

Clemens Hofstadler, supervised by Univ.-Prof. Dr. Martina Seidl Institute for Algebra, JKU Linz Seminar Algebra and Discrete Mathematics, 10 June 2021

THE ALPHAZERO FRAMEWORK

- Al framework to learn two-player, fully-observable, symmetric games
- AlphaZero learns (almost) tabula-rasa

- Al framework to learn two-player, fully-observable, symmetric games
- AlphaZero learns (almost) tabula-rasa

AlphaZero =

- Al framework to learn two-player, fully-observable, symmetric games
- AlphaZero learns (almost) tabula-rasa

AlphaZero =

- Al framework to learn two-player, fully-observable, symmetric games
- AlphaZero learns (almost) tabula-rasa

AlphaZero =

- AI framework to learn two-player, fully-observable, symmetric games
- AlphaZero learns (almost) tabula-rasa

AlphaZero =

- AI framework to learn two-player, fully-observable, symmetric games
- AlphaZero learns (almost) tabula-rasa

AlphaZero =

Given: Two-player, fully-observable game with game tree

Task: Find promising action in current state

Example:

- States: S₀, S₁, S₂
- Actions: a_1, a_2
- Attributes of nodes
 - Q: current value of the node
 - n: number of visits

Traverse tree following upper confidence bound

$$\begin{aligned} \mathsf{UCB}(S) &= \frac{\mathsf{Q}}{\mathsf{n}} + \gamma \sqrt{\frac{\ln \mathsf{N}}{\mathsf{n}}}\\ \mathsf{UCB}(S) &= \infty, \quad \text{if } \mathsf{n} = \mathsf{0}. \end{aligned}$$

 $\gamma \dots$ hyperparamter N . . . # visits of parent node

 $\label{eq:simulate} \begin{array}{l} \mbox{if not visited } S_k \mbox{ and } k \neq 0 \\ \mbox{ simulate } S_k \\ \mbox{else} \end{array}$

expand S_k simulate child C

Termination criteria:

- Timeout
- Max. number of iterations exceeded

Return relative frequencies

Traverse tree following Predictor + UCB

$$\begin{aligned} &\mathsf{PUCB}(S) = \\ & \frac{Q}{n+1} + \gamma \, \frac{\mathsf{P}_{\pi}(a \mid \mathsf{P}(S)) \sqrt{\mathsf{N}}}{n+1} \end{aligned}$$

P(S)... Parent of S a...action from P(S) to S

 $\label{eq:states} \begin{array}{l} \text{if not visited } S_k \\ \text{compute } \mathsf{P}_{\pi}(A \mid S_k) = \mathfrak{p}_{\pi}(S_k) \\ \text{if not visited } S_k \text{ and } k \neq 0 \\ \text{simulate } S_k \\ \text{else} \end{array}$

 $\begin{array}{l} \text{expand } S_k \\ \text{simulate child } C \text{ with action} \\ a = \text{argmax}_{a'} P_{\pi}(a' \mid S_k) \end{array}$

MCTS in AlphaZero

MCTS in AlphaZero

Termination criteria:

- Timeout
- Max. number of iterations exceeded

Return relative frequencies

- 1: Initialize player with random parameters π
- 2: for $e \leftarrow 1, \dots, E$ do
- 3: Generate data by self-play games
- 4: Update parameters π
- 5: Compare new player to best player
- 6: return π

3: Generate data by self-play games

1: t ← 1 2: for $k \leftarrow 1, \ldots, N$ do 3: $S_t \leftarrow initial board$ while S₊ is not an end state do 4: $p_t \leftarrow P_{\pi}(A \mid S_t, MCTS)$ 5: 6: sample move a_t from p_t save data (S_t, p_t, z_t) , where z_t is the game result 7: $S_{t+1} \leftarrow$ new board after doing move a_t 8: $t \leftarrow t + 1$ 9: 10: return { $(S_t, p_t, z_t) \mid 1 < t < T$ }

 $\mathbf{9}$

4: Update parameters π

1: Given data {(S_t, p_t, z_t) | $1 \le t \le T$ }, use gradient descent to update parameters π to minimize

$$L = \sum_{t=1}^{T} \left((z_t - \nu_{\pi}(S_t))^2 - p_t^T \log p_{\pi}(S_t) \right) + c \|\pi\|^2,$$

with hyperparameter c.

