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MCTS

Given: Two-player, fully-observable game with game tree

Task: Find promising action in current state

Example:
VAN N

NI AN



MCTS

e States: So, 51,52
e Actions: aj, ay
o Atiributes of nodes

o Q: current value of the node
o n: number of visits
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MCTS in AlphaZero
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Traverse tree following
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PUCB(S) =
Q Px(a|P(S))VN
n+1 Ty n+1

P(S)...Parentof S
a...action from P(S)to S



MCTS in AlphaZero
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if not visited Sy

L : compute P(A | Sx) = px(Sk)
[backpropagatlon] if not visited S and k # 0
simulate Sy

else
expand Sy
simulate child C with action

YES ¥ a = argmax,,Pr(a’ | Sy)
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Training by self-play

1: Initialize player with random parameters =
2: fore~1,...,Edo

3 Generate data by self-play games

4: Update parameters 7

5: Compare new player to best player

6: return




Training by self-play

3: Generate data by self-play games

1t 1
2. fork«1,...,Ndo
3: St « initial board
4 while S; is not an end state do
5 pt « Pr(A | St, MCTS)
6: sample move a; from py
7 save data (S, pt, zt), Where z, is the game result
8: St+1 « new board after doing move a
9: te—t+1
10: return {(S¢, pt,z¢) |1 <t < T}




Training by self-play

4: Update parameters 7t

1: Given data {(S¢, pt,zt) | 1 < t < T}, use gradient descent to
update parameters 7t to minimize

.
L= ((zt—va(S))* — p{logpx(St)) + c|n?,

t=1

with hyperparameter c.

10



Training by self-play

Compare new player to best player

N a s w2

. ' «+ parameters of the best previous player
. let 7t play M games against 7t/
. if mwins > 55% of these game then

mark 7t as the best player
else

T 7
return

11
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QBFs

QBF = Quantified Boolean Formula

e Extension of propositional logic over boolean variables
with 4,V

e Canonical PSPACE-complete problem

e Many application domains: planning, model checking,. ..

closed QBF in prenex CNF

A

FJv,wVx,y Jz. (x V z) N(w Vy V z)|\ w

~

prefix matrix (CNF)

clause

12
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QBF solving as a game

while ¢ ¢ {T, L}
if Q=3xQ’
Existential player chooses assignment T € {T, 1} for x.
else
Universal player chooses assignment T € {T, L} for x.
Q — Q/) P — (P[ - T]
ife=T
return Existential player wins
else
return Universal player wins

o Q. is true iff existential player has winning strategy
e Q. is false iff universal player has winning strategy
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QBF solving as a game

Y.y
T J J 1
T
Given two perfect players, one game suffices to solve a QBF.
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Solving QBFs with AlphaZero

Idea:

1. Use AlphaZero to learn two (perfect) players 3, my.
2. Given Q.¢, let 13 play against .
3. Predict Q. to be true if 13 wins and to be false if 7ty wins.
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How to represent QBFs?

Process QBF graphs with a gated graph neural network.

1: Initialize hﬁo) for each vertex v with a vector in RN

2: fort «0,. —1do

3: mﬁ”” — ZweN A, h for each vertex v

4 nittY GRU( . ,mvt“ ) for each vertex v

5:pn o Yooy il L), ve e Yoy (R R,
with neural networks fy, f,

6: return softmax(p,), tanh(v,)
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QBF solving is asymmetric

e Players have different goals
¢ Not necessarily evenly alternating
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QBF solving is asymmetric

e Players have different goals
¢ Not necessarily evenly alternating

Solution:

e Extend AlphaZero to train two networks with different goals
simultaneously

e Take more care during the MCTS

19



Training by 2-player-self-play

1: Initialize players with random parameters 73, v
2. fore~1,...,Edo

3:

o N o gk

Generate data by self-play games

Update parameters 75

Compare new player to best existential player
Generate data by self-play games

Update parameters 7y

Compare new player to best universal player

9: return 73, y

20
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Training

Starting point
https://github.com/suragnair/alpha-zero-general

After doing the adaptations, we trained two players for

e 16 epochs with
e 20 self-play games each
e using 40 MCTS iterations per move

on a training set consisting of

e 100 random QBFs (50 true, 50 false) with
e 10 — 40 variables and
e 5—20 clauses

21
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Conclusion & Outlook

AlphaZero can be adapted to successfully solve QBFs

In fact, MCTS can be used to successfully solve QBFs
Existential player seems to be better than universal player
Try to find good predictor heuristics

Try to integrate MCTS into QBF solver (e.g. to find good
partial assigments)
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