
SOLVING QBFS WITH ALPHAZERO

Clemens Hofstadler, supervised by Univ.-Prof. Dr. Martina Seidl
Institute for Algebra, JKU Linz
Seminar Algebra and Discrete Mathematics, 10 June 2021

0

THE ALPHAZERO
FRAMEWORK

History

123456

1

History

123456

1

History

123456

1

History

123456

1

History

123456

1

History

123456

1

History

123456

1

History

123456

1

History

123456

1

History

123456

1

History

123456

1

AlphaZero

• AI framework to learn two-player, fully-observable,
symmetric games
• AlphaZero learns (almost) tabula-rasa

AlphaZero =

Monte Carlo tree search + Self-play reinforcement learning

vs.

2

AlphaZero

• AI framework to learn two-player, fully-observable,
symmetric games
• AlphaZero learns (almost) tabula-rasa

AlphaZero =

Monte Carlo tree search + Self-play reinforcement learning

vs.

2

AlphaZero

• AI framework to learn two-player, fully-observable,
symmetric games
• AlphaZero learns (almost) tabula-rasa

AlphaZero =

Monte Carlo tree search + Self-play reinforcement learning

vs.

2

AlphaZero

• AI framework to learn two-player, fully-observable,
symmetric games
• AlphaZero learns (almost) tabula-rasa

AlphaZero =

Monte Carlo tree search + Self-play reinforcement learning

vs.

2

AlphaZero

• AI framework to learn two-player, fully-observable,
symmetric games
• AlphaZero learns (almost) tabula-rasa

AlphaZero =

Monte Carlo tree search + Self-play reinforcement learning

vs.

2

AlphaZero

• AI framework to learn two-player, fully-observable,
symmetric games
• AlphaZero learns (almost) tabula-rasa

AlphaZero =

Monte Carlo tree search + Self-play reinforcement learning

vs.

2

AlphaZero

Pπ(A |3445)
=

(0.1, 0.2, . . . , 0.05)

Pπ(A | I445,MCTS)
=

(0.4, 0.05, . . . , 0.01)

initial
guess

improve
with MCTS

sample
move

oppenent
makes move

3

AlphaZero

Pπ(A |3445)
=

(0.1, 0.2, . . . , 0.05)

Pπ(A | I445,MCTS)
=

(0.4, 0.05, . . . , 0.01)

initial
guess

improve
with MCTS

sample
move

oppenent
makes move

3

AlphaZero

Pπ(A |3445)
=

(0.1, 0.2, . . . , 0.05)

Pπ(A | I445,MCTS)
=

(0.4, 0.05, . . . , 0.01)

initial
guess

improve
with MCTS

sample
move

oppenent
makes move

3

AlphaZero

Pπ(A |3445)
=

(0.1, 0.2, . . . , 0.05)

Pπ(A | I445,MCTS)
=

(0.4, 0.05, . . . , 0.01)

initial
guess

improve
with MCTS

sample
move

oppenent
makes move

3

AlphaZero

Pπ(A |3445)
=

(0.1, 0.2, . . . , 0.05)

Pπ(A | I445,MCTS)
=

(0.4, 0.05, . . . , 0.01)

initial
guess

improve
with MCTS

sample
move

oppenent
makes move

3

MCTS

Given: Two-player, fully-observable game with game tree

Task: Find promising action in current state

Example:

. . .

.

...
...

...
...

...
...

...
...

...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

4

MCTS

S0

Q = 0

n = 0

S1
Q = 0

n = 0
S2

Q = 0

n = 0

a1 a2

• States: S0, S1, S2
• Actions: a1, a2
• Attributes of nodes

◦ Q: current value of the node
◦ n: number of visits

5

MCTS

selection

expansion

simulation

backpropagation

stop?

NO

YES

S0

Sk

C

v = ±1

6

MCTS

selection

expansion

simulation

backpropagation

stop?

NO

YES

S0

Sk

C

v = ±1

Traverse tree following
upper confidence bound

UCB(S) =
Q

n
+ γ

√
lnN
n

UCB(S) =∞, if n = 0.

γ . . .hyperparamter
N . . .# visits of parent node

6

MCTS

selection

expansion

simulation

backpropagation

stop?

