SOLVING QBFS WITH ALPHAZERO

Clemens Hofstadler, supervised by Univ.-Prof. Dr. Martina Seidl Institute for Algebra, JKU Linz
Seminar Algebra and Discrete Mathematics, 10 June 2021

THE ALPHAZERO FRAMEWORK

History

History

Deep Blue wins first game against Kasparov

History

Deep Blue wins first game against Kasparov

History

Deep Blue wins first game against Kasparov

History

Deep Blue wins first game against Kasparov

History

AlphaGo wins against
Deep Blue wins first game against Kasparov

European champion

Go programs beat

professionals with handicap

History

AlphaGo wins against
Deep Blue wins first game against Kasparov

European champion

Go programs beat

professionals with handicap

History

AlphaGo wins against
European champion
Deep Blue wins first game against Kasparov

Go programs beat

professionals with handicap

History

Deep Blue wins first game against Kasparov

Go programs beat

professionals with handicap

History

AlphaGo wins against
European champion
Deep Blue wins

Go programs beat

professionals with handicap

History

AlphaGo wins against
European champion

Deep Blue wins first game against Kasparov

Solving QSAT problems

Go programs beat
professionals with handicap

AlphaZero

- Al framework to learn two-player, fully-observable, symmetric games
- AlphaZero learns (almost) tabula-rasa

AlphaZero

- Al framework to learn two-player, fully-observable, symmetric games
- AlphaZero learns (almost) tabula-rasa
AlphaZero =

Monte Carlo tree search + Self-play reinforcement learning

AlphaZero

- Al framework to learn two-player, fully-observable, symmetric games
- AlphaZero learns (almost) tabula-rasa
AlphaZero =

Monte Carlo tree search + Self-play reinforcement learning

AlphaZero

- Al framework to learn two-player, fully-observable, symmetric games
- AlphaZero learns (almost) tabula-rasa
AlphaZero =

Monte Carlo tree search +
Self-play reinforcement learning

AlphaZero

- Al framework to learn two-player, fully-observable, symmetric games
- AlphaZero learns (almost) tabula-rasa
AlphaZero =

Monte Carlo tree search + Self-play reinforcement learning

AlphaZero

- Al framework to learn two-player, fully-observable, symmetric games
- AlphaZero learns (almost) tabula-rasa
AlphaZero =

Monte Carlo tree search + Self-play reinforcement learning

VS.

AlphaZero

AlphaZero

AlphaZero

AlphaZero

AlphaZero

MCTS

Given: Two-player, fully-observable game with game tree
Task: Find promising action in current state
Example:

MCTS

- States: $\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}$
- Actions: a_{1}, a_{2}
- Attributes of nodes
- Q: current value of the node
- n : number of visits

MCTS

MCTS

Traverse tree following upper confidence bound

$$
\begin{aligned}
& \operatorname{UCB}(S)=\frac{Q}{n}+\gamma \sqrt{\frac{\ln N}{n}} \\
& \operatorname{UCB}(S)=\infty, \quad \text { if } n=0 .
\end{aligned}
$$

$\gamma \ldots$...hyperparamter
N... \# visits of parent node

MCTS

if not visited S_{k} and $k \neq 0$ simulate S_{k}
else
expand S_{k}
simulate child C

MCTS

Play random game.

MCTS

Update Q values for nodes on path from C to S_{0} using v.

MCTS

Termination criteria:

- Timeout
- Max. number of iterations exceeded

Return relative frequencies

MCTS in AlphaZero

MCTS in AlphaZero

Traverse tree following
Predictor + UCB

$$
\operatorname{PUCB}(S)=
$$

$$
\frac{Q}{n+1}+\gamma \frac{P_{\pi}(a \mid P(S)) \sqrt{N}}{n+1}
$$

$P(S)$. . Parent of S
a . . . action from $P(S)$ to S

MCTS in AlphaZero

if not visited S_{k} compute $P_{\pi}\left(A \mid S_{k}\right)=p_{\pi}\left(S_{k}\right)$
if not visited S_{k} and $k \neq 0$ simulate S_{k}
else
expand S_{k}
simulate child C with action
$a=\operatorname{argmax}_{a^{\prime}} \mathrm{P}_{\pi}\left(\mathrm{a}^{\prime} \mid \mathrm{S}_{\mathrm{k}}\right)$

MCTS in AlphaZero

Estimate $\nu \approx \nu_{\pi}(C)$ using the neural network.

