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Motivation

Theorem (Werner, 1994)
Let A ∈ Cm×n and B ∈ Cn×k with inner inverses A− and B−. If
A−ABB− is idempotent, then B−A− is an inner inverse of AB.

Assumptions:

AA−A = A, BB−B = B, (A−ABB−)2 = A−ABB−

Claim: ABB−A−AB = AB

Proof.
ABB−A−AB

= AA−ABB−A−ABB−B

= AA−ABB−B

= AB.
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Motivation

Goal
Get rid of the compatibility checks and automatise this!

How?

statement about
operators

noncommutative
polynomials

assumptions⇒
claim

statement about
polynomials

formal

computation

translate

solve

interpret

2



Motivation

Goal
Get rid of the compatibility checks and automatise this!

How?

statement about
operators

noncommutative
polynomials

assumptions⇒
claim

statement about
polynomials

formal

computation

translate

solve

interpret

2



Motivation

Goal
Get rid of the compatibility checks and automatise this!

How?

statement about
operators

noncommutative
polynomials

assumptions⇒
claim

statement about
polynomials

formal

computation

translate

solve

interpret

2



Motivation

Goal
Get rid of the compatibility checks and automatise this!

How?

statement about
operators

noncommutative
polynomials

assumptions⇒
claim

statement about
polynomials

formal

computation

translate

solve

interpret

2



Motivation

Goal
Get rid of the compatibility checks and automatise this!

How?

statement about
operators

noncommutative
polynomials

assumptions⇒
claim

statement about
polynomials

formal

computation

translate

solve

interpret

2



Motivation

Goal
Get rid of the compatibility checks and automatise this!

How?

statement about
operators

noncommutative
polynomials

assumptions⇒
claim

statement about
polynomials

formal

computation

translate

solve

interpret

2



Motivation

Goal
Get rid of the compatibility checks and automatise this!

How?

statement about
operators

noncommutative
polynomials

assumptions⇒
claim

statement about
polynomials

formal

computation

translate

solve

interpret

2



Noncommutative polynomials

• X = {x1, . . . , xn} . . . set of indeterminates

• 〈X〉 = {xi1 . . . xik | i1, . . . , ik ∈ {1, . . . , n}} . . . free monoid
◦ (xi1 . . . xik) · (xj1 . . . xjl) = xi1 . . . xikxj1 . . . xjl

• R〈X〉 = {
∑
m∈〈X〉 cmm | cm ∈ R such that cm = 0

for almost all m} . . . free algebra in X over R

◦ Addition: term wise
◦ Multiplication: R-bilinear extension of multiplication in 〈X〉

• For F ⊆ R〈X〉 we denote

(F) = {
∑

aifibi | ai, bi ∈ R〈X〉, fi ∈ F}

3
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Framework for verifying operator identities

(Raab, Regensburger, Hossein Poor, 2021)

1. Phrase all assumptions on the operators involvediiiiio
as well as the claimed property in terms of identities.

2. Convert these identities into polynomials by uniformly
replacing each operator by a unique
noncommutative indeterminate in the differences
of the left and right hand sides.iiiiiiiiiiiooooooooooooo

3. Prove that the polynomial f corresponding to the iiiiiiii
claim lies in the ideal (F) generated by the set of
polynomials corresponding to the assumptions.iiiiiiiiio

4*. Consider different settings where the assumptions
still hold and immediately obtain analogous
statements in those settings as well.

translate

solve

interpret

4
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More formally. . .

Setting is encoded in labelled quiver Q.

Cm Cn Ck

A−

A

B−

B
1234567

Quiver representations in an R-linear category
Vertices and edges of Q are assigned objects and morphisms.

f ∈ R〈X〉 compatible with Q ⇐⇒ monomials of f are paths in Q with
same start and end.⇒ Compatible polynomials have realizations as morphisms.

Theorem (Raab, Regensburger, Hossein Poor, 2021)
Let F ⊆ R〈X〉 and f ∈ (F). Then, for every labelled quiver Q and every
representation of Q in an R-linear category s.t.