NO

YES

S0

Sk

C

v = ±1

if not visited Sk and k 6= 0
12simulate Sk
else
12expand Sk
12simulate child C

6

MCTS

selection

expansion

simulation

backpropagation

stop?

NO

YES

S0

Sk

C

v = ±1

Play random game.

6

MCTS

selection

expansion

simulation

backpropagation

stop?

NO

YES

S0

Sk

C

v = ±1

Update Q values for nodes on
path from C to S0 using v.

6

MCTS

selection

expansion

simulation

backpropagation

stop?

NO

YES

S0

Sk

C

v = ±1

Termination criteria:

• Timeout

• Max. number of iterations
exceeded

Return relative frequencies
6

MCTS in AlphaZero

selection

expansion

simulation

backpropagation

stop?

NO

YES

S0

Sk

C vπ(C) ∈ [−1, 1]

7

MCTS in AlphaZero

selection

expansion

simulation

backpropagation

stop?

NO

YES

S0

Sk

C vπ(C) ∈ [−1, 1]

Traverse tree following
Predictor + UCB

PUCB(S) =

Q

n+ 1
+ γ

Pπ(a | P(S))
√
N

n+ 1

P(S) . . .Parent of S
a . . . action from P(S) to S

7

MCTS in AlphaZero

selection

expansion

simulation

backpropagation

stop?

NO

YES

S0

Sk

C

vπ(C) ∈ [−1, 1]

if not visited Sk
12compute Pπ(A | Sk) = pπ(Sk)
if not visited Sk and k 6= 0
12simulate Sk
else
12expand Sk
12simulate child C with action
12a = argmaxa ′Pπ(a

′ | Sk)
7

MCTS in AlphaZero

selection

expansion

simulation

backpropagation

stop?

NO

YES

S0

Sk

C vπ(C) ∈ [−1, 1]

Estimate v ≈ vπ(C) using the
neural network.

7

MCTS in AlphaZero

selection

expansion

simulation

backpropagation

stop?

NO

YES

S0

Sk

C vπ(C) ∈ [−1, 1]

Update Q values for nodes on
path from C to S0 using vπ(C).

7

MCTS in AlphaZero

selection

expansion

simulation

backpropagation

stop?

NO

YES

S0

Sk

C

vπ(C) ∈ [−1, 1]

Termination criteria:

• Timeout

• Max. number of iterations
exceeded

Return relative frequencies
7

Training by self-play

1: Initialize player with random parameters π
2: for e← 1, . . . , E do
3: Generate data by self-play games
4: Update parameters π
5: Compare new player to best player

6: return π

8

Training by self-play

3: Generate data by self-play games

1: t← 1

2: for k← 1, . . . ,N do
3: St ← initial board
4: while St is not an end state do
5: pt ← Pπ(A | St,MCTS)

6: sample move at from pt

7: save data (St, pt, zt), where zt is the game result
8: St+1 ← new board after doing move at
9: t← t+ 1

10: return {(St, pt, zt) | 1 ≤ t ≤ T }

9

Training by self-play

4: Update parameters π

1: Given data {(St, pt, zt) | 1 ≤ t ≤ T }, use gradient descent to
update parameters π to minimize

L =

T∑
t=1

(
(zt − vπ(St))

2 − pTt log pπ(St)
)
+ c‖π‖2,

with hyperparameter c.

10

Training by self-play

5: Compare new player to best player

1: π ′ ← parameters of the best previous player
2: let π play M games against π ′

3: if π wins ≥ 55% of these game then
4: mark π as the best player
5: else
6: π ← π ′

7: return π

11

ALPHAZERO FOR QBF
SOLVING

QBFs

QBF = Quantified Boolean Formula

• Extension of propositional logic over boolean variables
with ∃, ∀
• Canonical PSPACE-complete problem

• Many application domains: planning, model checking,. . .

∃v,w∀x, y∃z. (x∨ z)∧ (v∨ ȳ∨ z̄)∧ w̄

closed QBF in prenex CNF

prefix matrix (CNF)

12

QBFs

QBF = Quantified Boolean Formula

• Extension of propositional logic over boolean variables
with ∃, ∀
• Canonical PSPACE-complete problem

• Many application domains: planning, model checking,. . .