MCTS in AlphaZero

Update Q values for nodes on path from C to S_{0} using $v_{\pi}(\mathrm{C})$.

MCTS in AlphaZero

Termination criteria:

- Timeout
- Max. number of iterations exceeded

Return relative frequencies

Training by self-play

1: Initialize player with random parameters π
2: for $e \leftarrow 1, \ldots$, E do
3: Generate data by self-play games
4: Update parameters π
5: Compare new player to best player
6: return π

Training by self-play

3: Generate data by self-play games

1: $\mathrm{t} \leftarrow 1$
2: for $k \leftarrow 1, \ldots, N$ do
3: $\quad S_{\mathrm{t}} \leftarrow$ initial board
4: \quad while S_{t} is not an end state do
5: $\quad p_{t} \leftarrow P_{\pi}\left(A \mid S_{t}, M C T S\right)$
6: \quad sample move a_{t} from p_{t}
7: \quad save data $\left(S_{t}, p_{t}, z_{t}\right)$, where z_{t} is the game result
8: $\quad S_{t+1} \leftarrow$ new board after doing move a_{t}
9: $\quad t \leftarrow t+1$
10: $\operatorname{return}\left\{\left(\mathrm{S}_{\mathrm{t}}, \mathrm{p}_{\mathrm{t}}, z_{\mathrm{t}}\right) \mid 1 \leq \mathrm{t} \leq \mathrm{T}\right\}$

Training by self-play

4: Update parameters π

1: Given data $\left\{\left(S_{t}, p_{t}, z_{t}\right) \mid 1 \leq t \leq T\right\}$, use gradient descent to update parameters π to minimize

$$
L=\sum_{t=1}^{T}\left(\left(z_{t}-v_{\pi}\left(S_{t}\right)\right)^{2}-p_{t}^{\top} \log p_{\pi}\left(S_{t}\right)\right)+c\|\pi\|^{2}
$$

with hyperparameter c.

Training by self-play

5: Compare new player to best player

1: $\pi^{\prime} \leftarrow$ parameters of the best previous player
2: let π play M games against π^{\prime}
3: if π wins $\geq 55 \%$ of these game then
4: mark π as the best player
5: else
6: $\quad \pi \leftarrow \pi^{\prime}$
7: return π

ALPHAZERO FOR QBF SOLVING

QBFs

QBF = Quantified Boolean Formula

- Extension of propositional logic over boolean variables with \exists, \forall
- Canonical PSPACE-complete problem
- Many application domains: planning, model checking,...

QBFs

QBF = Quantified Boolean Formula

- Extension of propositional logic over boolean variables with \exists, \forall
- Canonical PSPACE-complete problem
- Many application domains: planning, model checking,...

$$
\exists v, w \forall x, y \exists z .(x \vee z) \wedge(v \vee \bar{y} \vee \bar{z}) \wedge \bar{w}
$$

QBFs

QBF = Quantified Boolean Formula

- Extension of propositional logic over boolean variables with \exists, \forall
- Canonical PSPACE-complete problem
- Many application domains: planning, model checking,...

closed QBF in prenex CNF

$$
\exists v, w \forall x, y \exists z .(x \vee z) \wedge(v \vee \bar{y} \vee \bar{z}) \wedge \bar{w}
$$

QBFs

QBF = Quantified Boolean Formula

- Extension of propositional logic over boolean variables with \exists, \forall
- Canonical PSPACE-complete problem
- Many application domains: planning, model checking,...

