0, a) or the highest value Q(s0, a) is chosen as the most
promising action. In this choice, ties are broken arbitrarily. In the following, we discuss the
four main steps of the MCTS in more detail.

Selection. A crucial part of the MCTS is the search method that is used in the selection
phase to traverse the search tree. The aim of the search method is to explore promising
regions of the search space and thereby estimate the state-action values Q(s0, a) of the root
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node s0. The most commonly used strategy is acting greedily with respect to the upper
confidence bound for trees (UCT) [KS06], which is based on the upper confidence bound
algorithm UCB1 [ACBF02] for classical multi-armed bandit problems.

The UCT algorithm provides a good tradeoff between exploitation, that is, reusing actions
that have proven to be good in the past, and exploration, that is, trying out new actions.
In UCT, exploitation is included via the values Q(s, a) of the state-action pairs (s, a) and
exploration is added through the visit counts n(s) and n(s, a). These two aspects are balanced
by an exploration constant γ, typically chosen such that 1 ≤ γ ≤ 2 with the theoretical
optimum being γ =

√
2. The UCT of a state-action pair (s, a) in the search tree is given by

UCT(s, a) = Q(s, a) + γ

√︄
logn(s)
n(s, a) (3.2.1)

if n(s, a) > 0 and by UCT(s, a) =∞ otherwise. The first term Q(s, a) measures the average
reward of simulations involving the state-action pair (s, a) and encourages the exploitation of
high-reward actions. The second term

√︃
logn(s)
n(s,a) weighs the total number of times the state s

was visited against the number of times the action a was chosen after visiting s, and thereby
drives exploration of rarely visited states.

Using UCT as a search method, the selection phase traverses the search tree until a leaf
node is reached always following the edge from a state s which maximizes UCT(s, a) among
all outgoing edges a of s. During this traversal, ties are broken arbitrarily. More precisely,
the selection phase with UCT can be described by the following algorithm.

Algorithm 4 Selection
Input: A search tree t
Output: A leaf node s of t

1: s← root of the search tree
2: while s is not a leaf node do
3: a1, . . . , an ← outgoing edges of s
4: compute UCT(s, ai) for all i = 1, . . . , n
5: select a ∈ {a1, . . . , an} such that

UCT(s, a) = max
i∈{1,...,n}

UCT(s, ai)

6: s← the child of s reached by a
7: return s
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Example 3.1. To illustrate the main steps of a MCTS, we accompany our descriptions with
a running example. We consider the following ongoing game of tic-tac-toe:

×
⃝

×

⃝

×⃝

Next up, is player×’s turn. Using a MCTS, we will determine which action this player
should choose given the current state of the board. We assume that a few iterations of the
MCTS have already been executed resulting in the following search tree:

×
⃝

×

⃝

×⃝

n = 4

×
⃝

×

⃝

×⃝

× n = 2
Q = 0

×
⃝

×

⃝

×⃝

× n = 1
Q = −1

×
⃝

×

⃝

×⃝

×
n = 1
Q = 1

×
⃝

×

⃝

×⃝

× ⃝
n = 0
Q = 0

×
⃝

×

⃝

×⃝

×
⃝

n = 1
Q = 1

We represent each node in the tree by the respective state of the board. The root of the
tree is the state for which we want to find a promising action. We have added to each node
s its visit count n(s) and to each child s′ of s the value Q(s, a) of the state-action pair (s, a),
where a is the action the leads from s to s′. We also note that the visit count n(s, a) of (s, a)
is given by n(s′).

Using UCT as a search method, we start at the root node s0 and compute for all its
three children the UCT. For the sake of simplicity, we use the exploration constant γ = 1.
Denoting the outgoing edges of s0 from left to right by a1, a2, a3 this yields

UCT(s0, a1) = 0 +
√︄

log 4
2 ≈ 0.83,

UCT(s0, a2) = −1 +
√︄

log 4
1 ≈ 0.18,

UCT(s0, a3) = 1 +
√︄

log 4
1 ≈ 2.18.

Consequently, the selection phase follows the edge a3 to the rightmost child of s0. Since this
child is a leaf node, the selection phase terminates and returns this node.
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Expansion. After the selection phase, we end up with a leaf node s of the search tree. If
this leaf node has not been visited before and is not the root, or if s is an end state, then we
can skip the expansion phase and immediately start a simulation starting from s. Otherwise,
that is, if s is either the root node or a non-end state that has been visited at least once, we
expand s. This means that we add all possible children s1, . . . , sm of s to the search tree.
In case of a board game, those are all possible board configurations that are reachable from
the board state represented by s by a single legal move. Then one of these children si is
selected arbitrarily. Starting from this child, a simulation will be started in the next phase.
The expansion phase is summarized in the following algorithm.

Algorithm 5 Expansion
Input: A search tree t and a leaf node s of t
Output: The (expanded) search tree t′ and a leaf node s′ of t′

1: if n(s) = 0 and s is not the root node then
2: return t and s
3: else if s is an end state then
4: return t and s
5: else
6: t′ ← add all possible children s1, . . . , sm of s to t
7: choose s′ ∈ {s1, . . . , sm} in some way
8: return t′ and s′

Example 3.1 (continuing from p. 26). Recall that the selection phase with UCT selected
the leaf node highlighted in red in the following search tree:

×
⃝

×

⃝

×⃝

n = 4

×
⃝

×

⃝

×⃝

× n = 2
Q = 0

×
⃝

×

⃝

×⃝

× n = 1
Q = −1

×
⃝

×

⃝

×⃝

×
n = 1
Q = 1

×
⃝

×

⃝

×⃝

× ⃝
n = 0
Q = 0

×
⃝

×

⃝

×⃝

×
⃝

n = 1
Q = 1

Since this node has already been visited and is not an end state (the game has not ended
yet), the expansion phase expands this node by adding all its children to the search tree.
This yields the following extended tree:
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×
⃝

×

⃝

×⃝

n = 4

×
⃝

×

⃝

×⃝

× n = 2
Q = 0

×
⃝

×

⃝

×⃝

× n = 1
Q = −1

×
⃝

×

⃝

×⃝

×
n = 1
Q = 1

×
⃝

×

⃝

×⃝

× ⃝
n = 0
Q = 0

×
⃝

×

⃝

×⃝

×
⃝

n = 1
Q = 1

×
⃝

×

⃝

×⃝

×

⃝
n = 0
Q = 0

×
⃝

×

⃝

×⃝

×

⃝
n = 0
Q = 0

Then one of the newly added nodes is selected for the simulation phase. If we use a
left-to-right selection strategy for this, the node

×
⃝

×

⃝

×⃝

×

⃝
n = 0
Q = 0

will be returned by the expansion phase.

Simulation. Once the expansion phase returns a state s from the (extended) search tree, a
simulation (also called playout or rollout) is started from this state. During this simulation,
a simulation strategy chooses (pseudo-)random moves for both players in a self-play style
until an end state is reached.