∃v,w∀x, y∃z. (x∨ z)∧ (v∨ ȳ∨ z̄)∧ w̄

closed QBF in prenex CNF

prefix matrix (CNF)

12

QBFs

QBF = Quantified Boolean Formula

• Extension of propositional logic over boolean variables
with ∃, ∀
• Canonical PSPACE-complete problem

• Many application domains: planning, model checking,. . .

∃v,w∀x, y∃z. (x∨ z)∧ (v∨ ȳ∨ z̄)∧ w̄

closed QBF in prenex CNF

prefix matrix (CNF)

12

QBFs

QBF = Quantified Boolean Formula

• Extension of propositional logic over boolean variables
with ∃, ∀
• Canonical PSPACE-complete problem

• Many application domains: planning, model checking,. . .

∃v,w∀x, y∃z. (x∨ z)∧ (v∨ ȳ∨ z̄)∧ w̄

closed QBF in prenex CNF

prefix

matrix (CNF)

12

QBFs

QBF = Quantified Boolean Formula

• Extension of propositional logic over boolean variables
with ∃, ∀
• Canonical PSPACE-complete problem

• Many application domains: planning, model checking,. . .

∃v,w∀x, y∃z. (x∨ z)∧ (v∨ ȳ∨ z̄)∧ w̄

closed QBF in prenex CNF

prefix matrix (CNF)

12

QBFs

QBF = Quantified Boolean Formula

• Extension of propositional logic over boolean variables
with ∃, ∀
• Canonical PSPACE-complete problem

• Many application domains: planning, model checking,. . .

∃v,w∀x, y∃z. (x∨ z)∧

clause

(v∨ ȳ∨ z̄)∧ w̄

closed QBF in prenex CNF

prefix matrix (CNF)

12

QBF semantics

• A closed QBF can either be true or false.

• The QBF > is true.

• The QBF ⊥ is false.

• The QBF ∀xQ. ϕ is true ⇐⇒
Q. ϕ[x = >] and Q. ϕ[x = ⊥] are true.

• The QBF ∃xQ. ϕ is true ⇐⇒
Q. ϕ[x = >] or Q. ϕ[x = ⊥] is true.

Task: Given QBF Q.ϕ, determine whether Q.ϕ is true or false.

13

QBF semantics

• A closed QBF can either be true or false.

• The QBF > is true.

• The QBF ⊥ is false.

• The QBF ∀xQ. ϕ is true ⇐⇒
Q. ϕ[x = >] and Q. ϕ[x = ⊥] are true.

• The QBF ∃xQ. ϕ is true ⇐⇒
Q. ϕ[x = >] or Q. ϕ[x = ⊥] is true.

Task: Given QBF Q.ϕ, determine whether Q.ϕ is true or false.

13

QBF semantics

• A closed QBF can either be true or false.

• The QBF > is true.

• The QBF ⊥ is false.

• The QBF ∀xQ. ϕ is true ⇐⇒
Q. ϕ[x = >] and Q. ϕ[x = ⊥] are true.

• The QBF ∃xQ. ϕ is true ⇐⇒
Q. ϕ[x = >] or Q. ϕ[x = ⊥] is true.

Task: Given QBF Q.ϕ, determine whether Q.ϕ is true or false.

13

QBF semantics

• A closed QBF can either be true or false.

• The QBF > is true.

• The QBF ⊥ is false.

• The QBF ∀xQ. ϕ is true ⇐⇒
Q. ϕ[x = >] and Q. ϕ[x = ⊥] are true.

• The QBF ∃xQ. ϕ is true ⇐⇒
Q. ϕ[x = >] or Q. ϕ[x = ⊥] is true.

Task: Given QBF Q.ϕ, determine whether Q.ϕ is true or false.

13

QBF semantics

• A closed QBF can either be true or false.

• The QBF > is true.

• The QBF ⊥ is false.

• The QBF ∀xQ. ϕ is true ⇐⇒
Q. ϕ[x = >] and Q. ϕ[x = ⊥] are true.

• The QBF ∃xQ. ϕ is true ⇐⇒
Q. ϕ[x = >] or Q. ϕ[x = ⊥] is true.

Task: Given QBF Q.ϕ, determine whether Q.ϕ is true or false.