closed QBF in prenex CNF

$$
\exists v, w \forall x, y \exists z .(x \vee z) \wedge(v \vee \bar{y} \vee \bar{z}) \wedge \bar{w}
$$

prefix

QBFs

QBF = Quantified Boolean Formula

- Extension of propositional logic over boolean variables with \exists, \forall
- Canonical PSPACE-complete problem
- Many application domains: planning, model checking,...

closed QBF in prenex CNF

$$
\underbrace{\exists v, w \forall x, y \exists z}_{\text {prefix }} \cdot \underbrace{(x \vee z) \wedge(v \vee \bar{y} \vee \bar{z}) \wedge \bar{w}}_{\text {matrix }(\mathrm{CNF})}
$$

QBFs

QBF = Quantified Boolean Formula

- Extension of propositional logic over boolean variables with \exists, \forall
- Canonical PSPACE-complete problem
- Many application domains: planning, model checking,...

closed QBF in prenex CNF

QBF semantics

- A closed QBF can either be true or false.

QBF semantics

- A closed QBF can either be true or false.
- The QBF T is true.
- The QBF \perp is false.

QBF semantics

- A closed QBF can either be true or false.
- The QBF T is true.
- The QBF \perp is false.
- The QBF $\forall x \mathcal{Q} . \varphi$ is true

$$
\mathcal{Q} . \varphi[x=T] \text { and } \mathcal{Q} \cdot \varphi[x=\perp] \text { are true. }
$$

QBF semantics

- A closed QBF can either be true or false.
- The QBF T is true.
- The QBF \perp is false.
- The QBF $\forall x \mathcal{Q} . \varphi$ is true

$$
\text { Q. } \varphi[x=T] \text { and } \mathcal{Q} . \varphi[x=\perp] \text { are true. }
$$

- The QBF $\exists x \mathcal{Q} . \varphi$ is true

$$
\mathcal{Q} . \varphi[x=\mathrm{T}] \text { or } \mathcal{Q} \cdot \varphi[x=\perp] \text { is true. }
$$

QBF semantics

- A closed QBF can either be true or false.
- The QBF T is true.
- The QBF \perp is false.
- The QBF $\forall x \mathcal{Q} . \varphi$ is true

$$
\mathcal{Q} . \varphi[x=T] \text { and } \mathcal{Q} \cdot \varphi[x=\perp] \text { are true. }
$$

- The QBF $\exists x \mathcal{Q} . \varphi$ is true

$$
\mathcal{Q} . \varphi[x=T] \text { or } \mathcal{Q} . \varphi[x=\perp] \text { is true. }
$$

Task: Given QBF Q. φ, determine whether $Q . \varphi$ is true or false.

QBF solving as a game

Task: Given QBF Q. φ, determine whether $Q . \varphi$ is true or false.

QBF solving as a game

Task: Given QBF Q. φ, determine whether $\mathcal{Q} . \varphi$ is true or false.

while $\varphi \notin\{\top, \perp\}$
if $\mathcal{Q}=\exists x \mathcal{Q}^{\prime}$
Existential player chooses assignment $T \in\{T, \perp\}$ for x. else

Universal player chooses assignment $T \in\{T, \perp\}$ for x.
$\mathcal{Q} \leftarrow \mathcal{Q}^{\prime}, \quad \varphi \leftarrow \varphi[x=\mathrm{T}]$
if $\varphi=\top$
return Existential player wins
else
return Universal player wins

QBF solving as a game

Task: Given QBF Q. φ, determine whether $Q . \varphi$ is true or false.

while $\varphi \notin\{\top, \perp\}$
if $\mathcal{Q}=\exists \times \mathcal{Q}^{\prime}$
Existential player chooses assignment $T \in\{T, \perp\}$ for x. else

Universal player chooses assignment $T \in\{T, \perp\}$ for x.
$\mathcal{Q} \leftarrow \mathcal{Q}^{\prime}, \quad \varphi \leftarrow \varphi[x=\mathrm{T}]$
if $\varphi=\top$
return Existential player wins
else
return Universal player wins

- Q. φ is true iff existential player has winning strategy
- Q. φ is false iff universal player has winning strategy

QBF solving as a game

$$
\forall x \exists y \cdot(x \vee \bar{y}) \wedge(\bar{x} \vee y)
$$

QBF solving as a game

$$
\forall x \exists y .(x \vee \bar{y}) \wedge(\bar{x} \vee y)
$$

$\exists \mathrm{y} . \mathrm{y}$

QBF solving as a game

Given two perfect players, one game suffices to solve a QBF.