Often, the simulation strategy is chosen to be purely random. In this case, the simula-
tions are also referred to as light simulations. If domain knowledge is available, it can be
advantageous to include certain heuristics to influence the choice of moves. In this case, the
simulations are also called hard simulations. Using an adequate simulation strategy can im-
prove the performance of the MCTS significantly [Cha10]. However, while adding knowledge
to a strategy can lead to more accurate and reliable simulations, it can also cause a com-
putational overhead. This might lead to a lower number of iterations per second compared
to using a random (and fast) simulation strategy, which in turn might reduce the overall
accuracy of the MCTS. Consequently, there is always a trade-off between search and knowl-
edge when selecting a suitable simulation strategy. Additionally, a second trade-off between
exploration and exploitation has to be taken into account. A random simulation strategy
can lead to too much exploration causing the simulations to become unrealistic as too many
weak actions are chosen. On the other hand, if the strategy is too deterministic (i.e., if the
same moves are repeated over and over again) too much exploitation takes place. This leads
to biased simulations and can again decrease the effectiveness of the MCTS.

Once the simulation reaches an end state, the reward of this simulation is recorded and
returned. In combinatorial games between a player A and a player B, this reward is always
from the perspective of one of the two players and depends on which player has initiated the
MCTS. If the MCTS was started to find a promising action for player A, then the reward is
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counted positively whenever the simulation yields a win for player A and negatively whenever
the simulation yields a win for player B. Usually, the values +1 and −1 are chosen for this.
Draws lead to the reward 0.

The following algorithm describes the simulation phase for a combinatorial game with
rewards 0 and ±1.

Algorithm 6 Simulation
Input: A state s of the search tree
Output: Reward of a simulation starting from s

1: while s is not an end state do
2: a← select a legal action for s following the simulation strategy
3: s← apply action a to update the state s
4: if s is a draw then
5: return 0
6: else if the player who initiated the MCTS won the game then
7: return +1
8: else
9: return −1

Note that the states encountered during the simulation are not added to the search tree.
Only the reward of the simulation is recorded.

Example 3.1 (continuing from p. 27). Recall that the expansion phase has returned the
node highlighted in red in the following search tree:
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Now, starting from this node a game is played according to the simulation strategy. In
this case, there is only one possible move left. So, every simulation strategy would yield
the same result, which is a win for player×. Consequently, after executing this move, the
simulation phase returns +1 indicating that player×, who initiated the MCTS, won the
game.
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Backpropagation. During the backpropagation phase, the reward v obtained from the
simulation is used to update the information held in the search tree. In particular, for each
state-action pair on the path from the simulated node to the root node, the visit count is
increased by one and the reward v is used to update to the value of the pair. The visit counts
of the nodes themselves are also increased accordingly.

When updating the value of a state-action pair, one has to take the different perspectives
of the players into account. The reward of the simulation is always from the perspective of
the player who initiated the MCTS but some nodes in the search tree correspond to states
where the opponent is acting. From the perspective of the opponent, the reward of the
simulation is not v but −v. Assuming player A has initiated the MCTS, then the value
Q(s, a) of every state-action pair (s, a) where s is a state in which player A has to act are
updated using v. Conversely, the value Q(s, a) of every state-action pair (s, a) where s is a
state in which player B has to act are updated using −v. This gives rise to the following
algorithm.

Algorithm 7 Backpropagation
Input: A search tree t, a leaf node s′ of t, the reward v of a simulation starting from s′

Output: An updated version of the search tree t
1: n(s′)← n(s′) + 1 ▷ as a side effect t is updated
2: while s′ is not the root node do
3: s← the parent of s′

4: a← the action that leads from s to s′

5: if s is a state where the player who initiated the MCTS has to act then
6: Q(s, a)← n(s,a)Q(s,a)

n(s,a)+1 + v
n(s,a)+1 ▷ as a side effect t is updated

7: else
8: Q(s, a)← n(s,a)Q(s,a)

n(s,a)+1 − v
n(s,a)+1 ▷ as a side effect t is updated

9: n(s, a)← n(s, a) + 1 ▷ as a side effect t is updated
10: n(s)← n(s) + 1 ▷ as a side effect t is updated
11: s′ ← s
12: return t

We note that for evenly alternating combinatorial games, the backpropagation procedure
can also be phrased in a slightly different way. In these cases, the reward can be negated
when moving from one state-action pair to the next and then the values can be updated
by always adding v. This is the way the backpropagation phase is usually presented. Our
presentation, however, has the advantage that it is more flexible and also allows variable
move orders, i.e., situations where one player is allowed to make several consecutive moves.
This is particularly relevant for our application of QSAT, where games are not necessarily
evenly alternating.
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Example 3.1 (continuing from p. 29). Recall that the simulation phase started a simulation
from the node highlighted in red in the following search tree and returned the value +1
indicating a win for player×.
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Following Algorithm 7 for the backpropagation, we obtain the following updated search
tree:
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Note that the value of the last state-action pair has been updated by subtracting v = +1
because it was player ⃝’s turn, while the value of the first state-action pair was updated by
adding v as it was player×’s turn.

If the MCTS was stopped at this point and the value of the state-action pairs was used
as the final decision criterion, then the action to put the cross in the middle of the tic-tac-toe
board would be chosen.

Bringing the four sub-algorithms together gives the following procedure for a MCTS with
UCT as search method for a combinatorial game with results 0 and ±1. Note that in this
algorithm the final action is chosen based on the visit counts of the state-action pairs.
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Algorithm 8 MCTS
Input: A state s0 of the environment
Output: A promising action a for state s0

1: t← initialize search tree with root node s0
2: while within computational budget do
3: s← Selection(t)
4: t′, s′ ← Expansion(t, s)
5: v ← Simulation(s′)
6: t← Backpropagation(t′, s′, v)
7: a1, . . . , an ← outgoing edges of s0
8: select a ∈ {a1, . . . , an} such that n(s0, a) = maxi∈{1,...,n} n(s0, ai)
9: return a

MCTS in AlphaZero

The variant of MCTS that AlphaZero applies for its move selection differs slightly from
the standard MCTS described above. More precisely, AlphaZero uses PUCT (Predictor +
UCT) [Ros11] as a search method during the selection phase. In this variant of UCT, a
predictor is used in combination with UCT to traverse the search tree. The predictor can be
considered as an expert that guides the tree search towards promising actions, which reduces
the search breadth. In AlphaZero, this predictor is realized in form of a two-headed deep
neural network parameterized by certain parameters θ. The first head πθ of this network
maps states s of the environment to action probabilities πθ(s). These action probabilities are
then used to improve the selection phase in the MCTS.

Additionally, the second head νθ of the neural network predicts for a given state s the
estimated reward νθ(s) of this state. This prediction replaces the reward of the simulation
in the simulation phase. So, effectively AlphaZero replaces the simulation phase by an
evaluation phase where a deep neural network is used to evaluate a state directly. This is
particularly useful for large search spaces where (random) simulations do not provide much
information due to high variance. By replacing these sub-trees with a single prediction from
a neural network, the search depth is reduced.

In the following, we describe how the standard MCTS selection and simulation phase
have to be adapted to fit into the AlphaZero framework.

