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Framework for verifying operator statements

(Raab, Regensburger, Hossein Poor, 2021)

Starting point: Statement about matrices or operators to prove

1 Translation:

i. Phrase all properties in terms of identities
ii. Convert identities into noncommutative polynomials

2 Solving: Verify ideal membership of claim

3 Interpretation: Consider different settings
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More formally...

Setting is encoded in labelled quiver Q. ¢ ___— ~___—

Vertices and edges of Q are assigned objects and morphisms.

f € R{X) compatible with Q <= monomials of f are paths in Q with
same start and end.
= Compatible polynomials have realizations as morphisms.

Let F C R(X) and f € (F). Then, for every labelled quiver Q and
every representation of Q in an R-linear category s.t.

1. f and all elements of F are compatible with Q, and
2. realizations of all elements of F are zero,
we have that the realization of f is zero.
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Applications

Framework implemented in the MATHEMATICA and SAGEMATH
package OperatorGB. Available at

https://clemenshofstadler.com/software/

Successfully used to automatically (im)prove statements in the
field of

e generalised inverses e homological algebra
(more specifically: (more specifically:
reverse order laws) diagram chases)


https://clemenshofstadler.com/software/
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A, B, C matrices s.t. M = ABC exists. Let
P =ATABCCT and Q = CCTBTATA.
Then, PQ = (PQ)?, R(A*AP) 2 R(Q*),
R(CC*P*) C R(Q) iff

Mt = CTBTAT,

Translation: R(X) CR(Y) & 3Z:X=YZ

Proof of sufficiency in Q(X) with |X| = 20:
Assumptions: fq,...,f3

with max; deg(f;) = 20
Claim: h:==m' —cfbfaf, Verify: h € (f1,...,fx3)

Interpretation: matrices, Hilbert spaces, involutive categories,. ..
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Demonstration in MATHEMATICA
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Outlook

e Integration of further inference steps + theoretical
foundation
e Find further areas of application