13

QBF solving as a game

Task: Given QBF Q.ϕ, determine whether Q.ϕ is true or false.

while ϕ /∈ {>,⊥}
if Q = ∃ xQ ′

Existential player chooses assignment T ∈ {>,⊥} for x.
else

Universal player chooses assignment T ∈ {>,⊥} for x.
Q← Q ′, ϕ← ϕ[x = T]

if ϕ = >
return Existential player wins

else
return Universal player wins

• Q.ϕ is true iff existential player has winning strategy

• Q.ϕ is false iff universal player has winning strategy

14

QBF solving as a game

Task: Given QBF Q.ϕ, determine whether Q.ϕ is true or false.

while ϕ /∈ {>,⊥}
if Q = ∃ xQ ′

Existential player chooses assignment T ∈ {>,⊥} for x.
else

Universal player chooses assignment T ∈ {>,⊥} for x.
Q← Q ′, ϕ← ϕ[x = T]

if ϕ = >
return Existential player wins

else
return Universal player wins

• Q.ϕ is true iff existential player has winning strategy

• Q.ϕ is false iff universal player has winning strategy

14

QBF solving as a game

Task: Given QBF Q.ϕ, determine whether Q.ϕ is true or false.

while ϕ /∈ {>,⊥}
if Q = ∃ xQ ′

Existential player chooses assignment T ∈ {>,⊥} for x.
else

Universal player chooses assignment T ∈ {>,⊥} for x.
Q← Q ′, ϕ← ϕ[x = T]

if ϕ = >
return Existential player wins

else
return Universal player wins

• Q.ϕ is true iff existential player has winning strategy

• Q.ϕ is false iff universal player has winning strategy
14

QBF solving as a game

∀ x ∃y. (x∨ ȳ)∧ (x̄∨ y)

∃y. y ∃y. ȳ

> >

> ⊥

> ⊥

Given two perfect players, one game suffices to solve a QBF.

15

QBF solving as a game

∀ x ∃y. (x∨ ȳ)∧ (x̄∨ y)

∃y. y

∃y. ȳ

> >

>

⊥

> ⊥

Given two perfect players, one game suffices to solve a QBF.

15

QBF solving as a game

∀ x ∃y. (x∨ ȳ)∧ (x̄∨ y)

∃y. y

∃y. ȳ

>

>

>

⊥

>

⊥

Given two perfect players, one game suffices to solve a QBF.

15

QBF solving as a game

∀ x ∃y. (x∨ ȳ)∧ (x̄∨ y)

∃y. y ∃y. ȳ

>

>

> ⊥

>

⊥

Given two perfect players, one game suffices to solve a QBF.

15

QBF solving as a game

∀ x ∃y. (x∨ ȳ)∧ (x̄∨ y)

∃y. y ∃y. ȳ

> >

> ⊥

> ⊥

Given two perfect players, one game suffices to solve a QBF.

15

QBF solving as a game

∀ x ∃y. (x∨ ȳ)∧ (x̄∨ y)

∃y. y ∃y. ȳ

> >

> ⊥

> ⊥

Given two perfect players, one game suffices to solve a QBF.

15

Solving QBFs with AlphaZero

Idea:

1. Use AlphaZero to learn two (perfect) players π∃, π∀.

2. Given Q.ϕ, let π∃ play against π∀.

3. Predict Q.ϕ to be true if π∃ wins and to be false if π∀ wins.

Problems:

• How to represent QBFs?

• QBF solving is asymmetric

16

Solving QBFs with AlphaZero

Idea:

1. Use AlphaZero to learn two (perfect) players π∃, π∀.

2. Given Q.ϕ, let π∃ play against π∀.

3. Predict Q.ϕ to be true if π∃ wins and to be false if π∀ wins.

Problems:

• How to represent QBFs?

• QBF solving is asymmetric

16

Solving QBFs with AlphaZero

Idea:

1. Use AlphaZero to learn two (perfect) players π∃, π∀.

2. Given Q.ϕ, let π∃ play against π∀.

3. Predict Q.ϕ to be true if π∃ wins and to be false if π∀ wins.

Problems:

• How to represent QBFs?

• QBF solving is asymmetric

16

How to represent QBFs?

Answer: as a graph

∃ x ∀y∃ z. (x∨ y∨ z̄)∧ (y∨ z)∧ (x̄∨ z)

x x̄ y ȳ z z̄

y∨ zx∨ y∨ z̄ x̄∨ z

17

How to represent QBFs?