Selection. The output of the first neural network πθ, also called the policy network, is a
discrete probability distribution over all legal actions of the currently acting player. This
means that the action probabilities πθ(s) of a state s computed by πθ form a vector with
components πθ(a|s) := π(s)a ∈ [0, 1] for each state-action pair (s, a) such that ∑︁

a πθ(a|s) = 1.
These values represent the probability of selecting each action a in the given state s and are
integrated into the selection phase via the following search formula:

PUCT(s, a) = Q(s, a) + γ · πθ(a|s)
√︁
n(s)

n(s, a) + 1 . (3.2.2)
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Note that there are several differences but also certain similarities between the UCT
(Equation 3.2.1) and the equation above. First of all, the exploitation term Q(s, a) remains
the same. The exploration term πθ(a|s)

√
n(s)

n(s,a)+1 , however, has been adapted to integrate
the action probabilities πθ(a|s). Moreover, there is an additional exploitation bias in the
denominator of this term. By adding a plus one to the counts n(s, a) of all possible actions,
the immediate expansion of all unvisited nodes is prevented.
Remark. Theoretically the square root in the exploration term in Equation 3.2.2 should
cover the whole fraction, i.e. it should be

√︃
n(s)

n(s,a)+1 . However, AlphaZero uses the variant
from Equation 3.2.2 without giving any explanation why. In [XL21], the authors claim to
have used both versions with the AlphaZero version performing better. Consequently, in our
implementations we will also work with Equation 3.2.2.

The selection phase in AlphaZero then follows Algorithm 4 except for the fact that
UCT(s, a) is replaced by PUCT(s, a).

Evaluation (replaces Simulation). The expansion phase in AlphaZero is done as de-
scribed in Algorithm 5. Once this process finishes, we obtain a leaf node s of the search tree,
from which a standard MCTS would start a simulation. If the state s is an end state, then
in AlphaZero the result of this end state is used as the reward for the backpropagation (0 in
case of a draw, +1 if the player who initiated the MCTS won, and −1 otherwise). We note
that this is also what happens in a standard MCTS when a simulation is started from an end
state. However, if the state s returned by the expansion phase is not an end state, then the
procedure in AlphaZero really differs from the standard MCTS. In such a case, AlphaZero
replaces the simulation by a call to the neural network νθ, also called the value network. The
output νθ(s) of this neural network is a scalar value in the interval [−1, 1] which forms an
estimate of the probability of the current player winning from state s. Here, −1 represents
absolute certainty that the current player will lose and +1 represents absolute certainty that
the current player will win. Note that the value νθ(s) is always from the perspective of the
player acting in state s. To use the backpropagation procedure described for the standard
MCTS, this value has to be multiplied by −1 in case the active player in state s is not the
player who has initiated the MCTS. Then Algorithm 7 can be used for the backpropagation.

At the end of the MCTS in AlphaZero, the final action is chosen based on the visit counts
of the state-action pairs.

3.2.2 Self-play Reinforcement Learning

For the MCTS in AlphaZero to work properly, it is essential that the neural network πθ
knows which actions to consider as useful in a given state s and that the neural network νθ
knows how to relate states to (likely) winning positions. This is something which has to be
learned. To this end, a new reinforcement learning technique called self-play reinforcement
learning [SSS+17] is used to adapt the parameters θ of the networks in such a way that the
MCTS performs well.
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The general idea of self-play reinforcement learning is to collect data by letting AlphaZero
play games against itself and to then use this data to update the parameters θ in order to
improve the performance of AlphaZero in subsequent games. More precisely, the parameters
θ are initialized randomly and then the following two steps are alternated for a fixed number
of iterations (also called epochs):

1. Generate data by self-play games

2. Update parameters θ

In the data generation phase, the current version of AlphaZero plays several games against
itself. During each game, for each state s of the game, a MCTS is done as described in
the previous section. However, in this case, the final action in the MCTS is not chosen
deterministically but sampled randomly from a distribution computed from the visit counts
of the state-action pairs. More precisely, in the learning phase, the MCTS in AlphaZero
returns a discrete probability distribution p over all legal actions a for the player acting in
the root state s. Each component pa of this distribution is computed as

pa = n(s, a)1/τ∑︁
a n(s, a)1/τ ,

where τ is a temperature parameter that regulates exploration. For the first moves of a game
it is set to τ = 1. This causes actions to be selected proportionally to the visit counts of the
state-action pairs in the MCTS and leads to more exploration. As the game progresses, τ
is decreased and finally set to an infinitesimal value, resulting in a distribution that almost
always chooses the action a with the highest visit count n(s, a). Given the distribution p, an
action a is then sampled and the state s is updated according to this action. Once this is
done, the next AlphaZero MCTS is started to find a promising action for the updated state.
This process is continued until an end state is reached.

After each game, the game trace is stored as a set {(s1, p1, v1), . . . , (st, pt, vt)} of tuples
(si, pi, vi), where si is the state of the game at time i, pi is the distribution computed by the
MCTS with si as a root state and vi is the final result of the game. The result vi is 0 in case
the game ended in a draw, +1 if the player acting in state si ultimately won the game and
−1 otherwise. Note that vi is always from the perspective of the player acting in state si.

Once the final game ends, all the stored games traces are merged into one big set
{(s1, p1, v1), . . . , (sT , pT , vT )} for some T ∈ N. This data is then used to update the param-
eters θ of the neural networks by performing gradient descent to minimize the loss function

L(θ) =
T∑︂
t=1

(︃
(vt − νθ(st))2 − pTt · log πθ(st)

)︃
+ c∥θ∥.

The first part (vt − νθ(st))2 of this loss function is a mean-squared error that shall
improve the predictions of the value network νθ. In particular, the value network should
learn to associate the state st to the end result vt of the game where st appeared in. In this
way, over time, the network learns what states lead to wins (and losses).
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The second term pTt · log πθ(st) is a cross-entropy loss and affects the policy network.
We note that we use vector notation here. More precisely, pt and πθ(st) are both column
vectors (of the same length). Then pTt denotes the transpose of pt and is therefore a row
vector and log πθ(st) stands for a component-wise application of the logarithm. Finally,
pTt · log πθ(st) gives the usual vector product and results in a scalar value. With this loss
term, the parameters θ are updated so that the distribution πθ(st) computed by the policy
network πθ gets closer to the improved distribution pt obtained from the MCTS.

Finally, the last part c∥θ∥ of the loss function is an L2 weight regularization term that
shall prevent overfitting. The value c is a hyperparameter that controls the level of this
regularization.

To summarize, the results of the MCTS are used to update the parameters θ and thereby
improve the predictions of the neural networks. These improved predictions, in turn, help to
guide the MCTS in the next self-play games to more promising actions and consequently lead
to better MCTS results. This creates a constant learning stimulus and allows the AlphaZero
player to continuously improve.
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Chapter 4

AlphaZero for QBF Solving

As done in [XL21], we will apply the AlphaZero framework (in [XL21] called neural MCTS)
to solve QSAT problems. The foundation to do this is to consider QSAT as a 2-player
game as discussed in Section 2.3.3. More precisely, the crucial observation is Corollary 2.31.
Based on this, the idea is to use the AlphaZero framework to train two (perfect) players,
one existential player P∃ and one universal player P∀, for the QSAT game described by
Algorithm 3. To then determine the satisfiability of a given QBF ψ ∈ Q, we use P∃ and P∀
as players in Algorithm 3 and give ψ as input. If our two players are indeed perfect, then
based on Corollary 2.31 the outcome of this game determines the satisfiability of ψ.