5: Compare new player to best player

- 1: $\pi' \leftarrow$ parameters of the best previous player
- 2: let π play M games against π'
- 3: if π wins $\geq 55\%$ of these game then
- 4: mark π as the best player
- 5: **else**
- 6: $\pi \leftarrow \pi'$
- 7: return π

ALPHAZERO FOR QBF SOLVING

QBF = Quantified Boolean Formula

- Extension of propositional logic over boolean variables with ∃, ∀
- Canonical PSPACE-complete problem
- Many application domains: planning, model checking,...

QBF = Quantified Boolean Formula

- Extension of propositional logic over boolean variables with ∃, ∀
- Canonical PSPACE-complete problem
- Many application domains: planning, model checking,...

$$\exists v, w \,\forall x, y \,\exists z. \, (x \lor z) \land (v \lor \bar{y} \lor \bar{z}) \land \bar{w}$$

QBF = Quantified Boolean Formula

- Extension of propositional logic over boolean variables with ∃, ∀
- Canonical PSPACE-complete problem
- Many application domains: planning, model checking,...

closed QBF in prenex CNF

 $\exists v, w \, \forall x, y \, \exists z. \, (x \lor z) \land (v \lor \bar{y} \lor \bar{z}) \land \bar{w}$

QBF = Quantified Boolean Formula

- Extension of propositional logic over boolean variables with ∃, ∀
- Canonical PSPACE-complete problem
- Many application domains: planning, model checking,...

closed QBF in prenex CNF

 $\exists v, w \, \forall x, y \, \exists z. \, (x \lor z) \land (v \lor \bar{y} \lor \bar{z}) \land \bar{w}$

prefix

QBF = Quantified Boolean Formula

- Extension of propositional logic over boolean variables with ∃, ∀
- Canonical PSPACE-complete problem
- Many application domains: planning, model checking,...

closed QBF in prenex CNF

$$\underbrace{\exists v, w \,\forall x, y \,\exists z. \, (x \lor z) \land (v \lor \bar{y} \lor \bar{z}) \land \bar{w}}_{\text{prefix}}$$

QBF = Quantified Boolean Formula

- Extension of propositional logic over boolean variables with ∃, ∀
- Canonical PSPACE-complete problem
- Many application domains: planning, model checking,...

• A closed QBF can either be true or false.

- A closed QBF can either be true or false.
- The QBF \top is true.
- The QBF \perp is false.

- A closed QBF can either be true or false.
- The QBF \top is true.
- The QBF \perp is false.
- The QBF $\forall x \ Q. \ \phi$ is true \iff $Q. \ \phi[x = \top] \text{ and } Q. \ \phi[x = \bot] \text{ are true.}$

- A closed QBF can either be true or false.
- The QBF \top is true.
- The QBF \perp is false.
- The QBF $\forall x \ Q. \ \phi$ is true \iff $Q. \ \phi[x = \top]$ and $Q. \ \phi[x = \bot]$ are true.
- The QBF $\exists x \ Q. \ \phi$ is true \iff $Q. \ \phi[x = \top] \text{ or } Q. \ \phi[x = \bot]$ is true.

- A closed QBF can either be true or false.
- The QBF \top is true.
- The QBF \perp is false.
- The QBF $\forall x \ Q. \ \phi$ is true \iff $Q. \ \phi[x = \top]$ and $Q. \ \phi[x = \bot]$ are true.
- The QBF $\exists x \, Q. \, \phi$ is true \iff $Q. \, \phi[x = \top] \text{ or } Q. \, \phi[x = \bot]$ is true.