1. f and all elements of F are compatible with Q, and
2. realizations of all elements of F are zero,

we have that the realization of f is zero.
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Example revisited

Assumptions:

AA−A = A, BB−B = B, (A−ABB−)2 = A−ABB−

Claim: ABB−A−AB = AB

In Q〈a, b, a−, b−〉:
f1 = aa

−a− a

f2 = bb
−b− b

Cm V W

A−

A

B−

B

f3 = (a−abb−)2 − a−abb−

f = abb−a−ab− ab

Then, “assumptions⇒ claim” since

f = f1(bb
−b− bb−a−abb−b) + (a− abb−a−a)f2 + af3b.
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Applications

Framework implemented in the MATHEMATICA and SAGEMATH

package OperatorGB. Available at

https://clemenshofstadler.com/software/

Successfully used to automatically (im)prove statements in the
field of

• generalised inverses. • homological algebra.
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Applications

In the field of generalised inverses:

• Reverse order laws

• Solvability of systems of equations

In the field of homological algebra:

Diagram chases

Fitting’s and Warfield’s theorem

Any further ideas for possible applications?
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Applications

(Milošević, 2020)
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Applications
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• Reverse order laws
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In the field of homological algebra:

• Diagram chases

A B C D E

A ′ B ′ C ′ D ′ E ′

f g h j

f ′ g ′ h ′ j ′

α β γ δ ε

• Constructive versions of Fitting’s and Warfield’s theorem∗

(Chenavier, Cluzeau, Quadrat, 2020)
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NONCOMMUTATIVE
GRÖBNER BASES



Polynomial reduction

We fix a monomial ordering � on 〈X〉.

Definition
Let f, f ′, g ∈ K〈X〉 with g 6= 0. We say that f reduces to f ′ by g if
there exist a, b ∈ 〈X〉 such that a lm(g)b ∈ supp(f) and

f ′ = f−
coeff(f, a lm(g)b)

lc(g)
· agb.

In this case, we write f→g f
′, or f→a,g,b f

′.

Adapt to sets G ⊆ K〈X〉 by

f→G f
′ ⇐⇒ ∃g ∈ G : f→g f

′.

We denote by ∗→G the reflexive, transitive closure of→G.

12
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coeff(f, a lm(g)b)

lc(g)
· agb.

In this case, we write f→g f
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or f→a,g,b f
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Adapt to sets G ⊆ K〈X〉 by

f→G f
′ ⇐⇒ ∃g ∈ G : f→g f

′.

We denote by ∗→G the reflexive, transitive closure of→G.
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Gröbner bases

Definition
Let I ⊆ K〈X〉 be an ideal and G ⊆ I such that (G) = I. Then, G
is called a Gröbner basis of I if and only if→G is confluent.

G is a Gröbner basis of I iff

• every f ∈ K〈X〉 has a unique normal form under→G.

• f ∈ I ⇐⇒ f
∗→G 0.

Caution
Not all ideals in K〈X〉 have a finite Gröbner basis!
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Confluence check

If we want to check whether G ⊆ K〈X〉 is a Gröbner basis, we
have to consider these branching points for all f, g ∈ G:

t

f ′ g ′

t ′

f g

∗ ∗
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Ambiguities

Definition
Let f, g ∈ G ⊆ K〈X〉 be such that f, g 6= 0.

If lm(f) = AB and lm(g) = BC for some A,B,C ∈ 〈X〉 \ {1}.
Then, we call (ABC,A,C, f, g) an overlap ambiguity of G.

Its
critical pair is (ABC− f ′, ABC− g ′) with ABC→1,f,C f

′ and
ABC→A,g,1 g

′.

If lm(f) = ABC and lm(g) = B for some A,B,C ∈ 〈X〉. Then, we
call (ABC,A,C, f, g) an inclusion ambiguity of G. Its critical pair
is (ABC− f ′, ABC− g ′) with ABC→1,f,1 f

′ and ABC→A,g,C g
′.
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Diamond Lemma

Definition
Let G ⊆ K〈X〉 and let a = (ABC,A,C, f, g) be an ambiguity of
f, g ∈ G \ {0}. Furthermore, let (ABC− f ′, ABC− g ′) be the
critical pair of a. Then, the S-polynomial of a is given by

spol(a) = (ABC− g ′) − (ABC− f ′) = f ′ − g ′.