However, to apply the AlphaZero framework to the problem of QSAT, the algorithm has
be adapted slightly. First of all, we have to find a suitable representation of QBFs that is
accessible for AlphaZero and that can be used as an input for a neural network. We present
one such representation in Section 4.1. Going along with this, we also discuss what network
architecture can be used for the policy and value network. Additionally, the 2-player game
derived from QSAT as presented in Algorithm 3 is not symmetric. The two players have
different goals; one player tries to make the formula true while the other tries to make the
formula false. In Section 4.2, we describe how to adapt the AlphaZero framework to this
situation. For all adaptions described in this chapter, we follow the suggestions in [XL21].

It has to be noted that, since the AlphaZero framework is ultimately a black box, we
cannot determine whether our players are really perfect. Consequently, the results produced
in this way are not provably correct (like the results of standard QBF solving techniques)
but should rather be considered as predictions. Nevertheless, we can empirically evaluate
the accuracy of the AlphaZero players, which will be done in Section 4.3.

4.1 QBF Graphs and GGNNs
In the classical application of AlphaZero to board games such as chess, shogi and Go, a
state of the game can be described essentially by taking a bird’s eye view picture of the
board. Computational, this “picture” is encoded in form of a multidimensional tensor with
one “pixel” (entry) for each position on the board. The policy and value networks are then
realized in form of two heads of a deep convolutional neural network (CNN) [KSH12] that
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takes these multidimensional tensors as input. The advantage of CNNs is that they allow to
efficiently work with high-dimensional data. Furthermore, CNNs also take into account the
spatial structure of the input, which is particularly useful for board games.

In case of the QSAT game, each state is a QBF (in PCNF). While one could still encode
such a formula in form of a “picture” and use CNNs, this does not seem like the best
approach since spatial information is not as relevant for QBF solving as it is for playing
chess or other board games. For example, the clauses of a QBF in PCNF as well as the
variables within each clause can be permuted without changing the underlying formula (and
its semantic evaluation). More precisely, QBFs exhibit a lot of symmetries which arise from
the semantics of propositional logic [KS18]. Exploiting these symmetries can (hopefully)
improve the learning efficiency. To this end, we consider a QBF encoding that preserves the
symmetries of the formula.

Let
ψ = Q1B1 . . . QkBk . C1 ∧ . . . ∧ Cm ∈ Q

be a given closed QBF in PCNF with alternating quantifiers Q1, . . . , Qk ∈ {∃, ∀}, variable
blocks B1, . . . , Bk ⊆ P such that ⋃︁k

i=1Bi = {x1, . . . , xn} and clauses C1, . . . , Cm ∈ L. We
represent ψ in form of an undirected graph Gψ = (Vψ, Eψ) with vertices Vψ and edges Eψ.
This graph contains one vertex for each variable xi, one vertex for the negation of each
variable ¬xi and one vertex for each clause Cj , that is,

Vψ = {x1, . . . , xn,¬x1, . . . ,¬xn, C1, . . . , Cm}.

Furthermore, the set of edges consists of the following four pairwise disjoint subsets:

1. The set of edges E∃,∀ between every consecutive existential and universal literal, i.e.,

E∃,∀ = {{l, l′} | l, l′ literals, q(l) = ∃, v(l) ∈ Bi, v(l′) ∈ Bi+1 for some 1 ≤ i < k}.

2. The set of edges E∀,∃ between every consecutive universal and existential literal, i.e.,

E∀,∃ = {{l, l′} | l, l′ literals, q(l) = ∀, v(l) ∈ Bi, v(l′) ∈ Bi+1 for some 1 ≤ i < k}.

3. The set of edges EC between every literal and each clause it appears in, i.e.,

EC = {{l, C} | l literal, C clause, l appears in C}.

4. The set of edges EX between every variable and its negation, i.e.,

EX = {{x1,¬x1}, . . . , {xn,¬xn}}.

The set of edges Eψ of Gψ is then given by

Eψ = E∃,∀ ∪ E∀,∃ ∪ EC ∪ EX .
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Example 4.1. To illustrate the encoding of QBFs in form of undirected graphs, we consider
the formula

∃x∀y∃z . (x ∨ y ∨ z) ∧ (y ∨ ¬z) ∧ (¬x ∨ z),
which is represented by the graph in Figure 4.1. To help distinguish between the four different
edge types, we have used different line styles. Edges in E∃,∀ are depicted in form of dashed
lines, edges in E∀,∃ in form of dotted lines, edges in EC in form of solid lines, and edges
in EX in form of double lines. Also, note that we represent the vertices in two different
styles. Vertices representing literals are depicted as circles and vertices representing clauses
are depicted as rectangles.

x ¬x y ¬y z ¬z

y ∨ ¬zx ∨ y ∨ z ¬x ∨ z

Figure 4.1: Encoding of a QBF in form of an undirected graph

The authors of [XL21] justify this encoding of QBFs in form of undirected graphs with
the following three reasons. First of all, the prefix of a QBF holds essential information
about the semantics of the formula. Two QBFs with the same matrix but different prefixes
can have drastically different semantic evaluations. Therefore, the edges in E∃,∀ and E∀,∃
are used to track the sequential information stored in the prefix. Furthermore, while the
variables only appear as positive literals in the matrix, they can appear both positively
and negatively in the matrix. This naturally leads to representing each variable xi by two
vertices, representing the pair of complementary literals xi and ¬xi. Finally, the reflexive
edges in EX allow to model the inherent connection between a literal and its negation.

After encoding a QBF in form of an undirected graph, a special gated graph neural
network (GGNN) [LTBZ15] is used to obtain the predictions in the AlphaZero MCTS. While
there are also other possible network architectures that allow to work with graphs [GSR+17,
BHB+18], the advantage of GGNNs is their straight-forward implementation.

To use a GGNN, we associate to each vertex v ∈ Vψ a hidden representation. This
hidden representation is a vector of real numbers that numerically quantifies each vertex.
Depending on whether a vertex represents a literal or a clause, this hidden message is ini-
tialized differently. We provide more information on this initialization in Section 4.3. To
then propagate information through the graph, the hidden representation of each vertex v is
combined linearly with the hidden representations of all neighbors of v to form the message
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from vertex v. In this process, the different edge types are treated differently. The com-
puted message is then used to update the hidden representation of v via a gated recurrent
unit (GRU) [CVMBB14]. Gated recurrent units, like LSTM cells [HS97], introduce a gating
mechanism to a neural network that allows to capture temporal information. This allows the
hidden representations of each node, over several iterations of the message passing process
just described, to capture the global structure and information of the entire input graph.
Finally, after a fixed number of iterations T (the so-called message passing time), the final
hidden messages are combined by two standard feedforward neural networks to obtain on
the one hand the action probabilities (policy network) and on the other hand the winning
probability (value network).