Task: Given QBF $Q.\phi$, determine whether $Q.\phi$ is true or false.

Task: Given QBF $Q.\phi$, determine whether $Q.\phi$ is true or false.

Task: Given QBF $Q.\phi$, determine whether $Q.\phi$ is true or false.

while $\varphi \notin \{\top, \bot\}$

if $Q = \exists x Q'$

Existential player chooses assignment $\mathsf{T} \in \{\top, \bot\}$ for x.

else

Universal player chooses assignment $T \in \{\top, \bot\}$ for x. $\mathcal{Q} \leftarrow \mathcal{Q}', \quad \phi \leftarrow \phi[x = T]$ if $\phi = \top$

return Existential player wins

else

return Universal player wins

Task: Given QBF $Q.\phi$, determine whether $Q.\phi$ is true or false.

while $\varphi \notin \{\top, \bot\}$

if $Q = \exists x Q'$

Existential player chooses assignment $\mathsf{T} \in \{\top, \bot\}$ for x.

else

 $\begin{array}{l} \text{Universal player chooses assignment } T \in \{\top, \bot\} \text{ for } x. \\ \mathcal{Q} \leftarrow \mathcal{Q}', \quad \phi \leftarrow \phi[x=T] \\ \text{if } \phi = \top \end{array}$

return Existential player wins

else

return Universal player wins

- $Q.\phi$ is true iff existential player has winning strategy
- $Q.\phi$ is false iff universal player has winning strategy

$\forall \, \mathbf{x} \, \exists \, \mathbf{y}. \, (\mathbf{x} \lor \bar{\mathbf{y}}) \land (\bar{\mathbf{x}} \lor \mathbf{y})$

Given two perfect players, one game suffices to solve a QBF.

Solving QBFs with AlphaZero

Idea:

- 1. Use AlphaZero to learn two (perfect) players $\pi_{\exists}, \pi_{\forall}$.
- **2**. Given $Q.\phi$, let π_\exists play against π_\forall .
- **3.** Predict $Q.\phi$ to be true if π_\exists wins and to be false if π_\forall wins.

Solving QBFs with AlphaZero

Idea:

- 1. Use AlphaZero to learn two (perfect) players $\pi_{\exists}, \pi_{\forall}$.
- **2**. Given $Q.\phi$, let π_{\exists} play against π_{\forall} .
- **3.** Predict $Q.\phi$ to be true if π_\exists wins and to be false if π_\forall wins.

Problems:

How to represent QBFs?

Solving QBFs with AlphaZero

Idea:

- 1. Use AlphaZero to learn two (perfect) players $\pi_{\exists}, \pi_{\forall}$.
- **2**. Given $Q.\phi$, let π_{\exists} play against π_{\forall} .
- **3.** Predict $Q.\phi$ to be true if π_\exists wins and to be false if π_\forall wins.

Problems:

- How to represent QBFs?
- QBF solving is asymmetric

Answer: as a graph

Answer: as a graph

Answer: as a graph

Answer: as a graph

$$\begin{tabular}{cccc} x \lor y \lor \bar{z} & & & & & & \\ \hline x \lor y \lor z & & & & & & \\ \hline \end{array} \end{tabular}$$

Answer: as a graph

Answer: as a graph

Answer: as a graph

 $\exists x \forall y \exists z. (x \lor y \lor \overline{z}) \land (y \lor z) \land (\overline{x} \lor z)$

Answer: as a graph

 $\exists x \forall y \exists z. (x \lor y \lor \overline{z}) \land (y \lor z) \land (\overline{x} \lor z)$

Process QBF graphs with a gated graph neural network.