Diamond Lemma (Bergman, 1978)
Let G ⊆ K〈X〉. Then, G is a Gröbner basis of (G) if and only if
spol(a)→∗G 0 for all ambiguities a of G.
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Buchberger algorithm

Input: a finite set F ⊆ K〈X〉
Output if the algorithm terminates: G ⊆ K〈X〉 such that G is

a Gröbner basis of (F)
1: G← F

2: amb← all ambiguities of G
3: while amb 6= ∅ do
4: while amb 6= ∅ do
5: select a ∈ amb
6: amb← amb \ {a}

7: compute a normal form f ′ of spol(a) w.r.t. to→G

8: if f ′ 6= 0 then
9: G← G ∪ {f ′}

10: amb← all new ambiguities of G

11: return G
17



(NON)COMMUTATIVE F4



Faugère’s F4 algorithm

• First published in 1999 by Jean-Charles Faugère in

A new efficient algorithm for computing Gröbner bases
(F4).
Journal of Pure and Applied Algebra 139, 61-88, 1999.

• Main idea: use linear algebra for polynomial reduction

• Noncommutative F4 first published by Xingqiang Xiu in

Non-Commutative Gröbner Bases and Applications.
PhD thesis, University of Passau, 2012.
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Polynomials←→ matrices

Let F = {f1, f2, f3} ⊆ Q〈x, y, z〉, with

f1 = xxyz+ 2xyy+ x, f2 = xyy − yz, f3 = yz − 2x.

We use �dlex.

Then,

xxyz �dlex xyy �dlex yz �dlex x.

xxyz xyy yz x 1 2 0 1 f1

0 1 −1 0 f2

0 0 1 −2 f3

︸ ︷︷ ︸
=MF

−→
xxyz xyy yz x 1 0 0 5

0 1 0 −2

0 0 1 −2

︸ ︷︷ ︸
= RRef(MF)

FRRef(MF) = {xxyz+ 5x, xyy− 2x, yz− 2x}fjkalfjka
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= RRef(MF)
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First idea

Given G = {g1, . . . , gk} ⊆ K〈X〉 and F = {f1, . . . , fm} ⊆ K〈X〉 we
want to reduce all f ∈ F by G simultaneously.

MG∪F =





∗ · · · · · · ∗ g1
...

...
...

∗ · · · · · · ∗ gk

∗ · · · · · · ∗ f1
...

...
...

∗ · · · · · · ∗ fm

RRef→



1 ∗ · · · ∗
. . . . . .

...
. . . ∗

1


→ FRRef(MG∪F)afjslkfjak
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Symbolic preprocessing

Input: a finite set F ⊆ K〈X〉 and G ⊆ K〈X〉
Output: G ′ ⊆ {agb | a, b ∈ 〈X〉, g ∈ G}

1: G ′ ← ∅
2: T ← supp(F) \ lm(F)

3: done← lm(F)

4: while T 6= ∅ do
5: select t ∈ T
6: T ← T \ {t}

7: done← done ∪ {t}

8: if there exist g ∈ G, a, b ∈ 〈X〉 s.t. t = a lm(g)b then
9: G ′ ← G ′ ∪ {agb}

10: T ← T ∪ (supp(agb) \ done)

11: return G ′
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Symbolic preprocessing

Input: a finite set F ⊆ K[X] and G ⊆ K[X]
Output: G ′ ⊆ {tg | t ∈ [X], g ∈ G}

1: G ′ ← ∅
2: T ← supp(F) \ lm(F)

3: done← lm(F)

4: while T 6= ∅ do
5: select t ∈ T
6: T ← T \ {t}

7: done← done ∪ {t}

8: if there exist g ∈ G, t ′ ∈ [X] s.t. t = t ′ lm(g) then
9: G ′ ← G ′ ∪ {t ′g}

10: T ← T ∪ (supp(t ′g) \ done)

11: return G ′

21



Symbolic preprocessing

Let (ABC− f ′, ABC− g ′) be the critical pair of an ambiguity of
G.

F = {ABC− f ′, ABC− g ′}

F ′ = F ∪ SymPre(F,G).

MF ′ =




1 ∗ · · · ∗ ABC− f ′

1 ∗ · · · ∗ ABC− g ′

∗ · · · ∗ g1
...

...
...

∗ · · · ∗ gm

RRef−→



1 ∗ · · · ∗ ABC− f ′

0 ∗ · · · ∗ f ′ − g ′

∗ · · · ∗ g1
...

...
...