Equation 4.1.1 summarizes how the hidden representations and messages are updated at
each time step 0 ≤ t < T . In this description, the vector h(t)

v denotes the hidden represen-
tation of the vertex v at time t and m

(t)
v is the message from v. Furthermore, we denote

by E(v) the edges of the vertex v and A1, A2, A3, A4 are matrices (the so-called edge-weight
matrices).

m(t+1)
v =

∑︂
{v,w}

∈
E(v) ∩E∃,∀

A1h
(t)
w +

∑︂
{v,w}

∈
E(v) ∩E∀,∃

A2h
(t)
w +

∑︂
{v,w}

∈
E(v) ∩EC

A3h
(t)
w +

∑︂
{v,w}

∈
E(v) ∩EX

A4h
(t)
w

h(t+1)
v = GRU(h(t)

v ,m
(t+1)
v )

(4.1.1)

We note that first the messages m(t+1)
v of all vertices v ∈ Vψ are computed before the

hidden messages h(t+1)
v are updated. Furthermore, the output h(t+1)

v = GRU(h(t)
v ,m

(t+1)
v ) of

the gated recurrent unit is computed as follows:

x = σ(Wxm
(t+1)
v + Uxh

(t)
v + bx),

r = σ(Wrm
(t+1)
v + Urh

(t)
v + br),

h = tanh(Whm
(t+1)
v + Uh(r ⊙ h(t)

v ) + bh),
h(t+1)
v = (1− x)⊙ h(t)

v + x⊙ h,

where Wx,Wr,Wh, Ux, Ur, Uh are matrices, bx, br, bh are vectors, ⊙ denotes the Hadamard
product (component-wise multiplication) of two vectors and σ(x) = 1/(1+e−x) is the sigmoid
function, which, like tanh, is applied to a vector component-wise.

After the final iteration, the hidden messages are combined as follows to obtain the action
probabilities π and the winning probability ν:

π = softmax
(︃
σ

(︁
fπ(h(T )

v , h(0)
v )

)︁
⊙ gπ(h(T )

v )
)︃
,

ν = tanh
(︃
σ

(︁
fν(h(T )

v , h(0)
v )

)︁
⊙ gν(h(T )

v )
)︃
,
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where fπ, fν , gπ, gν are feedforward neural networks and softmax(x) normalizes a vector
x = (x1, . . . , xn) so that softmax(x)i = exi/

∑︁n
j=1 e

xj . In Section 4.3, we will specify more
precisely how the feedforward neural networks look like.

To end this section, we make a few observations about GGNNs:
• The networks fπ and gπ together with the shared computation of the hidden represen-

tations h(T )
v form the policy network. Analogously, the networks fν and gν together

with the shared computation of the hidden representations h(T )
v form the value network.

• The parameters θ of a GGNN that are updated during training are given by the
edge-weight matrices A1, A2, A3, A4, the parameters Wx,Wr,Wh, Ux, Ur, Uh, bx, br, bh
in the GRU and the parameters of the neural networks fπ, fν , gπ, gν .

• The only fixed hyperparameters of such a network are the message passing time T as
well as the size of the hidden representations h(t)

v and messages m(t)
v . In particular, the

size of the graph, that is, the number of vertices and edges, is unrestricted. This allows
to use a single GGNN to process all different graph sizes, and consequently all QBFs.

• The computation within a GGNN is invariant under graph isomorphisms, which helps
to capture the symmetries inherent to QBFs.

4.2 Asymmetry of QSAT
Since the self-play phase in the AlphaZero framework requires the algorithm to play against
itself, it is essential that the underlying game is symmetric. The QSAT game, however,
is asymmetric in terms of its winning condition. The existential player tries to make the
formula true while the universal player tries to make the formula false. Theoretically this still
allows to apply the standard AlphaZero framework to the QSAT game, however, as reported
in [XL21] this leads to a very poor performance. The authors believe that this comes from
the network getting confused as it has to learn two opposite tasks simultaneously. To solve
this problem, we follow the approach taken in [XL21] and use a separate policy and value
network for each player. More precisely, we have a policy network πθ∃ and value network
νθ∃ for the existential player P∃ and a completely independent policy network πθ∀ and value
network νθ∀ for the universal player P∀.

We consider each QSAT instance as an individual game. Given a QBF, we first encode the
formula in form of a graph as described in the previous section. Then, the AlphaZero MCTS
is used for the action selection of each player based on the player’s value and policy network.
In each state of the game, that is, for each QBF graph, each player can choose between two
possible actions, either setting the outermost variable to ⊤ or to ⊥. The MCTS takes as
input the current state of the game (the QBF graph) and either uses πθ∃ and νθ∃ or πθ∀ and
νθ∀ for the selection and evaluation. After the MCTS returns a promising action (or, during
training, a probability distribution over the two possible actions), the QBF graph is updated
according to the chosen variable assignment. This process continues until the underlying
formula simplifies to ⊤ or ⊥ with P∃ winning in the first case and P∀ winning in the latter
case.
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Due to the adaption of the AlphaZero framework to integrate two players, we also have
to change the learning procedure. In particular, during the self-play data generation phase,
we now let P∃, using the networks πθ∃ and νθ∃ , play against P∀, using the networks πθ∀ and
νθ∀ . For each game played, we now store two separate game traces. One for P∃ consisting of
all triples (si, pi, vi), where si is the state of the game, i.e., the QBF graph, at time i, pi is
the distribution computed by the MCTS with si as a root state and vi is the final result of
the game from the perspective of P∃. So, vi is +1 if P∃ won this game, and −1 otherwise.
We note that we only store a triple (si, pi, vi) for P∃ if it was the existential player’s turn in
state si. Similarly, we store a second game trace for P∀ consisting of all triples (sj , pj , vj)
with states sj , MCTS distributions pj and final results vj . For the universal player, the
result is +1 if P∀ won, and −1 otherwise. Dually to the other game trace, we only store a
triple (sj , pj , vj) for P∀ if it was the universal player’s turn in state sj .

After generating this data, we update the parameters of both players’ networks separately
using their individual game traces. Then, before starting the next iteration, we also apply the
arena phase that was used in AlphaGo Zero [SSS+17]. In this arena phase, we evaluate the
most recent parameter update. This is done by comparing the performance of the updated
existential player P ′

∃ to the best previous existential player P best
∃ . In particular, we let P ′

∃
play against the previous best universal player P best

∀ on a random subset of the training data
consisting only of satisfiable QBFs. Analogously, we also let P best

∃ play against P best
∀ on the

same subset of the training data. Finally, we compare the accuracy achieved by P ′
∃ to the

one of P best
∃ . If P ′

∃ wins this comparison, we set P best
∃ := P ′

∃, otherwise we discard the most
recent update and set P ′

∃ := P best
∃ . Then we repeat the same procedure to compare P ′

∀ to
P best

∀ , in this case only using unsatisfiable training examples, before starting the next data
generation phase.

4.3 Experimental Results
We have implemented an AlphaZero framework for QBF solving following the description of
the previous section. Our starting point for this was an open source Python implementation
of a vanilla AlphaZero algorithm available at

https://github.com/suragnair/alpha-zero-general.