Solving QBFs with AlphaZero

Idea:

1. Use AlphaZero to learn two (perfect) players $\pi_{\exists}, \pi_{\forall}$.
2. Given $\mathcal{Q} . \varphi$, let π_{\exists} play against π_{\forall}.
3. Predict $\mathcal{Q} . \varphi$ to be true if π_{\exists} wins and to be false if π_{\forall} wins.

Solving QBFs with AlphaZero

Idea:

1. Use AlphaZero to learn two (perfect) players $\pi_{\exists}, \pi_{\forall}$.
2. Given $\mathcal{Q} . \varphi$, let π_{\exists} play against π_{\forall}.
3. Predict $\mathcal{Q} . \varphi$ to be true if π_{\exists} wins and to be false if π_{\forall} wins.

Problems:

- How to represent QBFs?

Solving QBFs with AlphaZero

Idea:

1. Use AlphaZero to learn two (perfect) players $\pi_{\exists}, \pi_{\forall}$.
2. Given $\mathcal{Q} . \varphi$, let π_{\exists} play against π_{\forall}.
3. Predict $\mathcal{Q} . \varphi$ to be true if π_{\exists} wins and to be false if π_{\forall} wins.

Problems:

- How to represent QBFs?
- QBF solving is asymmetric

How to represent QBFs?

Answer: as a graph

How to represent QBFs?

Answer: as a graph

$$
\exists x \forall y \exists z .(x \vee y \vee \bar{z}) \wedge(y \vee z) \wedge(\bar{x} \vee z)
$$

How to represent QBFs?

Answer: as a graph

$$
\exists x \forall y \exists z .(x \vee y \vee \bar{z}) \wedge(y \vee z) \wedge(\bar{x} \vee z)
$$

$$
x \vee y \vee \bar{z}
$$

$$
y \vee z
$$

$$
\bar{x} \vee z
$$

How to represent QBFs?

Answer: as a graph

$$
\exists x \forall y \exists z .(x \vee y \vee \bar{z}) \wedge(y \vee z) \wedge(\bar{x} \vee z)
$$

$$
x \vee y \vee \bar{z}
$$

$$
y \vee z
$$

$$
\bar{x} \vee z
$$

How to represent QBFs?

Answer: as a graph

$$
\exists x \forall y \exists z .(x \vee y \vee \bar{z}) \wedge(y \vee z) \wedge(\bar{x} \vee z)
$$

How to represent QBFs?

Answer: as a graph

$$
\exists x \forall y \exists z .(x \vee y \vee \bar{z}) \wedge(y \vee z) \wedge(\bar{x} \vee z)
$$

How to represent QBFs?

Answer: as a graph

$$
\exists x \forall y \exists z .(x \vee y \vee \bar{z}) \wedge(y \vee z) \wedge(\bar{x} \vee z)
$$

How to represent QBFs?

Answer: as a graph

$$
\exists x \forall y \exists z .(x \vee y \vee \bar{z}) \wedge(y \vee z) \wedge(\bar{x} \vee z)
$$

How to represent QBFs?

Process QBF graphs with a gated graph neural network.