Answer: as a graph

∃ x ∀y∃ z. (x∨ y∨ z̄)∧ (y∨ z)∧ (x̄∨ z)

x x̄ y ȳ z z̄

y∨ zx∨ y∨ z̄ x̄∨ z

17

How to represent QBFs?

Answer: as a graph

∃ x ∀y∃ z. (x∨ y∨ z̄)∧ (y∨ z)∧ (x̄∨ z)

x x̄ y ȳ z z̄

y∨ zx∨ y∨ z̄ x̄∨ z

17

How to represent QBFs?

Answer: as a graph

∃ x ∀y∃ z. (x∨ y∨ z̄)∧ (y∨ z)∧ (x̄∨ z)

x x̄ y ȳ z z̄

y∨ zx∨ y∨ z̄ x̄∨ z

17

How to represent QBFs?

Answer: as a graph

∃ x ∀y∃ z. (x∨ y∨ z̄)∧ (y∨ z)∧ (x̄∨ z)

x x̄ y ȳ z z̄

y∨ zx∨ y∨ z̄ x̄∨ z

17

How to represent QBFs?

Answer: as a graph

∃ x ∀y∃ z. (x∨ y∨ z̄)∧ (y∨ z)∧ (x̄∨ z)

x x̄ y ȳ z z̄

y∨ zx∨ y∨ z̄ x̄∨ z

17

How to represent QBFs?

Answer: as a graph

∃ x ∀y∃ z. (x∨ y∨ z̄)∧ (y∨ z)∧ (x̄∨ z)

x x̄ y ȳ z z̄

y∨ zx∨ y∨ z̄ x̄∨ z

17

How to represent QBFs?

Answer: as a graph

∃ x ∀y∃ z. (x∨ y∨ z̄)∧ (y∨ z)∧ (x̄∨ z)

x x̄ y ȳ z z̄

y∨ zx∨ y∨ z̄ x̄∨ z

17

How to represent QBFs?

Process QBF graphs with a gated graph neural network.

1: Initialize h(0)v for each vertex v with a vector in RN

2: for t← 0, . . . , T − 1 do
3: m

(t+1)
v ←∑w∈N(v)Aevwh

(t)
w for each vertex v

4: h
(t+1)
v ← GRU(h

(t)
v ,m

(t+1)
v) for each vertex v

5: pπ ← ∑
v∈V f1(h

(T)
v , h

(0)
v), vπ ← ∑

v∈V f2(h
(T)
v , h

(0)
v), 123

with neural networks f1, f2
6: return softmax(pπ), tanh(vπ)

18

How to represent QBFs?

Process QBF graphs with a gated graph neural network.

1: Initialize h(0)v for each vertex v with a vector in RN

2: for t← 0, . . . , T − 1 do
3: m

(t+1)
v ←∑w∈N(v)Aevwh

(t)
w for each vertex v

4: h
(t+1)
v ← GRU(h

(t)
v ,m

(t+1)
v) for each vertex v

5: pπ ← ∑
v∈V f1(h

(T)
v , h

(0)
v), vπ ← ∑

v∈V f2(h
(T)
v , h

(0)
v), 123

with neural networks f1, f2
6: return softmax(pπ), tanh(vπ)

18

QBF solving is asymmetric

• Players have different goals

• Not necessarily evenly alternating

Solution:

• Extend AlphaZero to train two networks with different goals
simultaneously

• Take more care during the MCTS

19

QBF solving is asymmetric

• Players have different goals

• Not necessarily evenly alternating

Solution:

• Extend AlphaZero to train two networks with different goals
simultaneously

• Take more care during the MCTS

19

Training by 2-player-self-play

1: Initialize players with random parameters π∃, π∀
2: for e← 1, . . . , E do
3: Generate data by self-play games
4: Update parameters π∃
5: Compare new player to best existential player
6: Generate data by self-play games
7: Update parameters π∀
8: Compare new player to best universal player