In particular, we extended the implementation with a data structure for QBFs representing
the graph encoding from Section 4.1. Additionally, we used the Python machine learning
framework PyTorch [PGM+19] to implement gated graph neural networks. Finally, we
also implemented Algorithm 3 and integrated it into the adapted learning procedure for
AlphaZero. We note that our implementation together with all files necessary to reproduce
our experiments is available at

https://github.com/ClemensHofstadler/MCTS4QBF.

We used our implementation to train two players for the QSAT game. To this end, we
fixed the following specifications of the GGNN.
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For each call to the neural network, the hidden representation of each vertex v ∈ Vψ
of a QBF graph Gψ = (Vψ, Eψ) has to be initialized. This hidden representation de-
pends on what v represents with all hidden representations sharing the same hidden di-
mension N = 128. In particular, if v represents an existentially quantified literal its
hidden representation is initialized by h

(0)
v = (1, 0, 0, 1, 0, 0, 1, . . . , 0, 1, 0). Similarly, we

set h(0)
v = (0, 1, 0, 0, 1, 0, 0, 1, . . . , 0, 0, 1) if v represents a universally quantified literal and

h
(0)
v = (0, 0, 1, 0, 0, 1, . . . , 0, 1, 0, 0) if v represents a clause. This requires the edge-weight

matrices A1, A2, A3, A4 to be of size N ×N .
Furthermore, the feedforward networks fπ, fν , gπ, gν all consist of two fully-connected

layers with tanh activation function. The input dimension of fπ and fν is 2N and the input
dimension of gπ and gν is N . We note that the networks fπ and fν have the input size 2N
because we concatenate the two inputs h(T )

v and h(0)
v to one vector of size 2N and then pass

this vector through these networks. The output of the policy network fπ, gπ is a vector of
size two, while the output of the value network fν , gν is a single scalar value. Additionally,
we fix the message passing time T to be T = 10, which is the same value that was also used
in [XL21]. All parameters θ of the GGNN that are updated during training are initialized
randomly.

We also set the following hyperparameters for the AlphaZero MCTS. As done in [XL21],
we limit the number of MCTS iterations to 25. During the selection phase, we use PUCT
as stated in Equation 3.2.2 with the exploration constant γ =

√
2. As described in Sec-

tion 3.2.2, during learning, the AlphaZero MCTS returns a probability distribution over the
legal actions computed from the visit counts. We set the temperature parameter τ used in
this computation to τ = 1 for the whole game.

As training data, we generate 200 random QBFs (100 satisfiable, 100 unsatisfiable) in
PCNF. Each formula has between 19 and 23 bound (and no free) variables, roughly half of
which are existentially quantified. Furthermore, the matrix of each formula consists of 7 to
11 clauses, with clause sizes ranging from 2 to 5. While the prefix size and the number of
clauses are sampled uniformly from the respective ranges, the clause sizes are sampled from
a skewed distribution that favors clauses of larger size.

We execute a total of 30 epochs. After this number of iterations we stop the training
as then learning seems to have stalled (see also Figure 4.2). In each epoch, we let the two
players play 40 games to generate data. More precisely, we select 40 QBFs randomly from
the training data and use these formulas during the self-play phase. Here we deviate slightly
from the experiment described in [XL21] where the training data only consists of 20 formulas
and each of these formulas is used in every epoch. We decided not follows this approach
since it might more likely lead to overfitting than our approach. We note that we also
tried different numbers of games but 40 turned out to provide the best compromise between
improvements in learning and computational overhead.

The data collected during these games is then used to minimize the loss function with a
variant of stochastic gradient descent. In particular, we apply the Adam optimizer [KB14]
with an initial learning rate of 10−3 and a batch size of 32. The regularization constant c in
the loss function is set to c = 0. After updating the parameters, we use 20 randomly selected
formulas from the training data to compare the updated players to the best previous ones.
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Finally, after each epoch, we evaluate the resulting players on an independent evaluation set
consisting of 50 QBFs following the same distribution as the training data.

In Figure 4.2, we show how the accuracy of the two players on the evaluation data evolves
over the course of the training procedure. Additionally, we also plot the linear regression
line as an indicator of the overall trend. As this trend line shows, the accuracy constantly
increases, which indicates that the players continuously learn and improve. It is interesting
to note that, although the networks are initialized randomly, the players initially perform
better than random. In general, one would expect the players to reach an accuracy of
roughly 50% in epoch 0 (by epoch 0 we denote the initial evaluation benchmark before
starting training). However, the (random) players perform way better than that reaching
an accuracy of 70%. This shows that, even with random predictions by the networks, the
MCTS can still extract useful information from the game. This comes from the fact that
the value obtained in end states during the MCTS, which is independent of the network
predictions, is also backpropagated through the search tree.
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Figure 4.2: Accuracy on the evaluation data during training

In Figure 4.3 and Figure 4.4, we also illustrate the accuracies reached by the players
during the comparison phase. As these plots show, the new player does not always outperform
the best previous player. Consequently, by adding this comparison phase, we ensure that we
always continue working with the best currently available player. This helps to increase the
learning speed and efficiency.
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Figure 4.3: Comparison of the existential players
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Figure 4.4: Comparison of the universal players

The performance of the final players after 30 epochs on the evaluation dataset is flawless.
They reach an accuracy of 100%. To additionally verify this performance on independent
data, we use a test dataset consisting of 100 QBFs (50 satisfiable, 50 unsatisfiable) following
the same random distribution as the training and evaluation data. On this data, the final
players reach an accuracy of 94%. More precisely, of the 6 wrongly classified formulas 3 are
false positives, i.e., unsatisfiable formulas that are predicated to be satisfiable, and 3 are false
negatives, i.e., satisfiable formulas that are predicted to be unsatisfiable. This evaluation first
and foremost shows that, while the AlphaZero players are clearly not perfect players, they
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nevertheless provide a fairly accurate tool to determine the satisfiability of QBFs. We note
that these results also match what the authors in [XL21] report.

The main drawback of the AlphaZero approach, despite the fact that results are not
provable correct, is the computation time. Evaluating the 100 test formulas takes a total of
828 seconds, which is a lot, especially when compared to the 1 second that DepQBF needs
for the same task (see also Figure 4.5). Here, however, we have to note that this comparison
is in fact not totally fair. DepQBF is a highly optimized software written in C with the
main priority being speed, while our AlphaZero implementation is written in Python and
uses data structures that are more catered towards flexibility than speed. Furthermore,
all computations are done on a CPU. Using a GPU for the neural network computations
within AlphaZero could drastically reduce the computation time. Nevertheless, even if our
software was fully optimized, it would most likely still be a lot slower than a standard state-
of-the-art QBF solver. The main reason for this is that the message passing process in the
GGNN (see Equation 4.1.1), which has to be executed for every vertex over several time
steps, is computationally very intense. Consequently, each call to the neural network is very
expensive.

This brings up the question, whether it is really worth to do these costly computations,
or if we can achieve similar results with a standard MCTS that replaces the expensive neural
networks with cheap (random) simulations. To answer this question, we separated the two
main parts of the AlphaZero framework, the neural networks and the MCTS, and evaluated
each of these parts separately on the test data. In particular, in one experiment, we only used
the predictions of the policy network of our trained players for the move selection (without
any tree search), and in several additional experiments we used different MCTS variants with
(semi-)random simulations instead of neural network predictions for the move selection. The
results of these experiments are summarized in Figure 4.5.