1: Initialize $h_{v}^{(0)}$ for each vertex v with a vector in \mathbb{R}^{N}
2: for $\mathrm{t} \leftarrow 0, \ldots, \mathrm{~T}-1$ do
3: $\quad \mathrm{m}_{v}^{(\mathrm{t}+1)} \leftarrow \sum_{w \in \mathrm{~N}(v)} \mathrm{A}_{e_{v w}} \mathrm{~h}_{w}^{(\mathrm{t})}$ for each vertex v
4: $\quad h_{v}^{(t+1)} \leftarrow \operatorname{GRU}\left(h_{v}^{(t)}, m_{v}^{(t+1)}\right)$ for each vertex v
5: $p_{\pi} \leftarrow \sum_{v \in V} f_{1}\left(h_{v}^{(T)}, h_{v}^{(0)}\right), \quad \nu_{\pi} \leftarrow \sum_{v \in V} f_{2}\left(h_{v}^{(T)}, h_{v}^{(0)}\right)$, with neural networks f_{1}, f_{2}
6: return $\operatorname{softmax}\left(p_{\pi}\right), \tanh \left(v_{\pi}\right)$

How to represent QBFs?

Process QBF graphs with a gated graph neural network.

1: Initialize $h_{v}^{(0)}$ for each vertex v with a vector in \mathbb{R}^{N}
2: for $\mathrm{t} \leftarrow 0, \ldots, \mathrm{~T}-1$ do
3: $\quad m_{v}^{(t+1)} \leftarrow \sum_{w \in N(v)} A_{e_{v v}} h_{w}^{(t)}$ for each vertex v
4: $\quad h_{v}^{(t+1)} \leftarrow \operatorname{GRU}\left(h_{v}^{(t)}, m_{v}^{(t+1)}\right)$ for each vertex v
5: $p_{\pi} \leftarrow \sum_{v \in V} f_{1}\left(h_{v}^{(T)}, h_{v}^{(0)}\right), \quad \nu_{\pi} \leftarrow \sum_{v \in V} f_{2}\left(h_{v}^{(T)}, h_{v}^{(0)}\right)$, with neural networks f_{1}, f_{2}
6: return $\operatorname{softmax}\left(p_{\pi}\right), \tanh \left(\nu_{\pi}\right)$

QBF solving is asymmetric

- Players have different goals
- Not necessarily evenly alternating

QBF solving is asymmetric

- Players have different goals
- Not necessarily evenly alternating

Solution:

- Extend AlphaZero to train two networks with different goals simultaneously
- Take more care during the MCTS

Training by 2-player-self-play

1: Initialize players with random parameters $\pi_{\exists}, \pi_{\forall}$
2: for $e \leftarrow 1, \ldots$, E do
3: Generate data by self-play games
4: Update parameters π_{\exists}
5: Compare new player to best existential player
6: Generate data by self-play games
7: \quad Update parameters $\pi \forall$
8: Compare new player to best universal player
9: return $\pi_{\exists}, \pi_{\forall}$

EXPERIMENTAL RESULTS

Training

Starting point

https://github.com/suragnair/alpha-zero-general

Training

Starting point

https://github.com/suragnair/alpha-zero-general

After doing the adaptations, we trained two players for

- 16 epochs with
- 20 self-play games each
- using 40 MCTS iterations per move

Training

Starting point
https://github.com/suragnair/alpha-zero-general

After doing the adaptations, we trained two players for

- 16 epochs with
- 20 self-play games each
- using 40 MCTS iterations per move
on a training set consisting of
- 100 random QBFs (50 true, 50 false) with
- 10 - 40 variables and
- 5-20 clauses

Accuracy on random test data

Conclusion \& Outlook

- AlphaZero can be adapted to successfully solve QBFs

Conclusion \& Outlook

- AlphaZero can be adapted to successfully solve QBFs
- In fact, MCTS can be used to successfully solve QBFs

Conclusion \& Outlook

- AlphaZero can be adapted to successfully solve QBFs
- In fact, MCTS can be used to successfully solve QBFs
- Existential player seems to be better than universal player

Conclusion \& Outlook

- AlphaZero can be adapted to successfully solve QBFs
- In fact, MCTS can be used to successfully solve QBFs
- Existential player seems to be better than universal player
- Try to find good predictor heuristics

Conclusion \& Outlook

- AlphaZero can be adapted to successfully solve QBFs
- In fact, MCTS can be used to successfully solve QBFs
- Existential player seems to be better than universal player
- Try to find good predictor heuristics
- Try to integrate MCTS into QBF solver (e.g. to find good partial assigments)