9: return π∃, π∀

20

EXPERIMENTAL RESULTS

Training

Starting point
https://github.com/suragnair/alpha-zero-general

After doing the adaptations, we trained two players for

• 16 epochs with

• 20 self-play games each

• using 40 MCTS iterations per move

on a training set consisting of

• 100 random QBFs (50 true, 50 false) with

• 10 – 40 variables and

• 5 – 20 clauses

21

https://github.com/suragnair/alpha-zero-general

Training

Starting point
https://github.com/suragnair/alpha-zero-general

After doing the adaptations, we trained two players for

• 16 epochs with

• 20 self-play games each

• using 40 MCTS iterations per move

on a training set consisting of

• 100 random QBFs (50 true, 50 false) with

• 10 – 40 variables and

• 5 – 20 clauses

21

https://github.com/suragnair/alpha-zero-general

Training

Starting point
https://github.com/suragnair/alpha-zero-general

After doing the adaptations, we trained two players for

• 16 epochs with

• 20 self-play games each

• using 40 MCTS iterations per move

on a training set consisting of

• 100 random QBFs (50 true, 50 false) with

• 10 – 40 variables and

• 5 – 20 clauses
21

https://github.com/suragnair/alpha-zero-general

Accuracy on random test data

100 101 102 103

50

60

70

80

90

100

Time in sec

A
cc

ur
ac

y
in

%

22

Accuracy on random test data

100 101 102 103

50

60

70

80

90

100

Time in sec

A
cc

ur
ac

y
in

%

AlphaZero

22

Accuracy on random test data

100 101 102 103

50

60

70

80

90

100

Time in sec

A
cc

ur
ac

y
in

%

AlphaZero
AlphaZero NN

22

Accuracy on random test data

100 101 102 103

50

60

70

80

90

100

Time in sec

A
cc

ur
ac

y
in

%

AlphaZero
AlphaZero NN
MCTS 20sim

22

Accuracy on random test data

100 101 102 103

50

60

70

80

90

100

Time in sec

A
cc

ur
ac

y
in

%

AlphaZero
AlphaZero NN
MCTS 20sim
sMCTS 20sim

22

Accuracy on random test data

100 101 102 103

50

60

70

80

90

100

Time in sec

A
cc

ur
ac

y
in

%

AlphaZero
AlphaZero NN
MCTS 20sim
sMCTS 20sim
sMCTS 40sim

22

Accuracy on random test data

100 101 102 103

50

60

70

80

90

100

Time in sec

A
cc

ur
ac

y
in

%

AlphaZero
AlphaZero NN
MCTS 20sim
sMCTS 20sim
sMCTS 40sim

sPMCTS 20sim

22

Accuracy on random test data

100 101 102 103

50

60

70

80

90

100

Time in sec

A
cc

ur
ac

y
in

%

AlphaZero
AlphaZero NN
MCTS 20sim
sMCTS 20sim
sMCTS 40sim

sPMCTS 20sim
QBF solver

22

Conclusion & Outlook

• AlphaZero can be adapted to successfully solve QBFs

• In fact, MCTS can be used to successfully solve QBFs

• Existential player seems to be better than universal player

• Try to find good predictor heuristics

• Try to integrate MCTS into QBF solver (e.g. to find good
partial assigments)

23

Conclusion & Outlook

• AlphaZero can be adapted to successfully solve QBFs

• In fact, MCTS can be used to successfully solve QBFs

• Existential player seems to be better than universal player

• Try to find good predictor heuristics

• Try to integrate MCTS into QBF solver (e.g. to find good
partial assigments)

23

Conclusion & Outlook

• AlphaZero can be adapted to successfully solve QBFs

• In fact, MCTS can be used to successfully solve QBFs

• Existential player seems to be better than universal player

• Try to find good predictor heuristics

• Try to integrate MCTS into QBF solver (e.g. to find good
partial assigments)

23

Conclusion & Outlook

• AlphaZero can be adapted to successfully solve QBFs

• In fact, MCTS can be used to successfully solve QBFs

• Existential player seems to be better than universal player

• Try to find good predictor heuristics

• Try to integrate MCTS into QBF solver (e.g. to find good
partial assigments)

23

Conclusion & Outlook

• AlphaZero can be adapted to successfully solve QBFs

• In fact, MCTS can be used to successfully solve QBFs

• Existential player seems to be better than universal player

• Try to find good predictor heuristics

• Try to integrate MCTS into QBF solver (e.g. to find good
partial assigments)

23