More precisely, Figure 4.5 plots the time needed to evaluate all 100 test formulas against
the achieved accuracy. The data points correspond to the following approaches for the move
selection in Algorithm 3:

• AlphaZero: Using the trained AlphaZero players after 30 epochs.

• AlphaZero NN: Using only the policy networks of the trained AlphaZero players
for the move selection without any tree search. Given a state of the game, i.e., a
QBF graph, first, the action probabilities are computed with the policy network of the
currently acting player. Then the action with the highest probability is chosen and
executed.

• MCTS 25: Using a standard MCTS with UCT as search method and random simu-
lations (each MCTS consists of 25 iterations).

• MCTS 50: Using a standard MCTS with UCT as search method and random simu-
lations (each MCTS consists of 50 iterations).

• MCTS 2/3: Using a standard MCTS with UCT as search method and random sim-
ulations (each MCTS consists of 25 iterations). In this experiment, the players play in
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a best-of-three manner, that is, for each formula several games (at most 3) are played
until one of the players gets two wins.

• PUCT: Using a MCTS with PUCT as search method and random simulations (each
MCTS consists of 25 iterations). In this experiment, Equation 3.2.2 is used as a
search method but the action probabilities πθ(a|s) are replaced by data from random
simulations. In particular, in each state s 10 random rollouts are performed for each
of the two possible actions (a0 = ⊥ and a1 = ⊤) and the action probability πθ(ai|s)
is replaced by the relative frequency of wins of the player acting in state s in the 10
random simulations after performing action ai.

• MCTS+: Using a standard MCTS with UCT as search method and semi-random
simulations (each MCTS consists of 25 iterations). In this experiment, domain knowl-
edge is integrated into the simulation phase of the MCTS. In particular, unit and pure
literal elimination (Lemma 2.17 and 2.18) are applied whenever possible. Variables
that cannot be assigned by unit or pure literal elimination are still assigned randomly.

• DepQBF: For the sake of completeness, we also add a data point for the performance
of DepQBF.

We note that due to the stochastic nature of the standard MCTS variants, the respective
data points in Figure 4.5 correspond to the mean accuracy over 10 runs. Additionally, we
plot error bars showing the best and worst achieved result. All experiments were performed
on a laptop equipped with a 2.7 GHz Quad-Core Intel Core i7-6820HQ Processor with 16
GB of RAM running macOS version 12.0.1. We note that all our Python implementations
use Python 3.
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Figure 4.5: Accuracy and timings for solving 100 random QBFs

These experiments show that while the AlphaZero algorithm reaches a slightly higher
accuracy than a standard MCTS with 25 iterations (94% vs. 86% on average), the latter
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clearly outperforms the former in terms of computation time (828 sec vs. 35 sec). Surpris-
ingly, using the neural networks without any tree search leads to a very poor performance
that is just slightly better than random (57%). This shows that the main driver of the good
performance of the AlphaZero framework – at least for the problem of QSAT – is the MCTS.

It is noteworthy that the three MCTS variants MCTS 50, MCTS 2/3 and PUCT
perform almost identically in terms of average accuracy (93% vs. 91% vs. 91%), with the
PUCT variant being clearly the fastest of these three (65 sec vs. 76 sec respectively 83 sec).
This indicates that it could be worth looking into finding good predictor heuristics to replace
the expensive neural network predictions. In this way, one could achieve a similar (or even
better) accuracy with drastically less computational effort. Maybe, some of the heuristics
that are already successfully used in SAT solving could be used here as well.

The experiments also clearly show that applying domain knowledge in the simulations is
definitely advantageous for QSAT, as the MCTS variant with unit and pure literal elimination
reaches an accuracy of 100% while only taking marginally longer than the standard MCTS
(37 sec vs. 35 sec). Here, it is clearly helpful that these techniques are computationally very
cheap to apply. In future work, one could investigate whether it is also beneficial to use more
expensive QBF reasoning techniques such as CEGAR-based expansion or QCDCL.

All in all, our experiments show that the AlphaZero framework can be used as a fairly
accurate tool to predict the satisfiability of QBFs, thereby confirming the results communi-
cated in [XL21]. However, the expensive neural network computations lead to a long overall
computation time and consequently make this approach impractical for any real world ap-
plications. This problem can be overcome by replacing the neural network predictions by a
standard MCTS with domain knowledge integrated into the simulations. In this way, the
computations not only become more efficient but also more accurate results can be achieved.

Finally, we note that all the approaches in our experiments are ultimately black boxes that
produce only predictions and in general not provably correct results. Consequently, these
techniques alone are insufficient for any real world application where one has to correctly
determine the satisfiability of QBFs. In the following chapter, we present a way to integrate
a MCTS into a standard QBF solver in such a way that the correctness of the obtained
results is ensured.
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Chapter 5

MCTS for QBF Solving

The experiments from the previous section have shown that a standard MCTS (extended with
some basic variable elimination techniques) provides a fast and accurate way to determine
the satisfiability of QBFs. Based on these results, we test a different way to integrate a
MCTS into the QBF solving process which ensures correctness of the obtained results.

In particular, we want to use a MCTS as a preprocessing tool to simplify a formula before
handing it to a standard QBF solver. The idea here is to use the MCTS to obtain a good
assignment of the variables in the outermost quantifier block. If such an assignment can
be found, then we can simplify the formula according to it and solve the simplified formula
with the QBF solver. We note that this approach only works for satisfiable QBFs with
an existential outermost quantifier block, or dually, for unsatisfiable QBFs with a universal
outermost quantifier block. It is based on the following proposition which follows directly
from the semantic definition of QBF (Definition 2.12).

Proposition 5.1. Let ψ = Q1B1 . ϕ ∈ Q be a QBF with outermost quantifier Q1 ∈ {∀,∃}
and ϕ ∈ Q. If Q1 = ∃, then ψ is satisfiable if and only if there exists an assignment
A : B1 → {⊤,⊥} such that ϕ[A] is satisfiable. Dually, if Q1 = ∀, then ψ is unsatisfiable if
and only if there exists an assignment A : B1 → {⊤,⊥} such that ϕ[A] is unsatisfiable.

This proposition leads to the following procedure to determine the satisfiability of a QBF
ψ = Q1B1 . ϕ ∈ Q. First, we play one QSAT game following Algorithm 3 using a standard
MCTS for the move selection of both players. We assist the MCTS by universal reduction
and apply unit and pure literal elimination whenever possible. During this game, we keep
track of the variable assignments. In particular, we collect the assignments of the variables
in the outermost quantifier block B1 in a partial assignment A : B1 → {⊤,⊥}. If the game
ends with a win for the existential player and Q1 = ∃, we give the simplified QBF ϕ[A] as
input to a standard QBF solver. If the solver returns that ϕ[A] is satisfiable, then based on
Proposition 5.1, the original formula ψ must be satisfiable as well. Dually, we can also give
the simplified QBF ϕ[A] as input to the standard solver, if the QSAT game ends with a win
for the universal player and Q1 = ∀. If the solver returns that ϕ[A] is unsatisfiable, then so
must be ψ according to Proposition 5.1.

