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Motivation

Theorem (Werner, 1994)
Let A ∈ Cm×n and B ∈ Cn×k with inner inverses A− and B−. If
A−ABB− is idempotent, then B−A− is an inner inverse of AB.

Goal
Prove such statements automatically!

How?
statement about

operators
noncommutative

polynomials

assumptions⇒
claim

statement about
polynomials

formal

computation

translate

solve

interpret
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Framework for verifying operator statements

(Raab, Regensburger, Hossein Poor, 2021)

Starting point: Statement about matrices or operators to prove

1 Translation:
i. Phrase all properties in terms of identities
ii. Convert identities into noncommutative polynomials

2 Solving: Verify ideal membership of claim

3 Interpretation: Consider different settings
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More formally. . .

Setting is encoded in labelled quiver Q.

Cm Cn Ck

A−

A

B−

B
1234567

Quiver representations in an R-linear category
Vertices and edges of Q are assigned objects and morphisms.

f ∈ R〈X〉 compatible with Q ⇐⇒ monomials of f are paths in Q with
same start and end.⇒ Compatible polynomials have realizations as morphisms.

Theorem (Raab, Regensburger, Hossein Poor, 2021)
Let F ⊆ R〈X〉 and f ∈ (F). Then, for every labelled quiver Q and
every representation of Q in an R-linear category s.t.

1. f and all elements of F are compatible with Q, and
2. realizations of all elements of F are zero,

we have that the realization of f is zero.
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Example revisited

Theorem (Werner, 1994)
Let A ∈ Cm×n and B ∈ Cn×k with inner inverses A− and B−. If
A−ABB− is idempotent, then B−A− is an inner inverse of AB.

Assumptions:

AA−A = A, BB−B = B, (A−ABB−)2 = A−ABB−

Claim: ABB−A−AB = AB

Then, “assumptions ⇒ claim” since

f = f1(bb
−b− bb−a−abb−b) + (a− abb−a−a)f2 + af3b.

Cm V W

A−

A

B−

B
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Applications

Framework implemented in the MATHEMATICA and SAGEMATH

package OperatorGB. Available at

https://clemenshofstadler.com/software/

Successfully used to automatically (im)prove statements in the
field of

• generalised inverses
(more specifically:
reverse order laws)

• homological algebra
(more specifically:
diagram chases)
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Example: product of three Moore-Penrose inverses

Theorem (Hartwig, 1986)
A,B,C matrices s.t. M = ABC exists. Let
P = A†ABCC† and Q = CC†B†A†A.
Then, PQ = (PQ)2,R(A∗AP)= R(Q∗),
R(CC∗P∗)= R(Q) iff

M† = C†B†A†.

Translation: R(X) ⊆ R(Y) ⇔ ∃Z : X = YZ

Proof of sufficiency in Q〈X〉 with |X| = 22:

Assumptions: f1, . . . , f34
with maxi deg(fi) = 20

•

•

•

•

m†

(m†)∗

a

a†

a∗

(a†)∗

bb† b∗ (b†)∗

c

c†

c∗

(c†)∗

t,u t∗,u∗

v,w v∗,w∗

Claim: h := m† − c†b†a†, Verify: h ∈ (f1, . . . , f34)

Interpretation: matrices, Hilbert spaces, involutive categories,. . . 12
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Example: Five lemma

Theorem (Five lemma)
Consider the following commutative diagram with exact rows in
an abelian category.

A B C D E

A ′ B ′ C ′ D ′ E ′

a b c d

a ′ b ′ c ′ d ′

α β γ δ ε

If α is an epimorphism,
β, δ are isomorphisms
and ε is a monomorphism,
then γ is an isomorphism.

• f monomorphism iff ∀g : fg = 0⇒ g = 0

• f epimorphism iff ∀g : gf = 0⇒ g = 0, or equivalently
∀g∃h, e : codomain(f) = codomain(g) ⇒ fh = ge with e epi

Demonstration in MATHEMATICA
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Conclusion

Summary

• Framework + software for automated proofs of operator
statements
◦ Proofs rely on Gröbner bases and reduction to zero

• Illustrated on “real world” examples
• Integrate properties beyond simple identities

◦ Cancellability assumptions, existential claims,. . .
◦ Requires finding polynomials with special form in ideal

(e.g. by eliminating variables, ideal intersections, . . . )

Outlook

• Integration of further inference steps + theoretical
foundation

• Find further areas of application
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