∗ · · · ∗ gm

somestuff
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Example

Let F = {f1, f2, f3, f4} ⊆ Q〈x, y〉, with

f1 = yxyx, f2 = yxyx+ yxx,

f3 = yxy, f4 = yxy+ xy.

Let G = {g1, g2, g3} ⊆ Q〈x, y〉, with

g1 = yx+ x, g2 = y+ 1, g3 = yxy

T = {yxx, xy}

G ′ = ∅

23



Example

Let F = {f1, f2, f3, f4} ⊆ Q〈x, y〉, with

f1 = yxyx, f2 = yxyx+ yxx,

f3 = yxy, f4 = yxy+ xy.

Let G = {g1, g2, g3} ⊆ Q〈x, y〉, with

g1 = yx+ x, g2 = y+ 1, g3 = yxy

T = {yxx, xy}

G ′ = ∅

23



Example

Let F = {f1, f2, f3, f4} ⊆ Q〈x, y〉, with

f1 = yxyx, f2 = yxyx+ yxx,

f3 = yxy, f4 = yxy+ xy.

Let G = {g1, g2, g3} ⊆ Q〈x, y〉, with

g1 = yx+ x, g2 = y+ 1, g3 = yxy

T = {yxx, xy}

G ′ = ∅

23



Example

Let F = {f1, f2, f3, f4} ⊆ Q〈x, y〉, with

f1 = yxyx, f2 = yxyx+ yxx,

f3 = yxy, f4 = yxy+ xy.

Let G = {g1, g2, g3} ⊆ Q〈x, y〉, with

g1 = yx+ x, g2 = y+ 1, g3 = yxy

T = {yxx, xy}

G ′ = ∅

23



Example

Let F = {f1, f2, f3, f4} ⊆ Q〈x, y〉, with

f1 = yxyx, f2 = yxyx+ yxx,

f3 = yxy, f4 = yxy+ xy.

Let G = {g1, g2, g3} ⊆ Q〈x, y〉, with

g1 = yx+ x, g2 = y+ 1, g3 = yxy

T = {yxx, xy}

G ′ = ∅

23



Example

Let F = {f1, f2, f3, f4} ⊆ Q〈x, y〉, with

f1 = yxyx, f2 = yxyx+ yxx,

f3 = yxy, f4 = yxy+ xy.

Let G = {g1, g2, g3} ⊆ Q〈x, y〉, with

g1 = yx+ x, g2 = y+ 1, g3 = yxy

T = {yxx, xy}

G ′ = {g1x}

23



Example

Let F = {f1, f2, f3, f4} ⊆ Q〈x, y〉, with

f1 = yxyx, f2 = yxyx+ yxx,

f3 = yxy, f4 = yxy+ xy.

Let G = {g1, g2, g3} ⊆ Q〈x, y〉, with

g1 = yx+ x, g2 = y+ 1, g3 = yxy

T = {yxx, xy, xx}

G ′ = {g1x}

23



Example

Let F = {f1, f2, f3, f4} ⊆ Q〈x, y〉, with

f1 = yxyx, f2 = yxyx+ yxx,

f3 = yxy, f4 = yxy+ xy.

Let G = {g1, g2, g3} ⊆ Q〈x, y〉, with

g1 = yx+ x, g2 = y+ 1, g3 = yxy

T = {yxx, xy, xx}

G ′ = {g1x}

23



Example

Let F = {f1, f2, f3, f4} ⊆ Q〈x, y〉, with

f1 = yxyx, f2 = yxyx+ yxx,

f3 = yxy, f4 = yxy+ xy.

Let G = {g1, g2, g3} ⊆ Q〈x, y〉, with

g1 = yx+ x, g2 = y+ 1, g3 = yxy

T = {yxx, xy, xx}

G ′ = {g1x}

23



Example

Let F = {f1, f2, f3, f4} ⊆ Q〈x, y〉, with

f1 = yxyx, f2 = yxyx+ yxx,

f3 = yxy, f4 = yxy+ xy.

Let G = {g1, g2, g3} ⊆ Q〈x, y〉, with

g1 = yx+ x, g2 = y+ 1, g3 = yxy

T = {yxx, xy, xx}

G ′ = {g1x, xg2}

23



Example

Let F = {f1, f2, f3, f4} ⊆ Q〈x, y〉, with

f1 = yxyx, f2 = yxyx+ yxx,

f3 = yxy, f4 = yxy+ xy.