However, in all other cases nothing about the satisfiability of the original formula ψ can
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be said. This, in particular, includes the case when the result of the game does not match
the prefix structure of ψ, i.e., when the existential player wins but Q1 = ∀, or dually, when
the universal player wins but Q1 = ∃, or when the result of the QBF solver does not agree
with the result of the game, that is, when the existential player wins but ϕ[A] turns out to be
unsatisfiable, or dually, when the universal player wins but ϕ[A] turns out to be satisfiable.
We note that the latter situation can appear for example when the partial assignment A
computed during the execution of Algorithm 3 is not satisfiability preserving. In all these
cases, the standard QBF solver has to be called again with ψ as input. We have summarized
this procedure in form of a flowchart diagram in Figure 5.1.

We note that in an unsuccessful attempt of the approach described above, two calls to the
QBF solver are needed, and consequently, time is lost compared to directly giving ψ as input
to the solver. However, the hope is that in most cases the approach is successful and allows to
save some time. The underlying motivation behind this is that one run of Algorithm 3 with an
efficient MCTS should be quicker than the procedures that QBF solvers apply. Consequently,
this leads to the idea of outsourcing some of the computations to determine the satisfiability
of ψ from the standard QBF solver to Algorithm 3. In particular, we hope that the simplified
formula ϕ[A] can be solved by the solver substantially faster than the original formula ψ. In
fact, ideally we would hope that the MCTS is efficient and fast enough so that the overall
computation time of running Algorithm 3 and solving the simplified formula ϕ[A] is lower
than the time the solver would need to determine the satisfiability of ψ directly.

We have implemented the approach described above in the C program MCTSsolve. It is
based on the code of the QBF preprocessor Bloqqer [BLS11] and is available together with
our other implementations at

https://github.com/ClemensHofstadler/MCTS4QBF.

We tested our implementation on 100 random QBFs generated by the QBF fuzzer
BlocksQBF1 which generates random formulas in PCNF according to the model described
in [CI05]. Each of these formulas is of the form ∃B1∀B2∃B3 . ϕ where |B1| = 7, |B2| = 12,
|B3| = 12 and ϕ is a propositional formula in CNF consisting of 470 clauses, each with 3 lit-
erals from the outermost quantifier block and 2 literals from both the middle and innermost
quantifier block. Of the 100 instances 58 are satisfiable.

The QBF solver DepQBF takes a total of 4.37 seconds to evaluate all 100 formulas. In
contrast to that, our implementation needs 17.2 seconds for the same task if we do 1000
MCTS iterations for each move selection. Almost 79% (13.6 sec) of this time is spent on the
MCTS. Out of the 58 satisfiable formulas, our approach manages to correctly solve 33 using
the partial assignment from the MCTS. Additionally, we note that it never happens that a
second call to the solver is necessary. However, for precisely a quarter of the formulas the
prediction from Algorithm 3 does not match the actual semantic evaluation of the formula.
In Figure 5.2, we plot for each formula the logarithm of the ratio of the solving time needed
by our approach compared to DepQBF. As this figure shows, only three out of the 100
formulas can be solved quicker using our approach. For all other instances, our approach is
slower than DepQBF and for 15 formulas it is even more than 10-times slower. While it is

1available at http://fmv.jku.at/blocksqbf/
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Figure 5.1: Flowchart of our approach to QSAT involving MCTS
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clear that our approach cannot be faster than DepQBF for the unsatisfiable instances (this
follows from the prefix structure of the formulas), it is surprising that the same apparently
also holds for the satisfiable formulas. It is particularly notable that the biggest discrepancies
in solving time are for satisfiable instances as can be seen in Figure 5.2. This data clearly
shows that our approach is not competitive against state-of-the-art QBF solvers.
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Figure 5.2: Log ratios of solving times for 100 random formulas

We note that we also applied our approach to the QBFs from the crafted instances track
of QBFEVAL’20 but for each of these formulas either the prefix structure did not match with
the semantic evaluation (existential outermost quantifier block but unsatisfiable formula or
universal outermost quantifier block but satisfiable formula) or Algorithm 3 yielded a wrong
prediction. Consequently, also for all these instances our approach was slower than DepQBF.

Although our previous experiments did not lead to competitive results, we want to fur-
ther explore the possibility of including a MCTS into the QBF solving process. One idea is
to utilize information about an input formula ψ ∈ Q gained during an execution of Algo-
rithm 3 with MCTS to determine when to switch from one solving approach to another. A
MCTS allows to compute for each variable (that cannot be assigned by unit or pure literal
elimination) an estimate of the winning probability when setting this variable to ⊤ or ⊥. We
want to use these probabilities as a stopping criterion for the splitting phase in the cube and
conquer approach implemented in the distributed solver Paracooba [HFB20]. In particular,
we want to investigate whether it is beneficial to stop the splitting of a given formula once
these probabilities strongly deviate from 50 : 50. We suspect that such a deviation could
indicate that the formula becomes easy to solve, and hence, can be solved directly without
any further splitting. Additionally, we also want to explore whether the percentage of the
search tree covered by the MCTS can be used as a metric to determine when to switch from
splitting a formula to solving the subformulas.
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Chapter 6

Conclusion and Outlook

To summarize, in this work we adapt the famous AlphaZero framework to the application of
QSAT following the approach described in [XL21]. To this end, we consider the satisfiability
problem of QBF as a game between an existential and a universal player. We train two
players for this game using the adapted AlphaZero algorithm, where QBFs are encoded in
form of undirected graphs and these graphs are used as input to gated graph neural networks.

One of our main contributions in this work is to test and evaluate this approach. We show
empirically that the trained AlphaZero players provide a very accurate, yet not perfect tool
to determine the satisfiability of QBFs. This coincides with the results reported in [XL21].
However, our experiments also reveal a main drawback of this approach: long computation
times caused by expensive calls to the neural networks. In further experiments, we verify
that a classical MCTS (without any neural networks) can achieve similar results to the
AlphaZero players while only needing a fraction of the computation time. We note that
different variants of MCTS perform very similarly on our task of QSAT. Furthermore, if
assisted by some basic variable elimination techniques, the classical MCTS can even achieve
100% accuracy on our test data.

A second problem of the AlphaZero approach is that it is ultimately a black box algorithm
that cannot produce provably correct results. To overcome this problem, we propose a
different way to include MCTS into the QBF solving process as the second main contribution
of this work. More precisely, we use the QSAT game with a classical MCTS for move selection
as a preprocessing step before handing a QBF over to a standard QBF solver. During the
game, we collect the assignments of the variables in the outermost quantifier block. If the
result of the QSAT game matches the prefix structure of the formula, we use this partial
assignment to simplify the formula and then solve the simplified formula with the standard
solver. We test this approach on randomly generated QBFs. Our experiments show that,
while for many of the formulas a correct partial assignment can be found that allows to
simplify the formula, our approach is still almost always slower than giving the formula
directly to the QBF solver without any MCTS preprocessing.

In future work, we want to explore further possibilities of supporting a standard QBF
solver by MCTS. In particular, we want to use MCTS to gain information and gather statis-
tics about an input formula and then use this data to guide the solver.
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