1: Initialize $h_{\nu}^{(0)}$ for each vertex ν with a vector in \mathbb{R}^{N} 2: for $t \leftarrow 0, ..., T - 1$ do 3: $m_{\nu}^{(t+1)} \leftarrow \sum_{w \in N(\nu)} A_{e_{\nu w}} h_{w}^{(t)}$ for each vertex ν 4: $h_{\nu}^{(t+1)} \leftarrow \text{GRU}(h_{\nu}^{(t)}, m_{\nu}^{(t+1)})$ for each vertex ν 5: $p_{\pi} \leftarrow \sum_{\nu \in V} f_1(h_{\nu}^{(T)}, h_{\nu}^{(0)}), \quad \nu_{\pi} \leftarrow \sum_{\nu \in V} f_2(h_{\nu}^{(T)}, h_{\nu}^{(0)}),$ with neural networks f_1, f_2 6: return softmax (p_{π}) , $\tanh(\nu_{\pi})$

18

Process QBF graphs with a gated graph neural network.

1: Initialize $h_{\nu}^{(0)}$ for each vertex ν with a vector in \mathbb{R}^{N} 2: for $t \leftarrow 0, ..., T - 1$ do 3: $m_{\nu}^{(t+1)} \leftarrow \sum_{w \in N(\nu)} A_{e_{\nu\nu\nu}} h_{\nu}^{(t)}$ for each vertex ν 4: $h_{\nu}^{(t+1)} \leftarrow \text{GRU}(h_{\nu}^{(t)}, m_{\nu}^{(t+1)})$ for each vertex ν 5: $p_{\pi} \leftarrow \sum_{\nu \in V} f_{1}(h_{\nu}^{(T)}, h_{\nu}^{(0)}), \quad \nu_{\pi} \leftarrow \sum_{\nu \in V} f_{2}(h_{\nu}^{(T)}, h_{\nu}^{(0)}),$ with neural networks f_{1}, f_{2} 6: return softmax (p_{π}) , $\tanh(\nu_{\pi})$

QBF solving is asymmetric

- Players have different goals
- Not necessarily evenly alternating

QBF solving is asymmetric

- Players have different goals
- Not necessarily evenly alternating

Solution:

- Extend AlphaZero to train two networks with different goals simultaneously
- Take more care during the MCTS

Training by 2-player-self-play

- 1: Initialize players with random parameters $\pi_{\exists}, \pi_{\forall}$
- 2: for $e \leftarrow 1, \dots, E$ do
- 3: Generate data by self-play games
- 4: Update parameters π_{\exists}
- 5: Compare new player to best existential player
- 6: Generate data by self-play games
- 7: Update parameters π_{\forall}
- 8: Compare new player to best universal player
- 9: return $\pi_{\exists}, \pi_{\forall}$

EXPERIMENTAL RESULTS

Training

Starting point https://github.com/suragnair/alpha-zero-general

Training

Starting point https://github.com/suragnair/alpha-zero-general

After doing the adaptations, we trained two players for

- 16 epochs with
- 20 self-play games each
- using 40 MCTS iterations per move

Training

Starting point https://github.com/suragnair/alpha-zero-general

After doing the adaptations, we trained two players for

- 16 epochs with
- 20 self-play games each
- using 40 MCTS iterations per move

on a training set consisting of

- 100 random QBFs (50 true, 50 false) with
- 10 40 variables and
- 5 20 clauses

AlphaZero can be adapted to successfully solve QBFs

- AlphaZero can be adapted to successfully solve QBFs
- In fact, MCTS can be used to successfully solve QBFs

- AlphaZero can be adapted to successfully solve QBFs
- In fact, MCTS can be used to successfully solve QBFs
- Existential player seems to be better than universal player

- AlphaZero can be adapted to successfully solve QBFs
- In fact, MCTS can be used to successfully solve QBFs
- Existential player seems to be better than universal player
- Try to find good predictor heuristics

- AlphaZero can be adapted to successfully solve QBFs
- In fact, MCTS can be used to successfully solve QBFs
- Existential player seems to be better than universal player
- Try to find good predictor heuristics
- Try to integrate MCTS into QBF solver (e.g. to find good partial assigments)