Let G = {g1, g2, g3} ⊆ Q〈x, y〉, with

g1 = yx+ x, g2 = y+ 1, g3 = yxy

T = {yxx, xy, xx, x}

G ′ = {g1x, xg2}

23



Example

Let F = {f1, f2, f3, f4} ⊆ Q〈x, y〉, with

f1 = yxyx, f2 = yxyx+ yxx,

f3 = yxy, f4 = yxy+ xy.

Let G = {g1, g2, g3} ⊆ Q〈x, y〉, with

g1 = yx+ x, g2 = y+ 1, g3 = yxy

T = {yxx, xy, xx, x}

G ′ = {g1x, xg2}

23



Example

Let F = {f1, f2, f3, f4} ⊆ Q〈x, y〉, with

f1 = yxyx, f2 = yxyx+ yxx,

f3 = yxy, f4 = yxy+ xy.

Let G = {g1, g2, g3} ⊆ Q〈x, y〉, with

g1 = yx+ x, g2 = y+ 1, g3 = yxy

T = {yxx, xy, xx, x}

G ′ = {g1x, xg2}

23



Example

Let F = {f1, f2, f3, f4} ⊆ Q〈x, y〉, with

f1 = yxyx, f2 = yxyx+ yxx,

f3 = yxy, f4 = yxy+ xy.

Let G = {g1, g2, g3} ⊆ Q〈x, y〉, with

g1 = yx+ x, g2 = y+ 1, g3 = yxy

T = {yxx, xy, xx, x}

G ′ = {g1x, xg2}

23



Reduction

Input: a finite set F ⊆ K〈X〉 and G ⊆ K〈X〉
Output: F̃ ⊆ K〈X〉 \ {0}

1: G ′ ← SymbolicPreprocessing(F,G)
2: F ′ ← F ∪G ′

3: F̃← {f ∈ FRRef(MF ′ ) | f 6= 0 and lm(f) /∈ lm(F ′)}

4: return F̃

24
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Reduction

Input: a finite set F ⊆ K[X] and G ⊆ K[X]
Output: F̃ ⊆ K[X] \ {0}

1: G ′ ← SymbolicPreprocessing(F,G)
2: F ′ ← F ∪G ′
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Main result

Theorem
Let G ⊆ K〈X〉 and let C be a finite subset of critical pairs of
ambiguities of G. Furthermore, let F =

⋃
(f̃,g̃)∈C{f̃, g̃} be the set

of all polynomials appearing in the critical pairs of C and let
F̃ = Reduction(F,G). Then,

spol(a) ∗→G∪F̃ 0,

for all ambiguities a of G such that the critical pair of a is in C.

25



F4 algorithm

Input: a finite set {f1, . . . , fm} ⊆ K〈X〉
Output if algorithm terminates: G ⊆ K〈X〉 GB of (f1, . . . , fm)

1: G← {f1, . . . , fm} \ {0}

2: critPairs← critical pairs of all ambiguities of G
3: while critPairs 6= ∅ do
4: while critPairs 6= ∅ do
5: select C ⊆ critPairs
6: critPairs← critPairs \ C

7: F← ⋃
(f̃,g̃)∈C{f̃, g̃}

8: F̃← Reduction(F,G)
9: G← G ∪ F̃

10: critPairs← critical pairs of all new ambiguities of G

11: return G
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Example

Let

f1 = yx+ x, f2 = y+ 1, f3 = yxy ∈ Q〈x, y〉.

G = {f1, f2, f3}

a12 = (yx, 1, x, f1, f2), a31 = (yxy, 1, y, f3, f1),

a ′31 = (yxyx, yx, x, f3, f1), a32 = (yxy, yx, 1, f3, f2),

a ′32 = (yxy, 1, xy, f3, f2), a33 = (yxyxy, yx, xy, f3, f3)

F = {yxyx, yxyx+ yxx, yxy, yxy+ xy}

SymPre
=⇒ F ′ = F ∪ {f1x, xf2}

27



Example

Let

f1 = yx+ x, f2 = y+ 1, f3 = yxy ∈ Q〈x, y〉.

G = {f1, f2, f3}

a12 = (yx, 1, x, f1, f2), a31 = (yxy, 1, y, f3, f1),

a ′31 = (yxyx, yx, x, f3, f1), a32 = (yxy, yx, 1, f3, f2),

a ′32 = (yxy, 1, xy, f3, f2), a33 = (yxyxy, yx, xy, f3, f3)

F = {yxyx, yxyx+ yxx, yxy, yxy+ xy}

SymPre
=⇒ F ′ = F ∪ {f1x, xf2}

27



Example

Let

f1 = yx+ x, f2 = y+ 1, f3 = yxy ∈ Q〈x, y〉.

G = {f1, f2, f3}

a12 = (yx, 1, x, f1, f2), a31 = (yxy, 1, y, f3, f1),

a ′31 = (yxyx, yx, x, f3, f1), a32 = (yxy, yx, 1, f3, f2),

a ′32 = (yxy, 1, xy, f3, f2), a33 = (yxyxy, yx, xy, f3, f3)

F = {yxyx, yxyx+ yxx, yxy, yxy+ xy}

SymPre
=⇒ F ′ = F ∪ {f1x, xf2}

27



Example

Let

f1 = yx+ x, f2 = y+ 1, f3 = yxy ∈ Q〈x, y〉.

G = {f1, f2, f3}

a12 = (yx, 1, x, f1, f2), a31 = (yxy, 1, y, f3, f1),

a ′31 = (yxyx, yx, x, f3, f1), a32 = (yxy, yx, 1, f3, f2),

a ′32 = (yxy, 1, xy, f3, f2), a33 = (yxyxy, yx, xy, f3, f3)

F = {yxyx, yxyx+ yxx, yxy, yxy+ xy}

SymPre
=⇒ F ′ = F ∪ {f1x, xf2}

27



Example

Let

f1 = yx+ x, f2 = y+ 1, f3 = yxy ∈ Q〈x, y〉.

G = {f1, f2, f3}

a12 = (yx, 1, x, f1, f2), a31 = (yxy, 1, y, f3, f1),

a ′31 = (yxyx, yx, x, f3, f1), a32 = (yxy, yx, 1, f3, f2),

a ′32 = (yxy, 1, xy, f3, f2), a33 = (yxyxy, yx, xy, f3, f3)

F = {yxyx, yxyx+ yxx, yxy, yxy+ xy}

SymPre
=⇒ F ′ = F ∪ {f1x, xf2}

27



Example

Let

f1 = yx+ x, f2 = y+ 1, f3 = yxy ∈ Q〈x, y〉.

G = {f1, f2, f3}

a12 = (yx, 1, x, f1, f2), a31 = (yxy, 1, y, f3, f1),

a ′31 = (yxyx, yx, x, f3, f1), a32 = (yxy, yx, 1, f3, f2),

a ′32 = (yxy, 1, xy, f3, f2), a33 = (yxyxy, yx, xy, f3, f3)

F = {yxyx, yxyx+ yxx, yxy, yxy+ xy}

SymPre
=⇒ F ′ = F ∪ {f1x, xf2}

27



Example

yxyx yxy yxx xy xx x



1 0 0 0 0 0

1 0 1 0 0 0

0 1 0 0 0 0

0 1 0 1 0 0

0 0 1 0 1 0

0 0 0 1 0 1︸ ︷︷ ︸
=MF ′

RRef→




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

=⇒ F̃ = {xx, x}

G = {f1, f2, f3} ∪ {xx, x}
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RRef→
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Example

f1 = yx+ x, f2 = y+ 1, f3 = yxy

G = {f1, f2, f3, xx, x}

a14 = (yxx, y, x, f1, xx), a15 = (yx, y, 1, f1, x),

a35 = (yxy, y, y, f3, x), a44 = (xxx, x, x, xx, xx),

a45 = (xx, x, 1, xx, x), a ′45 = (xx, 1, x, x, xx).

F = {yxx+ xx, yxx, yx+ x, yx}

SymPre
=⇒ F ′ = F ∪ {xx, x}
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Example

yxx yx xx x



1 0 1 0

1 0 0 0

0 1 0 1

0 1 0 0

0 0 1 0

0 0 0 1︸ ︷︷ ︸
=MF ′

RRef→




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

=⇒ F̃ = ∅

G = {f1, f2, f3, xx, x} is a GB of (f1, f2, f3)
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